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Background
Protein–protein interactions (PPIs) are critical for the normal 
functioning of a cell. Proteins interact with one another and 
carry out biological processes such as signal transduction, 
gene regulation, and immune response. Since interactions of 
two proteins often result in one or more biological processes, 
it is important to gain knowledge on interacting partners 
of proteins and hence their functions. We now have sev-
eral databases1–3 that record PPI data from high-throughput 
experimental methods for thousands of proteins.

Protein–protein docking, the method of assembling two  
identical/different proteins together using physics-based 
computational algorithms, is still a challenging problem. 
Although we now have the methods that can explore all the 
possible rigid-body conformational states for the two proteins 
in a bound state, selection and ranking of the native-like pose 

is still a major problem. It is well understood that only when 
two proteins bind with one another in the correct conforma-
tion, they perform the designated function, and hence, select-
ing the native-like pose assumes central importance.

Several methods have been developed both for sampling 
the conformational space of the two proteins, which bind 
with one another, and to select the best native-like pose from 
the pool of generated complexes. Many of these algorithms 
perform grid-based searches to sample the conformational 
space. These algorithms inherently use shape/size comple-
mentarity, desolvation, or electrostatic interactions,4,5 physical 
force fields,6,7 empirical functions,8–10 and knowledge-based 
potentials derived from existing determined structures11–14 to 
dock the two proteins. Scoring of the docked poses is gener-
ally performed using either residue-level potentials or atomic 
potentials. While most residue-level potentials are simple to 
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construct, easy to use, and are computationally very fast, atomic 
potentials are more accurate and also computationally more 
demanding. Several methods have been developed to com-
putationally identify and/or predict the interacting partners 
for the proteins. These methods predict/identify interactions 
using features such as hydrophobic patch size,15 evolutionary-
conserved positions,15,16 position-specific sequence profiles 
and residue neighbor list,17 surface accessibility,17–19 distance,20 
structural similarity,16 secondary structure contributions,21 
amino-acid composition,21,22 dipeptide composition, and bio-
chemical tripeptide composition.22 PISA,23 one of the most 
popular prediction tools for predicting the stability of a com-
plex, uses several features such as free energy of formation, 
solvation energy gain, interface area, hydrogen bonds, salt-
bridges across the interface, and hydrophobic specificity.

Earlier, in our lab, we developed COILCHECK24 and 
COILCHECK+,25 which can be used for structural analyses 
and validation of special class of PPIs, namely, in coiled-coils. 
PPCheck is an improvised version of these tools with many 
significant new features (like consideration of only interface 
residues in calculation of normalized energy per residue, inclu-
sion of interface waters in hydrogen bond energy calculations, 
and implementation of an optimum distance cutoff that can be 
used in a generalized way for calculating electrostatic interac-
tions). PPCheck can be used to analyze diverse set of protein–
protein interfaces, where simple distance criteria are employed 
to screen for interface residues followed by a quantitative view 
of the strength of interactions at the interface. PPCheck has 
been applied on a benchmark dataset of protein–protein com-
plexes and standard values for the number of interface residues 
and the strength of PPIs had been obtained earlier.26 PPCheck 
can be used to analyze a set of docking decoys to recognize the 
native-like and the non-native-like poses. It uses a combina-
tion of energy, conservation, and accessibility scores to rank the 
models that are generated by the docking algorithm(s). When 
applied, separately, on a dataset of 30 dimers and decoys from 
six targets of Critical Assessment of Prediction of Interactions 
(CAPRI),27–31 it showed promising results in differentiating 
the native-like and the non-native-like poses.

Experimental alanine scanning mutagenesis is time con-
suming and an expensive way of finding out the structurally 
important residues. FoldX32 is one of the popular webser-
vers that is used for prediction of important interactions that 
provide stability to the protein complexes, but it is not very 
accurate. Thus, there is a necessity for a new and powerful 
tool that can reliably predict the changes in binding energy 
of the protein complex when one of the residues is mutated to 
alanine. When applied on a set of 40 mutations from experi-
mental studies, PPCheck performed well in calculating the 
changes in binding free energy of the complexes.

Hotspots are the interface residues that contribute maxi-
mally toward the stability of the complex, and when mutated 
to alanine, they impart an appreciable decrease in binding 
strength (difference of 2 kcal/mol or more in the binding 

energy). They are generally seen to exist in clusters called hot 
regions33 and are more conserved than other interface resi-
dues. Protein hotspots, apart from providing stability to the 
complex, also contribute to the specificity at the binding sites. 
Studies have also shown that hotspots mainly remain bur-
ied in the interface.33 Only a few databases, such as Alanine 
Scanning Energetics database (ASEdb)34 and Binding Inter-
face Database (BID),35 contain information about a handful 
of experimentally determined hotspots, and hence, there is a 
need to develop computational tools to predict them. Several 
methods employ energy-based models,36,37 knowledge-based 
models,38–42 and molecular dynamics-based models.43–45 
Graph theoretical approaches have also been applied to 
identify and analyze protein hotspots.46 PPCheck attributes 
pseudoenergies to protein–protein interface as a sum of non-
covalent interaction energies (van der Waals, electrostatic, 
and hydrogen bond energies). Graph theoretical parameters, 
such as degree or extent of spatial residue interaction (ESRI) 
(an alternative term used in the present study for simpli-
city) for all the interface residues, are employed as features 
to predict hotspots. PPCheck reported high accuracy on the 
test dataset when compared with other existing methods of 
hotspot prediction.

PPCheck is freely available as a webserver at http://caps.
ncbs.res.in/ppcheck/.

Methods
identification of non-covalent interactions. Simple 

distance criteria are employed for the preliminary identifi-
cation of non-covalent interactions, such as van der Waals, 
electrostatic, and hydrogen bonding. The respective ener-
gies are calculated using standard force fields as described in 
the following.

If the atoms of amino acids from two neighboring 
chains come within a distance of 7Å, then they are con-
sidered to be interacting and contribute to van der Waals 
interaction energy.

Van der Waals interaction energy is calculated as
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V is the van der Waals energy; Ri and Rj are the van der 
Waals radii for the atoms i and j, respectively; E is the van der 
Waals well depth; and r is the distance between the atoms.

Electrostatic interactions have been reported, and the 
corresponding energies are calculated using CHARMM 
package,47 if the charged residues are within or equal to an 
optimum distance cutoff of 10Å. Coulomb’s equation was 
used to quantify these interactions as follows:
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E is the electrostatic energy; q1 and q2 are partial 
atomic charges for the charged amino acids as obtained from 
CHARMM package; r is the distance between atoms; and D 
is the distance-dependent dielectric constant (D = 2r).

Hydrogen bonds are identified, and the corresponding 
energy is calculated using Kabsch and Sander’s equation as 
used in the DSSP program as follows:

E q
r r r

= × × + − −






×4.184 1 2
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r
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f −1 (3)

where q1 = 0.42e, q2 = 0.20e, and f = 332, and partial charges 
on the C, O (+q1, −q1) and N, H (−q2, q2) atoms.

Water molecules, when present at the interface, are con-
sidered when they form bridging hydrogen bonds with amino 
acids from two interacting protein chains. The single point 
charge model of water is considered,48 and hence, the values 
of the charges are chosen as follows for the water–amino acid 
interactions in the Kabsch and Sander’s equation49:

q1 = 0.42e, q2 = 0.41e, when water acts as hydrogen 
bond donor.

q1 = 0.82e, q2 = 0.20e, when water acts as hydrogen 
bond acceptor.

All the non-covalent interaction energies are summed up 
to total energy, and the ratio of total energy to the number of 
interface residues is termed as normalized energy per residue.

PPCheck, like COILCHECK,24 also reports residues 
involved in hydrophobic, strong electrostatic (salt-bridges) inter-
actions, and short contacts, based on distance between specific 
atoms and nature of amino acids. All the hydrophobic amino 
acids, such as Leu, Ile, Val, Trp, Phe, and Tyr, are reported for 
hydrophobic interactions, if they are found within or equal to 
a Cβ–Cβ distance of 7Å. If oppositely charged amino acids are 
observed within or equal to a Cβ–Cβ distance of 4Å, then they 
are considered and reported as potential salt-bridges. Atoms are 
reported to be engaged in short contacts, if their spatial distance 
at the interface is lesser than the allowed van der Waals distance.

Short contacts are calculated as

D = r – (R – 0.40) (4)

where R is the sum of van der Waals radii of the two atoms 
and r is the distance between the atoms.

implementation. PPCheck has been developed using 
a combination of HTML, PERL, and PHP. The webserver 
works fine on all the browsers and the platforms. It takes 
∼22 seconds to identify interactions between two protein
chains having ∼150 amino acids each.

selection of right cutoff for electrostatic interactions. 
Electrostatic interactions are long-range forces. In order to 
select the right cutoff for these kinds of interactions, the num-
ber of charged residues at the interfaces with Cβ–Cβ distance 
within various cutoff distances (7Å, 8Å, 10Å, 12Å, and 15Å) 
was calculated in the training dataset.

dataset for prediction of native-like docking pose. In an 
earlier study,26 PPCheck was applied on 270 non-redundant, 
well-characterized, and high-quality protein–protein inter-
faces where crystal structures were determined with resolution 
better than 2.5Å. It was observed that in most of the stable 
PPIs, the number of residues at the interface ranges from 
51 to 150 and the normalized energy per residues is better 
than −2 kJ/mol (ie, less than −2 kJ/mol). These values were 
used as standardized criteria to distinguish the native-like 
docking pose from the non-native-like ones.

As studied earlier,50 a set of six CAPRI targets (T24, T25, 
T26, T29, T32, and T36) with a total of 1883 decoys (best- 
predicted models by CAPRI participants) was collected from 
the CAPRI website maintained at the European Bioinformatics 
Institute (EBI) (http://www.ebi.ac.uk/msd-srv/capri/capri.html). 
In all, 132 of 1883 decoys were deemed as near-native-like models.

residue conservation as an additional parameter with 
PPcheck to predict accuracy of native-like docking decoys. 
To improve the performance of PPCheck in its ability to dif-
ferentiate native-like docking poses from the non-native-like 
ones, residue conservation and solvent accessibility were used 
as additional features. For finding out the extent of residue 
conservation of a protein, homologous sequences were identi-
fied using Position-Specific Iterative (PSI)-BLAST,51 against 
non-redundant (NR)-database (March 2013) with one itera-
tion (Blastp), at an e-value cutoff of 10−2. The resultant hits are 
collected and clustered at 45% sequence identity using CD-
HIT52 (word size = 2). Multiple sequence alignment was then 
performed using ClustalW,53 and the extent of residue conser-
vation at each position was scored using structure-based align-
ment matrix created by Johnson and Overington matrix.54 The 
conservation score for each residue is calculated as

Ci
j=

∑ =1
n

abS
n
( )

(5)

where Ci is the total conservation score for the residue at the 
ith position, a is the residue type present in the query sequence 
at the ith position in the multiple sequence alignment, b is 
the residue type present in the jth homologous sequence at 
the ith position in the multiple sequence alignment, Sab is the 
amino-acid conservation score from structure-based matrix 
when residue type a in query sequence is substituted by residue 
type b in homologous sequence at the ith position, and n is the 
number of homologs for the query sequence in the multiple 
sequence alignment.

C
C
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i

i
=

100
(6)

Conservation score for each residue was further normal-
ized to a range between 0 and 1 by dividing it by 100 (maxi-
mum amino-acid substitution score in structure-based matrix 
is 100 for cysteine–cysteine substitution).
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Solvent accessibility is calculated using protein surface 
accessibility (PSA) module of JOY55 program. A residue is 
treated as exposed if the relative accessibility as compared to a 
model tripeptide is more than 7%. If the relative accessibility 
of a residue is less than 7%, then it is considered as buried.

PPCheck was applied on an earlier studied dataset26 of 
well characterized 270 protein–protein complexes in order to 
select the optimum values of solvent accessibility and number 
of conserved residues (conservation score $0.65) present at the 
interface, which can help in clear differentiation of native-like 
poses from the non-native-like ones. It was observed that more 
than 75% of the protein–protein interfaces (209/270 protein–
protein interfaces) (Supplementary File 1) fell either in strong 
interactor or medium interactor categories. An interface was 
termed as strong interactor type if both the interacting chains 
had 10 or more exposed-conserved residues in their monomeric 
form. However, if one of the chains at the interface had 5 or 
more exposed-conserved residues in the monomeric form, while 
its interacting partner had 10 or more exposed conserved resi-
dues in the monomeric form, then such a complex was termed 
as medium interactor type. Since majority (209/270 protein–
protein interfaces) of the complexes belonged to these (strong 
interactor or medium interactor) types, they were treated as gold 
standards for selecting/predicting the native-like docking pose.

studies on an additional dataset for evaluating the 
effectiveness of methodology. In order to assess the predic-
tion accuracy of PPCheck, a non-redundant set of 30 dimers 
(15 homodimers and 15 heterodimers) was selected, as stud-
ied earlier,56 to constitute the current test dataset. For the 30 
dimers, the two interacting chains were separated and then 
allowed to dock using FRODOCK.57 For all the generated 
docked poses for each of the 30 pairs of chains (30 com-
plexes), PPCheck was applied and its ability to predict best 
native-like docking pose was evaluated. Top-5, top-10, and 
top-20 models ranked by PPCheck were compared with the 
already available native pose (in PDB) with respect to (i) root 
mean square deviation (rmsd) of C-alpha atoms, as obtained 
from MMalign,58 and (ii) percentage of common interface 
residues (pcir) as observed in the native pose.

Similarly, rmsd values and pcir were calculated and 
compared between the top-1, top-5, top-10, and top-
20 models of the test dataset, when conservation and solvent 
accessibility scores were used to assist PPCheck in differenti-
ating the native-like docking poses from the non-native-like  
dosing poses.

dataset for hotspot prediction. A set of 192 residue 
mutations from ASEdb and 126 residue mutations from BID 
were considered for training and testing PPCheck for hotspot 
prediction. The two datasets ASEdb and BID are mutually 
exclusive and independent of each other. Also, the same data-
sets have been largely used by almost all the existing meth-
ods of hotspot prediction; thus, consistency in the datasets is 
maintained. This also ensures a fair comparison between the 
existing methods.

ASEdb contains information about differences in binding 
energy of the complex when a single residue is mutated to ala-
nine. A residue is considered as a hotspot if a gain of 2 kcal/mol 
or more of free energy of interaction is obtained, when mutated 
to alanine. Non-hotspots are the residues that when mutated 
to alanine causes a change in the binding energy by less than 
0.4 kcal/mol. A total of 77 hotspots and 115 non-hotspots 
from ASEdb and 39 hotspots and 87 non-hotspots from BID 
were mixed and randomly rotated 10 times to form mutually 
exclusive 10-fold training and 10-fold test dataset. All further 
studies were carried out using these datasets.

extent of spatial residue interaction. The number of res-
idues from the partner chain with which a particular residue 
(say A) in the protein chain interacts is defined as the ESRI 
represented as Di of that residue (A). For example, if a residue 
at the 100th position in a protein is present at the interface and 
is spatially interacting with 10 other residues from the part-
ner chain, then the ESRI of this residue (present at the 100th 
position) is said to be 10.

normalized extent of spatial residue interaction. The 
ratio of the number of residues that interact with an interface 
residue (say x) and the average number of residues that all the 
interface residues interact with is known as the normalized 
extent of spatial residue interaction (NESRI) of that residue 
(x). The definition of NESRI has been illustrated in a better 
way using an example in Supplementary File 2.

extent of energy contribution. The energy contributed 
by a residue (say A), present at the interface, while interacting 
with residues present at the interface of the interacting part-
ner is known as the extent of energy contribution (EEC), repre-
sented as De of that residue (A). For example, if a residue at the 
100th position is present at the interface and while interacting 
with other residues from the interacting chain, it contributes a 
total of -10 kJ/mol energy, then the EEC of this residue (pres-
ent at the 100th position) is said to be −10.

normalized extent of energy contribution. Normal-
ized extent of energy contribution (NEEC) of a residue is 
the ratio of EEC of a residue to the average EEC of all the 
residues present at the interface. The definition of NEEC is 
explained in a detailed manner, using an example, in Supple-
mentary File 2.

comparison of hotspot prediction performance of 
various methods. In order to evaluate the performance of 
PPCheck, parameters such as sensitivity, specificity, accuracy, 
and F-score were compared with some of the other available 
methods for hotspot prediction. For this study, all the meth-
ods were applied on 126 mutations of test dataset (from BID) 
and the various parameters were computed and compared. The 
various parameters are calculated as

 Sensitivity RECALL True Positive Rate TP
TP FN

= = =
+

(7)

Specificity TN
TN FP

=
+

(8)
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Accuracy TP TN
TP TN FP FN

= +
+ + +

(9)

False Positive R FP
FP TNate =

+
(10)

PRECISION TP
TP FP

=
+

(11)

F score PRECISION RECALL
PRECISION RECALL

− = 2 × ×
+

(12)

where TP (true positive) is a hotspot that is predicted as a 
hotspot, TN (true negative) is a non-hotspot that is predicted 
as a non-hotspot, FP (false positive) is a non-hotspot that is 
predicted as a hotspot, and FN (false negative) is a hotspot that 
is predicted as a non-hotspot.

dataset for performing computational alanine scanning. 
ASEdb records information about changes in binding energy 
when a residue is mutated to alanine. A set of randomly selected 
40 such mutations (Supplementary File 3) was extracted from 
the database, and computational alanine scanning was per-
formed using PPCheck.

results and discussion
selection of optimum cutoff for electrostatic interaction. 

A number of charged residues at protein–protein interfaces were 
calculated between Cβ and Cβ atoms at various distance cutoffs 
of 7Å, 8Å, 10Å, 12Å, and 15Å within the training dataset. An 

optimum distance cutoff is recognized as a value beyond which 
a significantly large number of residues are spuriously included 
as interface residues. A slight increase (of maximum up to two 
residues) was observed when the cutoff was increased from 7Å 
to 8Å in all the 262 complexes in the training dataset. When 
the distance cutoff was increased from 8Å to 10Å, the increase 
was still up to two residues, in all except one complex. However, 
when the cutoff was increased from 10Å to 12Å, we observe that 
the number of interface residues in complexes starts increasing 
by 10 extra residues. Hence, a cutoff of 10Å was selected as an 
optimum distance cutoff for identifying electrostatic interac-
tions. The chosen cutoff is also important since higher distances 
include a large number of charged residues at the interface that 
do not contribute significantly to the stability. Figure 1 shows the 
pictorial representation of increase in interface residues (number 
of interface charged residues in bins) when the distance cutoff is 
increased gradually, in bins, from 7Å to 15Å.

PPcheck as a reliable tool for predicting native-like 
docking pose out of many decoys. In an earlier study,26 
PPCheck was applied on 270 non-redundant, high-quality 
protein–protein interfaces, and it was observed that the number 
of residues in a stable protein–protein interacting complex 
ranges from 51 to 150, whereas the normalized energy per 
residue is better (less) than −2 kJ/mol. These values can be 
considered as gold standard for optimal normalized energy at 
protein–protein interfaces and hence were used to differentiate 
the native-like docking poses from the non-native ones.
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figure 1. increase in the number of charged interface residues at various cβ–cβ atom distance cutoffs in the training dataset. an increase in the number 
of interface residues (charged residues) is recorded in various bins (0–2, 3–4, 5–6, 7–8, and .8) in the 262 protein–protein interfaces (where water is 
a part of the interface and) when the distance cutoff between cβ and cβ atoms of charged residues for calculating electrostatic interactions is increased 
from 7Å to 8Å, 8Å to 10Å, 10Å to 12Å and 12Å to 15Å.
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results on a dataset of 30 dimers. PPCheck was applied 
on 30 dimers (15 homodimers and 15 heterodimers) that were 
earlier used to train DockScore,56 an in-house algorithm for 
ranking docking decoys. For these 30 complexes, each chain 
was separated and then redocked using FRODOCK after 
altering its orientation. The aim was to check the consistent 
efficiency of PPCheck in predicting the native-like models 
in top-1, top-5, top-10, and top-20 ranks, respectively, out of 
99 generated poses.

We observed that PPCheck and conservation and solvent 
accessibility scores could successfully rank native-like docking 
pose in top-1 position, from the 99 generated poses by FRO-
DOCK (with an average C-alpha rmsd ,4Å from the crystal 
structure of the complex) in 27 and 29 complexes out of 30. 
When poses within the top-5 PPCheck ranks are considered, 
26 out of 30 complexes could be identified, but with increasing 
structural deviations from the native crystal structure.

Similarly, PPCheck could successfully rank native-like 
docking pose in top-1 position (.60% of common interface 
residues) between native pose and FRODOCK-generated 
pose in 25 out of 30 complexes. Figure 2 shows the perfor-
mance of PPCheck in ranking the native-like poses in top-1, 
top-5, top-10, and top-20 positions.

For analyzing the performance of PPCheck in differen-
tiating native-like and non-native-like docking pose, CAPRI 
dataset was selected. A total of 1883 decoys, which were 
all submitted as best models by the respective CAPRI par-
ticipants, corresponding to six CAPRI targets50 (T24, T25, 
T26, T29, T32, and T36), were selected. When PPCheck 
alone was applied on these 1883 decoys/models, it could 
successfully identify 91 (out of 132; 68.9%) near-native-like 
models (Table 1).

residue conservation, solvent accessibility, and 
PPcheck. Although PPCheck showed significant capabili-
ties in differentiating the native-like docking poses from the 
non-native-like ones in a stringent dataset such as CAPRI 
decoys, we included residue conservation and solvent accessi-
bility as additional parameters to further improve the accuracy 
of differentiation. Conservation score for all the residues of 
the interacting chains was obtained by collecting homologous 
sequences followed by multiple sequence alignment (please see 
the Methods section for greater details).

Out of the 1883 decoys from the six CAPRI targets, 
CAPRI assessment team recognized 132 decoys as native-
like poses, while remaining 1751 decoys as non-native-like 
poses. PPCheck, along with residue conservation and solvent 

accessibility, could successfully differentiate 71 native-like 
poses and 1057 non-native-like poses. Thus, an overall accuracy 
of ∼60% was achieved in differentiating the native-like (71 out 
of 132) and non-native-like (1057 from 1751) docking poses.

PPcheck as computational alanine scanning tool. 
PPCheck was applied on a set of randomly selected 40 muta-
tions from ASEdb and the change in binding energy of the 
complex when a specific residue was mutated to alanine was 
recorded. A correlation of 0.716 was observed (Fig. 3) between 
the changes in binding energy as recorded from experimen-
tal studies and as obtained from PPCheck. This correlation 
should be considered with caution as it has been obtained from 
a comparatively small dataset and the proportionality constant 
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figure 2. Performance of PPcheck in ranking docking decoys. top-1, 
top-5, top-10, and top-20 decoys, as ranked by PPcheck, and their 
similarity with native pose with respect to rmsd (A) and percentage of 
common interface residues (b).

table 1. Performance of PPcheck (with and without conservation and accessibility) in identifying the native-like (tP) and non-native-like (tn) 
docking poses from six caPri targets.

mEtHod(S)/SouRCE(S) # of totAl modElS tP tn fP fn ACCuRACY (%)

PPcheck 1883 91 758 993 41 45.09

PPcheck + conservation + accessibility 1883 71 1057 694 61 59.90
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between the two axes is not 1. Further, there appears to be better 
correlation for mutations with large changes in binding energy.

selection of optimum esri. Hotspots are interface 
residues that are generally seen to occur in clusters,59 and they 
contribute to the stability of the complex,27 along with provid-
ing specificity to the complex. Therefore, interface residues are 
expected to interact with large number of residues within the 
protein and form the partner chains. PPCheck was therefore 
applied on the 10-fold mixed training dataset (192 mutations 

obtained from ASEdb; 126 mutations obtained from BID), 
and the ESRI (please see the Methods section for explana-
tion) of all the interface residues was calculated using residue-
centric normalized PPCheck energies. We then checked how 
well the top-5 to top-15 residues, having the highest nor-
malized ESRI (more than 1) and NEEC more than 1, were 
observed as hotspots in various protein–protein complexes in 
the training dataset. Figure 4 shows how the various para-
meters, such as true positive rate (TPR) and false positive rate 
(FPR), vary when top-5 to top-15 residues were considered 
as a hotspot from the training dataset. The best results were 
obtained when top-9 residues having the highest ESRI were 
considered as hotspots.

selection of optimum eec. Hotspots are the residues 
that bring a change of more than 2 kcal/mol when mutated 
to alanine,59 and they contribute more energy than an aver-
age interface residue. Thus, we believe that those interface 
residues that contribute high pseudoenergies while interact-
ing with residues present at the interface will also have the 
maximum tendency to act as a hotspot. In order to support our 
assumption, PPCheck was applied on the 10-fold mixed train-
ing dataset (192 mutations obtained from ASEdb; 126 muta-
tions obtained from BID) and the EEC of all the interface 
residues was calculated. We then checked how well the top-5, 
top-6, top-7, and top-15 residues having the highest EEC 
(NEEC more than 1) and NESRI more than 1 were observed 
as hotspots in the various protein–protein complexes in the 
training dataset. Supplementary File 4 shows that the opti-
mum results for hotspot prediction on 10-fold mixed training 
dataset were obtained when the EEC is selected as 8.

Computational alanine scanning v/s
experimental alanine scanning
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figure 3. scatter plot showing the correlation between changes in 
binding energy of the protein complex (measured in kcal/mol) as 
measured from PPcheck and experimental studies. a correlation of 0.716 
was observed for 40 mutations, selected randomly from asEdb. Please 
note that the regression value is about 0.513 and the proportionality 
constant between the two terms is not 1.
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selection of optimum esri for predicting hotspots. 
A comparison between ESRI and EEC when top-5 to top-15 
residues were treated as hotspots revealed that ESRI gave bet-
ter results than EEC in almost all the cutoff values. Hence, 
top-9 residues having the highest ESRI (NESRI more than 1) 
and NEEC more than 1 were selected as hotspots.

How PPcheck predicts hotspots? selection of esri or 
eec for prediction. For every cutoff from top-5 to top-15 for 
ESRI and EEC methods of hotspot prediction, ESRI method 
gave improved results, ie, ratio of TPRs and FPRs from the 
ESRI method was better than that from the EEC method. 
Hence, the ESRI method was used for prediction of hotspots, 
ie, top-9 residues having the highest ESRI (NESRI more 
than 1) and NEEC more than 1 were selected as hotspots.

PPcheck as a hotspot prediction tool. PPCheck and 
other hotspot prediction tools, such as Robetta,60 FOLDEF,30 
KFC,61 MINERVA,62 HotPoint,63 KFC2a, and KFC2b,64 
were tested on 126 mutations from the BID dataset, and vari-
ous parameters such as sensitivity, specificity, accuracy, F-score, 
and Matthews coefficient were computed and compared in order 
to evaluate the performance of each program for their abil-
ity to correctly predict hotspots. Table 2 shows that PPCheck 
achieved 58.8% sensitivity, which is much better than the 
existing programs such as FOLDEF, KFC, Robetta, Hot-
Point, and MINERVA. It also reported an F-score of 0.556, 
which is on par with other existing methods of hotspot pre-
diction. Only KFC2 performed better (sensitivity-wise) than 
PPCheck in predicting hotspots. KFC2 performed better than 
PPCheck (raw data for comparison were collected from an 
earlier study),64 perhaps because of their consideration of sol-
vent accessibility of residues. However, there were some cases 
where PPCheck outperformed KFC2b (PPCheck results were 
a subset of KFC2a, and hence, they were not compared with 
each other.). We discuss two such cases in the following.

Successful cases. 
1. Complex between soluble tissue factor protein and blood

coagulation factor VII-A protein (PDB ID – 1FAK;
interacting chains – T and L): Alanine scanning muta-
genesis results show that two residues, T-LYS-20 posi-
tion and T-ASP-58 position in soluble tissue factor, act
as hotspots. Out of these two, KFC2b could predict only

T-LYS-20 as hotspot, whereas PPCheck could identify 
both these residues as hotspots (Fig. 5A).

2. Complex between ATP-dependent HSLU protease
ATP-binding subunit HSLU and ATP-dependent pro-
tease HSLV (PDB ID – 1G3I; interacting chains – A
and G/H): Experimental studies reported six residues,
A-ASP-438, A-LEU-439, A-ARG-441, A-PHE-442,
A-ILE-443, and A-LEU-444, as hotspots. KFC2b
could successfully predict only three of them (A-PHE-
442, A-ILE-443, and A-LEU-444), whereas PPCheck
could predict all the six hotspots (Fig. 5B).
Cases where both the programs fared equally well.

1. Complex between EPO receptor and EPO mimetics
peptide 1 (PDB ID – 1EBP; interacting chains – A and
C/D): Residues A-PHE-93, A-MET-150, A-PHE-205,
and C-TRP-13 were found to be hotspots as per ala-
nine scanning mutagenesis results. Both KFC2b and
PPCheck could successfully predict three residues each
as hotspots for this complex. While KFC2b reported
A-MET-150, A-PHE-205, and C-TRP-13 residues as
hotspots, PPCheck reported A-PHE-93, A-MET-150,
and C-TRP-13 as hotspots (Supplementary File 5).

Unsuccessful cases. Either one or all of the available hotspot 
prediction programs could successfully predict majority of the 
hotspots. However, there are some experimentally determined 
hotspots that could not be predicted by any of the available 
programs. H-HIS-76 in the complex between DES-GLA fac-
tor VII-A (heavy chain) and peptide E-76 (PDB ID – 1DVA; 
interacting chains – X and H) (Supplementary File 6A), 
A-ASP-427 in the complex between Nidogen-1 and Basement 
membrane-specific heparan sulfate proteoglycan core protein 
(PDB ID – 1GL4; interacting chains – A and B) (Supple-
mentary File 6B), and B-LYS-345 in the complex between 
beta-catenin and adenomatous polyposis coli protein (PDB 
ID – 1 JPP; interacting chains – B and D) (Supplementary 
File 6C) are some of the hotspots that none of the presently 
available programs could successfully predict. When analyzed 
in detail, it was observed that all these residues contributed 
more energy than an average interface residue (normalized  
energy per residue was greater than 1), but they were found to be 

table 2. Performance of various hotspot prediction programs on an independent test dataset.

mEtHod SEnSItIvItY (%) SPECIfICItY (%) ACCuRACY (%) f-SCoRE mAtHEW’S CoEffICIEnt

foldEf 26.36 93.51 73.37 0.369 0.272

robetta 44.85 92.21 77.99 0.548 0.432

Kfc 47.27 89.61 76.91 0.549 0.410

minErVa 51.82 93.51 81.00 0.619 0.517

Kfc2b 56.06 90.91 81.73 0.631 0.509

hotPoint 57.58 83.12 75.46 0.583 0.410

PPCheck 58.79 77.92 72.18 0.556 0.356

Kfc2a 78.49 83.12 81.73 0.720 0.590
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exposed (solvent accessibility more than 7%) in the complexed 
form. These residues were also found to interact with fewer 
interface residues from interacting partner (ESRI less than 8) 
and were among moderate or less-conserved amino acids in the 
proteins. High solvent accessibility (exposed nature of residues 
in complexed form) and moderate/less conservation of these 
residues could be the possible reason why these residues could 
not be predicted by any of the available methods for hotspot 
prediction. These examples also show that it is informative to 
apply multiple algorithms for the identification of hotspots 
and the method with the best statistical measures may not be 
consistently performing best for every case.

conclusion
PPCheck is an objective energy scoring scheme to analyze 
PPIs. It is a valuable resource that can be used for various pur-
poses such as identification of non-covalent interactions at 
a protein–protein interface, given the coordinates of the two 
(interacting) chains in a single pdb file. An average docking 
algorithm generates hundreds of decoys for a given pair of pro-
teins. Most of these generated conformations are incorrect, ie, 
they do not show any similarity with the native complex. Other 
successful scoring scheme, such as DockScore, provides scores 
on a relative basis within the sampled poses and is not meant 
to recognize cases where all the poses could be incorrect. If 
more than one software/algorithm is used for obtaining docked 
complexes, then the complexity of determining the correct pose 
further increases as the best predicted models by each algo-
rithm can be entirely different. In such cases, PPCheck can be 
reliably used in differentiating the native-like docking poses 
from the non-native-like decoys since universal energy ranges 

have been obtained by studying a large number of protein–
protein complexes.26 PPCheck reported an accuracy of ∼60% 
in differentiating the native-like and non-native-like docking 
poses over a range of CAPRI targets. Prediction of PPIs and 
recognition of hotspots at the interface region form the central 
focus for understanding biochemical pathways and for bioen-
gineering/drug design experiments, respectively. It can also be 
used to successfully predict the critical residues, hotspots, at the 
interface, which provides stability and specificity to the com-
plex. PPCheck also finds its application in calculating residue 
conservation and performing computational alanine scanning. 
Thus, PPCheck is the only webserver, to the best of our knowl-
edge, which can be reliably used for identifying non-covalent 
interactions, predicting hotspots at the interface, calculating 
residue conservation, performing computational alanine scan-
ning, and differentiating native-like and non-native-like dock-
ing poses. The availability of PPCheck, which provides objective 
measures of the strength of interactions, should be valuable.
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supplementary Materials
supplementary File 1. Table showing best values for 

strong interactors + medium interactors at CD-HIT word-size 
of 2, threshold of 0.45, and conservation score of 0.65 or more 
when applied on earlier studied dataset of 270 protein–protein 
complexes. An interface is termed as strong interactor type if the 
two interacting proteins have 10 or more conserved, exposed 
residues in their monomeric form. An interface is termed as 
medium interactor type if one of the protein has 10 or more con-
served, exposed residues in its monomeric form while the other 
has more than five (but less than 10) such residues.

supplementary File 2. Detailed explanation of normal-
ized extent of spatial residue interaction (NESRI) and nor-
malized extent of energy contribution (NEEC).

supplementary File 3. Table showing a set of 40 muta-
tions, selected from Alanine Scanning Energetics database, 
and their corresponding changes in binding energy as recorded 
from experimental studies and PPCheck.

supplementary File 4. True positive rate (TPR) versus 
true negative rate (TNR) curve for extent of energy contribu-
tion (EEC) for 10-fold mixed training dataset. Residues with 
various “extent of energy contribution” (from 5 to 15) were 
treated as hotspots in a 10-fold mixed dataset (192 mutations 
from ASEdb and 126 mutations from BID) in order to select 
an optimum degree of interaction that can be used in a gene-
ralized manner to predict hotspots. Optimum results for 
hotspot prediction were obtained when top-8 residues with 
the highest degree of energy (normalized degree of energy 
more than 1) and normalized degree of interaction more than 
1 were treated as hotspots.

supplementary File 5. Experimental hotspots that were 
predicted with equal success by both PPCheck and KFC2b. Both 
PPCheck and KFC2b could successfully predict three of the four 
experimental hotspots in the complex between EPO receptor and 
EPO mimetics peptide 1 (PDB ID – 1EBP; interacting chains 
– A and C/D). While PPCheck predicted A-PHE-93, A-MET-
150, and C-TRP-13 as hotspots, KFC2b reported A-MET-150, 
A-PHE-205, and C-TRP-13 residues as hotspots.

supplementary File 6. Examples of unsuccessful cases, 
where some experimentally determined hotspots could not be 
predicted by any of the available programs. (A) H-HIS-76 in 
the complex between DES-GLA factor VII-A (heavy chain) 
and peptide E-76 (PDB ID – 1DVA; interacting chains – X 
and H), (B) A-427-ASP in the complex between nidogen-1 and  
basement membrane-specific heparan sulfate proteoglycan 
core protein (PDB ID – 1GL4; interacting chains – A and B), 
and (c) B-LYS-345 in the complex between beta-catenin and 
adenomatous polyposis coli protein (PDB ID – 1 JPP; inter-
acting chains – B and d).
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