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Simple Summary: The oestrous cycle in canines is specifically more extended than that in other
mammals. This implies that the oocytes do not reach maturity within the ovarian follicle but
undergo final maturation in the oviducts. Besides oocyte maturation, the oviduct provides the
necessary milieu for fertilization and preimplantation embryonic development. Consequently, the
oviductal environment presumably changes in the postovulatory period and throughout the entire
reproductive cycle to provide a suitable condition for supporting different functions. In this study, we
evaluated the gene expression of different genes associated with oocyte-embryo development, such
as progesterone receptor, cyclooxygenase-2, growth differentiation factor 9, and bone morphogenetic
protein 15 in the canine oviductal cells at different phases of the oestrous cycle. Using quantitative
PCR (qPCR) analysis in bitch oviductal cells, this study revealed the ovarian cycle’s influence
on the oviductal essential transcripts in the bitch. It also assessed the influence of the ovulated
cumulus-oocytes complexes on the expression of GDF-9 and BMP-15 genes. Thus, the oestrous-cycle-
dependent gene expression pattern of PR, COX-2, GDF-9, BMP-15 in the canine oviduct was found
to execute the oviductal cell interactions necessary for the development and function of the canine
reproductive tract.

Abstract: The gene expression in the canine oviduct, where oocyte maturation, fertilization, and early
embryonic development occur, is still elusive. This study determined the oviductal expression of (PR),
cyclooxygenase-2 (COX-2), growth differentiation factor 9 (GDF-9), and bone morphogenetic protein
15 (BMP-15) during the canine oestrous cycle. Samples were collected from bitches at anoestrus
(9), proestrus (7), oestrus (8), and dioestrus (11), after routine ovariohysterectomy and the ovarian
surface structures and plasma progesterone concentration evaluated the physiological status of each
donor. The oviductal cells were isolated and pooled. Total RNA was isolated, and gene expression
was assessed by qPCR followed by analysis using the t-test and ANOVA. The PR mRNA increased
(P < 0.05) from the anoestrus to dioestrus with the plasma progesterone concentration (r = 0.8). COX-2
mRNA expression was low in the anoestrus and proestrus, and negligible in the oestrus, while it was
around 10-fold higher (P < 0.05) in the dioestrus. The GDF-9 mRNA was expressed during all phases
of the oestrous cycle and was most abundant (P < 0.05) during oestrus phase. The BMP-15 mRNA
decreased (P < 0.05) in the anoestrus and proestrus phases. Thus, the transcripts were differentially
expressed in a stage-dependent manner, suggesting the importance of oestrous cycle regulation for
successful reproduction in dogs.

Keywords: dog; gene expression; oviductal cells; anoestrus; proestrus; oestrus; dioestrus; proges-
terone; oestrous cycle regulation
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1. Introduction

One of the most intriguing characteristics of canine reproductive physiology is the
long oocyte maturation process, which prolongs the presence of the oocyte at the oviductal
level. Although the oviducts play a decisive role for final oocyte maturation and also
is an important environment for gamete interaction, fertilization, and early embryonic
development, the oviduct micro-environment is still poorly understood in canines.

Several agents such as the ovarian hormones [1–3], prostaglandins [4,5], and growth
factors [6] are known to influence oviductal functions in several species [7].

Ovarian steroids, including progesterone, affect the oviduct by regulating secretory
functions in the lumen [3,8], which in turns affect the oocyte final maturation and embryo
growth. Maturation of the canine oocytes occurs in a progesterone dominant environment,
because during the oestrus stage the follicles luteinize, changing the secretion to proges-
terone [9]; therefore, after ovulation progesterone- can be considered an important mediator
of the oviductal microenvironment that can facilitate oocyte maturation, fertilization, and
early embryonic development.

The major physiological effect of progesterone is mediated by the nuclear proges-
terone receptor (PR) [10,11]. In mammals, the PR gene gives rise to two functionally distinct
protein isoforms, PR-A and PR-B [12], and both are expressed in the oviduct of different
mammals [13,14], including canines [15]. From genomic approaches, PR has been identified
as an important regulator of gene transcription [16]. Many physiological effects of proges-
terone are mediated by cyclooxygenase-2 as an inducible and rate-limiting enzyme in the
synthesis of prostaglandins, which convert arachidonic acid into prostaglandin [17,18]. The
in vitro COX-2 mRNA expression is stimulated after progesterone treatment [5,19] and,
prostaglandin-2 (PGE2) function as a luteotropic factor in dogs [20], promoting the pre-
mature luteinization associated with the high progesterone concentration at the follicular
and peripheral levels [21]. Different reports in other species reinforce that COX-2-derived
PGE2 is at least one of the key players in regulating the resumption and progression of
oocyte meiotic maturation before ovulation to further ensure their normal developmental
potential [22,23]. In rat oviducts, prostaglandins participate in the regulation of oocyte
transport [24]. However, COX-2 expression pattern varies between different mammals,
which suggests that COX-2 transcript and the encoded protein could have varying functions
in different species.

The oviductal environment and development of the oocyte maturation are influenced
by the paracrine activity from the oviductal cells and the cumulus cells released with
the cumulus-oocytes complexes (COCs) during ovulation [8]. Growth factors like TGF-β
superfamily have been detected in the oviduct of mammalian species [25,26]. Among the
member of this family, the growth differentiation factor 9 (GDF-9) and bone morphogenetic
protein 15 (BMP-15) regulate a variety of reproductive functions through the activation
of several signalling pathways [27–29]. In previous studies, we demonstrated the im-
provement in attaining the final stages of meiosis during in vitro maturation (IVM) of
canine cumulus-oocytes complexes (COCs) when recombinant GDF-9 and BMP-15 proteins
were added together to the culture media [30]. In addition, GDF-9 and BMP-15 appear
to upregulate the levels of COX-2 transcripts during the in vitro maturation of canine
oocytes [21]. Accordingly, GDF-9 in mice has been reported to cause more than 50-fold
increase in the COX-2 expression [31]. These paracrine factors play a crucial role in oocyte
development, but little is known about their expression and function in the oviduct. The
canine oviducts undergo physiological and hormonal changes according to the ovarian
cycle [32]. According to our previous studies, the mRNA levels of GDF-9 and BMP-15 in
canine follicles and COCs are not expressed equally during the follicular development
throughout the ovarian cycle, suggesting a specific regulation and temporal changes in
their expression [33,34]; thus, the function and dynamics of gene expression of GDF-9
and BMP-15 in the oviducts may vary in the same way due to these changes. Identifying
genes associated with developmentally-competent canine oocytes during maturation at the
oviduct level would be important since the change in the abundance of these genes during
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the oestrous cycle may help to understand the final oocyte growth in dogs. Therefore, the
aims of this study were to investigate the oestrous cycle-dependent changes of relevant
genes such as PR, COX-2, BMP-15, and GDF-9 in the canine oviduct and also, the possible
influence of ovulated oocytes and its cumulus cells in the expression of BMP-15, and GDF-9.

2. Materials and Methods

Animal procedures involved in this study were approved by the Institutional Bioethics
of the National Foundation for Scientific and Technological Research, ANID, the Ministry
of Sciences and Technology. The University of Chile Ethical Animal Care Committee also
approved this study (9 June 2017, number 08-2017 VET-UCH). Written consents were
obtained from the owners of the female dogs.

2.1. Sample Collection

The mixed-breed female dogs with the ages between 1–4 years, at different phases
of the oestrous cycle (anoestrus = 9, proestrus = 7, oestrus = 8, and dioestrus = 11) were
used for the first part of the experiments. Ovaries, oviducts, and part of the uterine horns
were collected and transferred to the laboratory in physiological saline solution (0.9%
w/v NaCl) containing penicillin G (100 IU/mL) and streptomycin sulphate (50 mg/mL)
at 37 ◦C, within 2 h after the routine ovariohysterectomy. The oviducts were classified
into the different phases of the oestrous cycle according to the morphology of growing
follicles and/or corpus luteum (CL) on the surfaces of the corresponding ovaries as pre-
viously described [33] (Figure 1). To confirm the oestrous phase, plasma progesterone
levels in blood samples obtained during the surgery were also assessed according to the
previous studies [21,34]. In brief, 5 mL of blood samples without anticoagulant were cen-
trifuged at 2500× g for 10 min. The supernatants were used in analyses. The progesterone
concentration of each blood samples was evaluated in duplicates by an enzyme-linked
fluorescence assay (ELFA) on the Mini-Vidas automated analyser (Biomerieux, Marcy
l’Etoile, France) [35], using progesterone (P4) canine kits (VIDAS® Progesterone #30409,
Biomerieux). The mean coefficients of variation were 3.2 (%) and 5.3 (%) for the intra and
inter assays, respectively. The minimal limit of detection was 0.25 ng/mL [21]. Bitches were
considered in anoestrus when progesterone values were less than 0.5 ng/mL; proestrus
0.6–1.9 ng/mL; oestrus 2–19 mg/mL; diestrous more than 20 ng/mL [34].
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Figure 1. Oviductal samples were evaluated throughout 3 replicates using 3 pools of oviductal cells
from oviducts at different phases of the oestrous cycle (anoestrus, proestrus, oestrus, dioestrus) for
mRNA, messenger RNA evaluation. Canine ovaries and oviducts at anoestrus, proestrus, oestrus
and dioestrus were obtained after routine ovariohysterectomy.
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2.2. Recovery of the Oviductal Cells

The oviducts were separated from the uterine horns and dissected from the ovarian
bursa and trimmed free of surrounding tissues, and then placed into another dispos-
able petri dish (Falcon, Becton Drive Biosciences, Franklin Lakes, NJ, USA) containing
phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM
KH2PO4, pH 7.4). Under a stereoscopic microscope (Motic SMZ-171, Motic, Vancouver,
Canada), the oviductal epithelial cells were collected through gentle pressure with the
handle of tweezers on the oviducts. The epithelial cells of each oviduct were resuspended
in 1.0 mL of PBS in microfuge tubes and then washed via centrifugation at 700× g for 5 min
(Eppendorf Centrifuge 5415 D, Eppendorf, Hamburg, Germany). The remaining pellets
were transferred separately to a storage reagent, RNAlater® (InvitrogenTM Eugene, OR,
USA) to preserve the RNA integrity and then stored in pools according to the oestrous
phase (anoestrus, proestrus, oestrus, and dioestrus).

Considering that GDF-9 and BMP-15 are paracrine factors mainly produced by the
oocyte, we proposed in the second part of the study to address the influence of the oocyte
and its cumulus cells on the abundance of GDF-9 and BMP-15 mRNA in the oviducts. For
this, additional oviductal samples from both oviducts of twelve bitches in the oestrus phase
were separated into two groups, with ovulated COCs (n = 7) and those from oviducts
before ovulation (n = 5), without COCs. The ovulation was assumed to have occurred
when the serum progesterone concentration reached 8 ng/mL, and the ovaries showed
large antral follicles with a visible ovulatory fossa (Figure 2a). In addition, the presence
of ovulated COCs (Figure 2b) was confirmed by observing the oviductal samples under a
stereomicroscope (SMZ-171; Motic). All COCs were removed from oviductal cells with a
small-bore pipette before processing the oviductal cells for gene expression studies.

The oviductal cells were washed in PBS, processed as described before, and then trans-
ferred to the storage reagent, RNAlater® (Invitrogen) at −80 ◦C for further qPCR analysis.

2.3. RNA Extraction and Quantitative Real-Time RT-qPCR Analysis

The real-time RT-qPCR was performed using oviduct cell samples from each collected
pool and phase of the oestrous cycle to determine the mRNA levels of PR, COX-2, BMP-15,
and GDF-9.

The total RNA was extracted from the oviduct epithelial cells using the column
affinity purification kit GeneJETTM RNA (Thermo Fisher Scientific TM, Waltham, MA, USA)
following the manufacturer’s protocols. The concentration of the RNA was determined
with a Qubit® Fluorometer (Invitrogen) using the quantification kit Qubit RNA assay
(Invitrogen). Reverse transcription was assessed using the enzyme conjugate SuperScriptTM

first-strand synthesis system (Invitrogen). The complementary DNA (cDNA) concentration
was determined using the quantification kit ssDNA Qubit Assay (Invitrogen). Specific
primers (Table 1) were used for reverse transcription (Midland Certified Reagent). The RT-
qPCR assays were run in duplicates with 10 ng of complementary DNA (cDNA) in an
18 mL total reaction volume. As negative controls, reactions containing no template reverse
and transcriptase were included in each plate. The β-actin RNA (ACTB) was used as the
normalization control gene, according to our previous studies [33]. In brief, we used the
Norm Finder algorithm, which generates a stability measure for which a lower value
indicates increased stability in gene expression, using samples taken from different groups
to allow direct estimation of the variation in expression of different candidate genes. The
more suitable gene for normalization was ACTB. PCR reactions were assessed using the
Maxima SYBR Green/ROX qPCR Master mix Kit (Thermo Fisher Scientific TM, Waltham,
MA, USA), according to the manufacturer’s instructions. Amplification was performed
using the two steps real-time Eco™ PCR system (Illumina®, San Diego, CA, USA). The
2−∆∆CT method was used to transform threshold cycle values (Ct) into normalized relative
expression levels of mRNA [36].
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Table 1. Sequences of specific primers and reference gene used in this study for qPCR analysis.

Gene Sequence 5′-3′ Size (bp) Reference

ACTB F:ATTGTCATGGACTCTGGGGATG
R:TCCTTGATGTCACGCACGAT 191 [33]

GDF-9 F: CAGAAGGGAGGTCTGTCTGC
R: TGTTGGGGGAAAAGAAAGTG 170 [33]

BMP-15 F: CCCTGCCCCTGATTCGGGAG
R: CCGCAAAGGATGCCCAAGGAC 82 [33]

COX-2 F:TGAGCGGTTATTCCAGACGAGCAG
R:CCAACCCCGCAGCCATTTCCTTCT 500 [21]

PGR F:GATGCTATATTTTGCACCTGA
R: CTCCTTTTTGCCTCAAGCCA 266 [15]

Abbreviation: qPCR, quantitative real-time polymerase chain reaction; PGR, progesterone receptor COX-2,
cyclooxygenase-2, GDF-9 growth differentiation factor 9, and BMP-15, bone morphogenetic protein 15.

2.4. Statistical Analysis

The experiments were conducted with a minimum of three independent replicates.
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Multiple comparisons of the relative expression levels of GDF-9, BMP-15, COX-2, PR
mRNAs in oviductal cells between each reproductive phase were analysed by ANOVA.
Differences among the means were evaluated using Duncan’s test.

The comparison of GDF-9 and BMP-15 gene expression before and after ovulation
were assessed using the Student t-test.

All analyses were performed using the Info Stat Professional Program, Version 2018;
(National University of Córdoba, Argentina). The data were transformed into a normal
distribution before applying the analysis.

Pearson’s coefficient correlation analysis was used to test the correlation between plasma
progesterone concentration and progesterone receptor (PR) gene expression in oviductal cells
throughout the oestrous cycle. Differences P ≤ 0.05 were considered significant.

3. Results

A total of three cell pools were collected from the oviducts in every phase of the
oestrous cycle.

The plasma progesterone profiles showed differences according to each oestrous phase
in relation to ovarian structures as previously described in other studies [33]. Progesterone
values of the donors submitted to ovariohysterectomy were undetectable to 0.4 ng/mL in
anoestrus phase, 0.9 to 1.03 ng/mL, in proestrus, 6.20 to 16.02 ng/mL in oestrus and 18.01
to 30.10 ng/mL in dioestrus. These values are within the normal ranges for canines [9,33].

The expression of GDF-9 and PR mRNA was detected in the oviducts during the
whole oestrous cycle, but the BMP-15 gene expression was detected only in the anoestrus
and proestrus phases, whereas COX-2 was not detected in oestrus. The abundance of these
transcripts was differently expressed in a cycle stage-dependent manner (Figure 3).
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Figure 3. The relative messenger RNA (mRNA) expression of the progesterone receptor (PR) (a);
cyclooxygenase-2 (COX-2) (b); growth differentiation factor 9 (GDF-9) (c); bone morphogenetic
protein 15 (BMP-15) (d), standardized with mRNA expression of beta-actin in canine oviductal cells
during the anoestrus, proestrus, oestrus, and dioestrus phases. The mRNA levels were expressed
in relation to β-Actin mRNA as the control or housekeeping gene. Different letters above the bars
indicate differences at P < 0.05.



Animals 2021, 11, 454 7 of 12

Quantitative real-time RT-PCR revealed a significantly higher gene expression of
PR in the dioestrus phase than the other phases (Figure 3a). The PR mRNA transcript
gradually increased (P < 0.05) from the anoestrus to dioestrus phase with the plasma
progesterone concentration, since a significant positive correlation (r = 0.8) was found
between progesterone systemic levels and PR mRNA abundance at the oviductal level
(Figure 4).
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) phases. (P < 0.05).

A low level of COX-2 gene expression was observed in the anoestrus and proestrus
phases, and there was almost no expression in the oestrus phase. However, the specific
mRNA transcript of COX-2 was expressed around 10-fold higher (P < 0.05) in the dioestrus
in comparison to the other phases (Figure 3b).

The GDF-9 gene expression was observed in the oviducts during all phases of the
oestrous cycle; however, the highest (P < 0.05) abundance was obtained during the oestrus
period, followed by the dioestrus phase (Figure 3c). The expression of BMP-15 mRNA
decreased (P < 0.05) from anoestrus to proestrus phases, and the expression of this gene
was not observed in the oestrus and dioestrus phases (Figure 3d).

Comparing the GDF-9 and BMP-15 gene expression pattern in the oviduct samples ob-
tained during oestrus without (before ovulation) or with COCs (after ovulation) (Figure 5),
the GDF-9 mRNA levels decreased (P < 0.05) by almost 50% after ovulation under the in-
fluence of COCs (Figure 5a). On the contrary, BMP-15 transcript was expressed only when
the oviduct cells were obtained after ovulation with the presence of COCs (Figure 5b).
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4. Discussion

A better understanding of the gene expression in the oviducts could help us progress in
canine reproduction and improve in vitro culture conditions used in reproductive biotech-
nologies. To the best of our knowledge, this is the first report to study the expression
of PR, COX-2, BMP-15, GDF-9 genes in the canine oviducts throughout the four phases
of the oestrous cycle in canines, demonstrating that the level of each gene was related
to the cycling ovary, undergoing variations with each oestrous phase. These differences
in the local milieu may be involved in the change in oviductal functions throughout the
oestrous cycle.

The cyclic changes in PR transcript in the oviduct were following the changes observed
in the canine progesterone serum samples. They agreed with the reports in other species,
where progesterone’s actions have been reflected in the concentrations of its receptor in
the target cells [37]. Therefore, a positive correlation between the serum progesterone
concentration and the gene expression of PR in the oviducts was observed with increasing
PR transcripts abundance from anoestrus to dioestrus with the highest PR expression
during the dioestrus phase. However, earlier report localized the PR protein in the canine
oviducts throughout the oestrous cycle by immunohistochemical staining, demonstrating
the presence of PR in all phases with the intensity of the stain significantly higher during
proestrus than in late dioestrus and anoestrus [38]. Transcription and translation are
distinct processes with different timings and mechanisms of regulation despite serving
a common purpose [39]. The progesterone receptors are dependent on the presence of
oestrogen [40]; therefore, it is possible that PR is more preferentially translated during the
proestrus phase than during the other phases, because in that period the oestrogen levels
are high in bitches [9,21]. However, the highest PR gene expression during dioestrus phase
found in our study might explain an active transcriptional activity, possibly stimulated by
the luteinizing hormone (LH), considering that the expression of PR mRNA is positively
regulated by the LH surge [41]. The PR mRNA upregulation increased in the oestrus and
dioestrus at the surge of LH previously because this event occurred at the beginning of the
oestrus phase in this species [9]. Several pieces of evidence support the hypothesis that
progesterone levels are associated with mammalian oocyte maturity [42,43]; this hormone
seems to be responsible for the resumption of meiosis in oocytes leading to an increase
in the intracellular calcium [44]. Since the canine oocytes are matured after ovulation,
outside the follicle environment in the oviducts and the increased gene expression of PR
was observed at this level after ovulation, this may suggest that PR might be involved in
the creation of the optimal environment for the maturing oocyte directly or indirectly.

Many cellular signalling genes have been identified as being PR-regulated. The most
putative PR target identified in the oviduct is the prostaglandins [45]. Prostanoids are
produced by the COX-2 pathway [46]. In the current study, the relative abundance of
COX-2 in the oviduct showed the most remarkable expression during dioestrus, with very
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low levels in the other phases in contrast with the increasing pattern of COX-2 expres-
sion previously reported in canines at the follicular level during oestrous [21]. The high
concentration of progesterone during dioestrus in dogs might be involved in COX-2 gene
expression in the oviductal cells during this phase. The LH surge-induced changes in
the expression of COX-2 and possibly such effects are potentially mediated, at least in
part, by the progesterone-induced regulation of the COX-2 gene [47,48]. In the bovine
oviduct in vitro, COX-2 mRNA expression was stimulated after direct progesterone treat-
ment [19]. Considering this high PR and COX-2 mRNA levels expressed during dioestrus
in this study, possibly occurring through prostaglandin synthesis, the early embryo trans-
port is facilitated by the stimulation of oviductal smooth muscles [49] and changing the
secretory conditions.

Although the relevance of GDF-9 and BMP-15 proteins in reproductive processes, such
as follicular development and oocyte competences, are well-known, in few studies have
measured these paracrine factors in the oviductal cells, maybe because both these factors are
thought to be expressed only by the oocytes. However, other reports have demonstrated
its presence in the oviduct and other tissues [26,50]. GDF-9 was expressed during the
entire oestrous cycle in the canine oviducts; however, the highest relative abundance was
observed during the oestrus phase, which is the opposite to the lowest expression reported
earlier at a follicular level during the oestrus stage in dogs [33,34], which suggests that
the extent of the expression of this gene depends upon the cell type. The importance of
this factor in oocyte maturation has been demonstrated in vitro in different species [51,52],
including canines [30]. Therefore, GDF-9 and its encoded protein may implement a similar
function in the oviductal tissues to promote the conditions for oocyte maturity in dogs.
For this purpose, the existence of a local regulatory mechanism is possible at this level.
Considering that the canine oocyte maturation occurs in the oviduct, it is conceivable that
these mRNAs present in the oviductal cells may be transferred to the oocytes for their
maturation. Furthermore, GDF-9 inhibits the follicle-stimulating hormone (FSH)-induced
steroidogenesis while promoting progesterone production [53]. Interestingly, after the
ovulation process, the presence of the oocyte decreased GDF-9 expression in the oviductal
cells, compared to the transcript abundance before ovulation. The decreasing GDF-9 levels
in the oviducts after ovulation might be associated with the meiosis resumption, because
during this process when the proteins are required, the transcripts are polyadenylated and
used for translation, then rapidly degraded.

In contrast to GDF-9, the BMP-15 gene expression was only observed in anoestrus and
proestrus. Samples collected at anoestrus and proestrus in dogs have not been exposed to
the endogenous LH surge because the physiological proestrus in this species is completed
at the moment of the LH surge [9]. The LH surge induces multiple intracellular signalling
and second messengers in many reproductive cells [54,55], influencing the gene expression.
Relative oocyte abundance of BMP-15 in mice decreases significantly after human chorionic
gonadotrophin (hCG) treatment [56], providing evidence that the preovulatory LH surge
leads to regulating this gene. Follicles and the oviducts express similar cell-signalling
genes that have the potential to participate in the regulation of development of the oocyte.
Therefore, the preovulatory rise in LH that eliminates BMPs, enabling luteinization to
progress in the follicle [57], could also affect the oviductal cells. In the same way, the
highest expression of BMP factors was detected during the preovulatory stage in bovine,
suggesting a possible oestrogen-regulated expression [58].

The high abundance of BMP-15 observed in anoestrus phase is not clear, as yet the
role of BMP-15 in the regulation of oviductal cells has not been defined. However, the
high gene expression of BMP-15 during this phase supports the notion that this gene, like
other members of the BMPs system, could play an important role in the regulation of
oviduct function during the anoestrus period by the ability to control cell proliferation and
cytodifferentiation [30], preparing the oviduct for the next reproductive stages. However,
its exact function needs to be further studied.
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After ovulation, the presence of COCs increased the levels of BMP-15, this indeed sug-
gests that many BMP-15 transcripts observed after ovulation came from the transcriptional
activity of the cumulus cells released with the COCs at ovulation. Furthermore, the oviduct
milieu is influenced by the paracrine function of the cumulus and granulosa cells released
with the oocyte at ovulation [8]. Direct interactions among cells inducing cellular signalling
in the oviductal cells are important regulatory mechanism during the progression of the
oestrous cycle [43].

5. Conclusions

This study demonstrated the influence of the ovarian cycle on the essential oviductal
genes involved in the oocyte maturation in bitches. Moreover, the effect of the ovulated
COCs on the gene expression of GDF-9 and BMP-15 in the oviduct was noticeable. There-
fore, the use of oviductal cells in a defined culture system for in vitro maturation protocols
or embryo culture should consider the oviductal stage through the oestrous cycle. Further
studies on the effects of the proteins encoded by each of the genes evaluated herein in the
canine oviducts can be useful to identify additional information and signalling pathways
molecules that act on oocyte and embryonic development.
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