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There are alarming increases in the incidence of obesity, insulin resistance, type II diabetes, and cardiovascular disease. The risk
of these diseases is significantly reduced by appropriate lifestyle modifications such as increased physical activity. However, the
exact mechanisms by which exercise influences the development and progression of cardiovascular disease are unclear. In this
paper we review some important exercise-induced changes in cardiac, vascular, and blood tissues and discuss recent clinical trials
related to the benefits of exercise. We also discuss the roles of boosting antioxidant levels, consequences of epicardial fat reduction,
increases in expression of heat shock proteins and endoplasmic reticulum stress proteins, mitochondrial adaptation, and the role
of sarcolemmal and mitochondrial potassium channels in the contributing to the cardioprotection offered by exercise. In terms
of vascular benefits, the main effects discussed are changes in exercise-induced vascular remodeling and endothelial function.
Exercise-induced fibrinolytic and rheological changes also underlie the hematological benefits of exercise.

1. Introduction

The American College of Cardiology/American Heart Asso-
ciation recommends at least 30 minutes of moderate (at
50–70% of maximal predicted heart rate) exercise on most
days to reduce the risk of cardiovascular events [1]. Several
human studies clearly demonstrate that chronic aerobic
exercise regimens improve cardiovascular function. This is
true not only in healthy subjects without any underlying
risk factors [2], but also in older people [3], and those
with cardiovascular risk factors [4]. Indeed, those with
cardiovascular risk factor/disease will benefit more. There is
a much higher consistency in the results of studies which
assess participants with cardiovascular disease/risk factors
compared to healthy subjects. Patients with hypertension
[5], type 2 diabetes [6], metabolic syndrome [7], stable
cardiovascular disease [8], myocardial infarction [9], and
congestive heart failure [10], all benefit from exercise training
compared to those who do not participate in any training.
Importantly, an exercise regimen that improves endothelial
function in diabetic patients fails to benefit healthy subjects
[6, 11]. In healthy individuals, a longer and more intense
exercise protocol is needed to induce measureable changes

in cardiovascular parameters, while older and sicker subjects
can benefit from less intense exercise regimens.

Treatment and control of established known cardiovas-
cular risk factors includes the reduction of hypercholes-
terolemia, hypertension, and smoking [12]. During the past
decade, the mortality rates from coronary heart disease and
stroke in the United States were reduced by more than 25%.
However, the prevalence of diabetes mellitus has increased
steadily, mostly because of an epidemic of adiposity [13].
This unfortunate change can mitigate further improvements
in cardiovascular mortality and can potentially reverse the
decline in cardiovascular disease incidence that has been
achieved through decades of education, improved health
care, and better lifestyle choices.

Prevention can be categorized into three components.
Primary prevention is concerned with health promotion
activities, which prevent the actual occurrence of a specific
illness or disease. Secondary prevention promotes early de-
tection or screening and treatment of disease and limitation
of disability. This level of prevention is also called health
maintenance. Tertiary prevention is directed at recovery or
rehabilitation of a disease or conditions after the disease
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has developed. Physical activity, as one the most important
components of cardiovascular disease prevention, has crucial
roles at all three levels. Despite the strong evidence linking
physical activity to cardiovascular disease risk reduction,
there remains much uncertainty regarding the underlying
mechanisms. In this paper, we discuss the benefits of exercise
as a modifiable lifestyle parameter and its relation to cardi-
ovascular health at molecular level. We will discuss recent
findings related to the cardiovascular benefits of exercise
and also survey the clinical evidence for exercise-induced
cardiovascular improvement.

2. Cardiac Effects of Exercise

2.1. Boosting Antioxidant Levels. Free radicals, which are a
subset of reactive oxygen species (ROS), are physiological
byproducts of aerobic metabolism [14] and are widely rec-
ognized for their dual roles as both deleterious and beneficial
species, since they can be either harmful or beneficial to
living systems [15]. High concentrations of free radicals
harm living organisms through reactions with adjacent
molecules such as proteins, lipids, carbohydrates, and nucleic
acids. As a result, mammalian cells have evolved a variety
of antioxidant mechanisms to control ROS production and
propagation [16]. On the other hand, mild oxidative stress
can act as a stimulant of physiological antioxidant systems
and as a trigger for various physiological adaptations [17].
This has led to our current understanding of free radical-
mediated effects of exercise as a phenomenon of hormesis
[18], according to which there may be a bell-shaped curve
of oxidative stress in response to exercise, with none and
excessive exercise being considered harmful and moderate
levels being of most beneficial [19, 20]. Regular physical
exercise delays the accumulation of ROS-mediated cell dam-
age by improving the antioxidative protective mechanisms
in the myocardium. The strongest evidence to directly
link increases in myocardial antioxidants and exercise-
induced cardioprotection implicates a contributory role for
manganese superoxide dismutase (MnSOD). It is generally
believed that even short-term endurance exercise results in
a rapid increase in myocardial MnSOD activity [21–23], as
shown in studies using antisense oligonucleotide techniques
to silence MnSOD genes and so prevent exercise-induced
increases in myocardial MnSOD activity [22, 24]. Yamashita
et al. [22] reported that inhibition of exercise-induced
increases in cardiac MnSOD abolished protection against
myocardial infarction, findings that were confirmed by
Hamilton et al. [25] who concluded that MnSOD plays a
key role against ischemia-reperfusion-(I/R-) induced cardiac
arrhythmias.

3. Role of Exercise in Reducing Inflammation by
Decreasing in Epicardial Fat

Ectopic fat refers to the accumulation of triglycerides within
cells of non-adipose tissue; these tissues normally contain
only small amounts of fat. Visceral areas, liver, heart and/or
muscle are common sites for deposition of ectopic fat [26].

The amount of epicardial fat is directly related to the
increases in visceral fat [27, 28], insulin resistance [27,
29], triglyceride levels and blood pressure [27, 29], and in
general with the metabolic syndrome [29]. Accumulation of
epicardial fat is also important in the pathogenesis of cardio-
vascular diseases. There are multiple reasons to support the
concept that epicardial and perivascular adipose tissue are
important in inducing atherosclerosis [30, 31]. Firstly, there
is close anatomical proximity between epicardial fat and
coronary vessels. There is no fibrous fascial layer to impede
diffusion of free fatty acids and adipokines between adipose
tissue and the underlying coronary arteries and myocardium
[28]. This can lead to lipotoxicity and development of car-
diomyopathy [32]. Increased intra-cardiomyocyte triglyc-
erides in diabetic patients is associated with impaired left
ventricular diastolic function independent of age, body mass
index, heart rat, visceral fat, and diastolic blood pressure
[33].

The role of adipose tissue in secreting metabolically
active substances is well established. It is believed that a bal-
ance between anti-atherosclerotic adipokines such as leptin
and adiponectin and pro-atherosclerotic cytokines, such as
IL-6, TNF-α and monocyte chemotactic protein-1 (MCP-1)
adjusts metabolic and cardiovascular homeostasis at local
and remote sites. Mazurek et al. showed inflammatory
properties of cardiac fat by a paired sampling of epicardial
and subcutaneous adipose tissues before the initiation of
cardiopulmonary surgery [34]. Higher levels of IL-1β, IL-
6, MCP-1 and TNF-α mRNA and protein were observed in
epicardial adipose stores irrespective of clinical variables such
as diabetes, BMI, and drug use. On the other hand, visceral
fat obesity is associated with decreased concentrations of
insulin-sensitizing and anti-inflammatory adipokines [26].

A study by Kim et al. evaluated the effects of aerobic
exercise (without diet restriction) on ventricular epicardial
fat thickness. They showed that ventricular epicardial fat
thickness was reduced significantly after aerobic exercise
training and was also associated with decreases in visceral
adipose tissue. Exercise caused a greater loss of epicardial fat
than it to reduce BMI, and body weight [35]. Exercise also
reduces waist circumference and causes losses in abdominal
and visceral fat, even in the absence of any loss of body
weight, in both men and women regardless of age [36].
Therefore, increased physical activity lowers secretion of
pro-inflammatory adipokines that is related to reducing the
amount of fat stored in abdominal depots.

4. Heat Shock Proteins (HSPs)

The heat shock response is a common cellular reaction to
external (stressful) stimuli such as ischemia [37], hypoxia
[38], acidosis [39], oxidative stress [40], protein degradation
[41], increased intracellular calcium [42], and energy deple-
tion [43]. It is generally accepted that exercise increases the
expression of cardiac HSPs. The mechanistic link between
exercise and myocardial expression of HSPs is unclear. How-
ever, a variety of stresses associated with exercise, including
heat stress and hypoxia, reduced intracellular pH, reactive
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oxygen and nitrogen species production, depletion of glucose
and glycogen stores, increase in cytosolic calcium levels and
cardiomyocyte stretching can all contribute to HSP elevation
in cardiac muscle [44]. Increased expression of HSP70 in
cardiomyocytes is associated with increased cell survival
and protection against ischemic damage [45]. The HSP70
response is reduced with ageing, which is consistent with a
diminished endurance to stress in the elderly [46].

5. Endoplasmic Reticulum Stress Proteins

These are a family of cardioprotective proteins collectively
termed endoplasmic reticulum (ER) stress proteins which
help cellular homeostasis by maintaining intracellular cal-
cium regulation and protein folding during an I/R injury
[47]. The two most important ER stress proteins are Grp78
and Grp94 (which belong to the HSP family) and are
overexpressed in cultured cardiomyocytes during oxidative
stress and calcium overload [48]. Since overexpression of
these ER stress proteins provides ER protection during an
I/R insult, it may be that these proteins contribute to exercise
induced cardioprotection. However, studies by Murlasits et
al. demonstrate that at least short-term exercise training
does not elevate ER stress proteins, and therefore, short-term
exercise-induced cardioprotection may not be linked to ER
stress adaptation [49].

6. Mitochondrial Adaptation

There is an important role for mitochondria in myocar-
dial I/R injury. Exercise training results in cardiac mito-
chondrial adaptations that result in decreased ROS pro-
duction, increasing their ability to tolerate high calcium
levels. Reductions in ROS production could be related to
decreased superoxide production or increased mitochondrial
antioxidant enzyme activity. A study by Judge et al. [50]
indicated that MnSOD activity was significantly lowered in
subsarcolemmal and interfibrillar mitochondria, leading to
the suggestion this may reflect a reduction in mitochondrial
superoxide production. However, this issue is currently a
matter of considerable debate.

Mitochondria of exercised animals are able to tolerate
higher levels of calcium. Mitochondria isolated from hearts
of exercised animals are more resistant to calcium-induced
mitochondrial permeability transition pore (mPTP) opening
[51]. Furthermore, exercise training induces a mitochondrial
phenotype that is protective against apoptotic stimuli [52].
These changes include increases in the protein levels of
primary antioxidant enzymes in both subsarcolemmal and
interfibrillar mitochondria, attenuation of ROS-induced
cytochrome c release, reduced maximal rates of mPTP open-
ing (Vmax), prolonged time to Vmax in both subsarcolemmal
and interfibrillar mitochondria, and increased levels of anti-
apoptotic proteins including the apoptosis repressor with
a caspase recruitment domain. These results are consistent
with the concept that exercise induced mitochondrial adap-
tations contribute to exercise induced cardioprotection and

are in keeping with our study on the effect of exercise on renal
mitochondria in diabetic mice [53].

Exercise also induces a down regulation of mitochondrial
monoamine oxidase-A (MAO-A). Bianchi et al. showed that
H2O2 production by MAO-A plays a critical role in post
I/R events that lead to cardiac damage [54]. Thus MAO-
A knockout mice demonstrate higher level of protection
against I/R-induced cardiac damage, which was also related
to significantly lower levels of ROS generation [55]. Exercise
also significantly reduces MAO-A protein levels in both
cardiac subsarcolemmal and inter-myofibrillar mitochondria
[56].

7. Role of Sarcolemmal Potassium Channels

The sarcolemmal KATP channels are a potential target for
exercise induced I/R protection. During ischemia, heart cells
become energy depleted, which leads to increased anaerobic
glycolysis to compensate for ATP depletion. The resulting
acidosis increases the influx of Na via the Na/H exchanger
and inhibits the ATP-dependent sarcolemmal Na/K ATPase
to augment the initial accumulation of Na [57]. The high
intracellular Na concentration prompts the Na/Ca exchanger
to work in the reverse mode, producing cytosolic and mito-
chondrial Ca overload [58]. Upon reperfusion, a burst of
ROS is generated by mitochondria, while intracellular Na
overload continues as a result of the impaired function of
Na/K ATPase. It was Noma [59] who initially hypothesized
that opening of sarcolemmal KATP channels induced by
hypoxia, ischemia, or pharmacological openers of the KATP

channel shortens the cardiac action potential duration by
accelerating phase III repolarization. An enhanced phase 3
repolarization would inhibit Ca entry via L-type channels
and prevent cellular Ca overload. Furthermore, the slowing
of depolarization would also reduce Ca entry and slow or
prevent the reversal of the Na/Ca exchanger. These actions
would increase cell viability via a reduction in Ca overload
during ischemia and early reperfusion. There is considerable
experimental support for the protective role of sarcolemmal
KATP channels in myocardial function [60–64].

8. Role of Mitochondrial Potassium Channels

Several studies confirm the role of mitochondrial K channels
in protection against I/R injury [65–67]. Prostacyclin analogs
protect cardiac myocytes from oxidative stress mainly via
activation of type 3 prostaglandin E2 receptors during I/R
injury. Activation of these receptors primes the opening of
mitochondrial KATP channels [68]. However, there is some
controversy regarding the role of mitochondrial KATP chan-
nels in exercise preconditioning of the heart. For example,
Domenech et al. reported that the early effect of exercise
preconditioning of the heart is mediated through mito-
chondrial KATP channels [69], while Brown et al. reported
that mitochondrial KATP channels are not required for
exercise-induced protection against I/R-induced myocardial
infarction [70]. It has also been recently suggested that mito-
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chondrial KATP channels provide antiarrhythmic effects as
part of exercise-induced cardioprotection against I/R injury
[71]. It should be mentioned that the molecular character-
istics of mitochondrial KATP channels remains elusive and
that additional research is needed to clarify their function in
cardiac function.

9. Cyclooxygenase II and Exercise
Induced Cardioprotection

The phenomenon of ischemic preconditioning whereby brief
episodes of sublethal ischemia renders the myocardium
resistant to subsequent ischemic stressoccurs in two phases:
(i) an early phase that starts within a few minutes after
the initial ischemic stimulus, lasts for 2-3 h, and is due to
adenosine and bradykinin release and (ii) a second phase,
which begins 12–24 h later and lasts for 3-4 days [72, 73].
This later phase of ischemic preconditioning is caused by
the simultaneous activation of multiple stress responsive
signaling pathways, including COX-2 and the inducible
form of nitric oxide synthase (iNOS), resulting in the heart
developing a phenotype that confers sustained protection
against both reversible and irreversible myocardial I/R injury
[73]. Similar to ischemic stimuli, both short- (1–3 days) and
long-term (weeks to months) exercise protocols are equally
effective in conferring cardioprotection against I/R injury
[21, 74].

10. Vascular Effects of Exercise

The etiology of nearly all of the lifestyle-related vascular dis-
eases can be narrowed down to endothelial dysfunction. The
vascular endothelium consists of a monolayer of cells that
line all the internal surfaces of cardiovascular system and
plays a critical role in regulation of vascular homeostasis
[75]. The endothelium plays a vital role regulating arte-
rial dilation and constriction by manufacturing vasodila-
tor [nitric oxide (NO), prostacyclin (PGI2), endothelium-
derived hyperpolarizing factor (EDHF)] and vasoconstric-
tor [endothelin-1 (ET-1), platelet-activation factor (PAF)]
agents [76]. A key component of intact endothelial function
is NO production by endothelial nitrous oxide synthase
(eNOS), which incorporates oxygen into L-arginine. The
anti-inflammatory, vasodilatory and platelet inhibitory effect
of NO have important roles in the maintenance of vascular
hemostasis [77]. Hence, endothelial function measurements
are considered useful surrogate end points in clinical research
[78], especially since decreased endothelium-derived NO
bioavailability has an independent prognostic value for
adverse cardiovascular events in the presence of risk factors
but without clinically apparent coronary artery disease [79–
81] or established coronary atherosclerosis [82–85]. In some
studies, the risk of cardiovascular events such as myocardial
infarction or ischemic stroke was 3-4 folds higher in cardio-
vascular patients with endothelial dysfunction compared to
those with a normal endothelial function [85–87].

11. Exercise and Endothelial Function

Physical activity increases vascular expression of eNOS both
in animals and human beings [88–91]. The importance of
this phenomenon has been confirmed in patients with stable
coronary artery disease and chronic heart failure [92, 93].
There are several reports suggesting that exercise-induced
up-regulation of vascular eNOS expression is closely related
to the changes of frequency and the intensity of physical
forces within the vasculature, especially shear stress. Exercise-
induced increases in heart rate will augment cardiac output
and vascular shear stress, leading to increased expression
of eNOS [88]. Increased NO synthesis secondary to ampli-
fied shear stress induces extracellular superoxide dismutase
(SOD) expression in a positive feedback manner so as to
inhibit the degradation of NO by ROS [94].

Another parallel mechanism that participates to this har-
mony is upregulation of eNOS through exercise induced ROS
production, since exercise-induced increases in shear stress
stimulates vascular production of ROS by an endothelium
dependent pathway [95]. Endothelial NADPH oxidase has
a critical role in this process [96]. Superoxides are rapidly
converted to H2O2 by SOD; hydrogen peroxide then diffuses
through the vascular wall and increases the expression and
activity of eNOS [97, 98]. Thus, increased expression of
SOD1 and SOD3 (which facilitate the generation of hydrogen
peroxide from superoxide), augments the effect of hydrogen
peroxide on exercise induced eNOS expression. On the
other hand, eNOS expression is not increased in catalase
overexpressing transgenic mice [89, 99].

Another putative mechanism is exercise-induced increas-
es in arterial compliance which is mediated by reduction of
plasma ET-1 concentration as well as the elimination of ET-
1 mediated vascular tone. Twelve weeks of aerobic exercise
training results in increased arterial compliance, which was
accompanied by decreased plasma ET-1 levels. Moreover, the
increase in central arterial compliance observed with ET-
receptor blockade before the exercise intervention was elim-
inated after the exercise training intervention [100]. These
results indicate that endogenous ET-1 participates in the
mechanisms underlying the beneficial influence of regular
aerobic exercise on central arterial compliance.

12. Exercise Induced Vascular Remodeling

Exercise training has a significant impact on the morphology
of various blood vessels. These structural changes are fol-
lowed by functional changes and lead to improved blood
flow. Exercise induces “angiogenesis”, which is an expansion
of the capillary network by the formation of new blood
vessels at the level of capillaries and resistance arterioles, and
arteriogenesis, which is an enlargement of existing vessels
[101].

12.1. Angiogenesis. It has been speculated that endurance
exercise stimulates angiogenesis by either a division of pre-
existing endothelial cells or by bone marrow-derived endo-
thelial progenitor cells and monocyte or macrophage derived
angiogenic cells [102]. Some reports indicate that physical



Cardiology Research and Practice 5

activity improves the mobilization of endothelial progenitor
cells in healthy subjects and in patients with cardiovas-
cular risk and coronary artery disease [103, 104]. Indeed,
angiogenesis is regulated by a net balance between positive
(angiogenic) and negative (angiostatic) regulators of blood
vessel growth. A balance favoring predominantly positive
regulators are an angiogenic phenotype whereas a shift
favoring negative regulators is an angiostatic phenotype.
Therefore, an impaired regulation of angiogenesis is often
associated with the development of angiogenesis-dependent
diseases such as atherosclerosis.

Endostatin is an endogenous angiostatic factor identified
originally in conditioned media of murine hemangioen-
dothelioma cells [105, 106]. Several studies show that the
proteolytic release of endostatin from collagen XVIII is
mediated by proteases of many classes, such as cysteine pro-
teases, matrix metalloproteases, and aspartic proteases [107,
108]. The potent antiangiogenic effects of endostatin are
mediated via a combination of effects on endothelial cells
where endostatin inhibits cellular proliferation and migra-
tion and stimulates apoptosis [109, 110]. The biological
effects of endostatin are mainly attributed to its antagonism
of vascular endothelial growth factor (VEGF) signaling
[111]. Angiogenesis has both beneficial and deleterious
effects in atherosclerosis. While increased angiogenesis in
cardiac tissue may be a favorable sign in the healing of the
ischemic tissues [112], progressive angiogenesis in a primary
atherosclerotic lesion could be a cause of plaque expansion
[113, 114]. There are several studies showing that exercise
induces a local angiogenic phenotype characterized by
overexpression of VEGF in skeletal muscle [115] and heart
[112]. This phenomenon can prevent ischemia in these
tissues. Exercise can also exert beneficial effects against
atherosclerosis by increasing circulating endostatin, which
inhibits development of atherosclerotic plaque by blocking
angiogenesis in the plaque tissue [116]. Endurance activity
improves angiogenesis by reducing endostatin plasma levels
[117]. Even though the different exercise protocols in these
experiments can explain these discrepant results, further
studies are needed to elucidate the precise mechanisms.

12.2. Arteriogenesis. Exercise training increases the diameter
of large arterioles, small arteries, and conduit arteries.
Another important aspect of exercise-induced changes in
capillarity is the onset and persistence of exercise-induced
arteriogenesis. The induction of arteriogenesis is an impor-
tant vascular adaptation [118], since arteriogenesis leads
to the formation of large conductance arteries capable of
compensating for the loss of function of occluded arteries.
Animal studies and clinical observations provide evidence
for a significant correlation between regular physical exercise
and increased coronary artery lumen diameter [119, 120]. In
one study, an 8-week training program increased the con-
tractile response to low doses of dobutamine in patients with
chronic coronary artery disease and having a left ventricular
ejection fraction below 40%. This implies that short-term
exercise training can improve quality of life by improving
left ventricular systolic function during mild to moderate

physical activity in patients with ischemic cardiomyopathy
[121]. Moreover, eight patients with coronary heart disease
and exertional angina pectoris successfully completed a 11–
15 week program of endurance exercise conditioning. Angina
threshold was determined by upright bicycle ergometer
exercise and by atrial pacing. The product of heart rate
and arterial systolic blood pressure at the exercise angina
threshold was higher after conditioning, suggesting that
conditioning increased the maximum myocardial oxygen
supply during exercise [122].

13. Anti-Inflammatory Effect of Exercise in
Vascular Tissue

Inflammation has a prominent role in the pathogenesis of
several cardiovascular diseases. Atherosclerosis is an inflam-
matory disease that is mediated by monocyte derived macro-
phages which accumulate in arterial plaques and become
activated to release cytokines that cause tissue damage [101].
As evidence accumulates favoring the role of inflammation
during the different phases of atherosclerosis, it is likely that
markers of inflammation such as high sensitivity C-reactive
protein (hs-CRP) may be increasingly used to provide
additional insights on the biological status of atherosclerotic
lesions. CRP is considered to be an independent predictor
of cardiovascular events and of the outcome of acute
coronary syndromes [123]. Besides its role as a marker of
systemic inflammation and a predictor of cardiovascular
risk, CRP and other inflammatory cytokines also directly
trigger vascular dysfunction [124], possibly via altering cal-
cium channel expression and activity [125], upregulation
of Rho-kinase expression and function [126], increasing the
production of ROS [127], and/or enhancing cyclooxygenase
expression [128]. In turn, cyclooxygenase enzymes cause
vascular hypercontractility by increasing the synthesis of
constrictor prostanoid(s) [129, 130] and excessive formation
of ROS [131].

Exercise produces a short-term inflammatory response
that is accompanied by leukocytosis, increases in oxidative
stress, and plasma levels of CRP. This pro-inflammatory
response is followed by a long term anti-inflammatory effect
[132]. Regular exercise reduces CRP, IL-6, and TNF-α levels
and also increases anti-inflammatory substances such as IL-
4 and IL-10 [133, 134]. In healthy young adults, a 12-
week high-intensity aerobic training program down regulates
cytokine release from monocytes [134]. In fact, even leisure
time physical activity (e.g., walking, jogging, or running, etc.)
reduces hs-CRP concentration in a graded manner [135].
Subjects with higher baseline CRP levels (>3.0 mg/L) will
benefit more [136–138].

14. Hematological Benefits of Exercise

Exercise in humans is associated with a number of hema-
tological changes. For instance, Bonsignore et al. [139] re-
ported a higher number of circulating hematopoietic pro-
genitor cells in runners, indicating modulation of bone mar-
row activity by habitual running. Regular exercise training
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Figure 1: Selected effects of excise on heart, vessels and blood components of cardiovascular system.

also augments the number of endothelial progenitor cells
in patients with cardiovascular risk factors and coronary
artery disease and is associated with improved vascular
function and NO synthesis [140]. Exercise-induced increased
mobilization of hematopoietic stem and progenitor cells,
endothelial progenitor and circulating angiogenic cells may
have a role in physiologic repair and/or compensatory
mechanisms toward promotion of angiogenesis and vascular
regeneration [102, 141]. Exercise also increases hemoglobin,
hematocrit, platelet numbers, and interleukin-6 levels in
young healthy individuals of both genders and all fitness
levels which propose a role for exercise in enhancing tissue
repair mechanisms [142].

Another hematological effect of exercise is on the rheo-
logical properties of the blood. Hemorheology is the study of
flow properties of blood and its elements [143]. Abnormal
hemorheology is considered an independent risk factor for
cardiovascular disease and has an important role in the eti-
ology of atherothrombogenesis. There are a limited number
of studies showing increases in blood viscosity following a
variety of exercise protocols. This effect has been attributed
to increases in hematocrit and plasma viscosity [144]. How-
ever, cross-sectional and longitudinal studies indicate that

trained athletes have more dilute blood which is secondary to
expanded blood volume, particularly plasma volume [145–
147]. This discrepancy may partially be explained by shear
stress. At low shear stress rates, increased hematocrit leads
to increased effective cell volume and blood viscosity, while
at high shear rates, increased hematocrit enhances red cell
deformation which in turn reduces effective cell volume
and therefore compensates for increased viscosity [148]. It
has been shown that fit patients have a lower blood and
plasma viscosity, fibrinogen concentration, and red blood
cell aggregation [148]. Enhanced blood fluidity can facilitate
oxygen delivery to the exercising muscles due to decreased
resistance to blood flow within the microcirculation.

De Paz et al. measured different components of fibri-
nolytic system in runners and control groups before and
after exercise. Acute maximal exercise resulted in elevation of
fibrinolysis, as shown by higher levels of fibrin degradation
products and fibrinogen degradation products, in both
groups. The increased fibrinolytic activity was higher in
trained individuals, which could have resulted from higher
tissue plasminogen activator release and reduced forma-
tion of “tissue plasminogen activator-plasminogen activator
inhibitor complexes” [149]. In spite of this report, it
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Table 1: Selected clinical trials on the cardiovascular effects of exercise.

Reference
Patient groups and
characteristics

Intervention and followup Measured parameters Outcome

[163]

50 hypertensive patients
divided in 2 groups and
stratified for other variables
(a) Routine antihypertensive
therapy
(b) Antihypertensive therapy
plus 6 month exercise.

(i) Incremental CPET on a
bicycle ergometer 30 min a day
for 6 months.

PeakVO2
, powermax, AT,

VO2AT, tAT, HRrest, LAVI,
E/A ratio, DT, IVST, Ea/Aa
ration.

PeakVO2
, powermax, AT, VO2AT,

tAT were increased, HRrest

decreased and LAVI, E/A ratio,
DT, IVST, Ea/Aa ration
improved in exercise group.

[164]

98 patients with moderate to
severe (n = 34), mild (n = 33)
and preserved (n = 31) LVEF
that were randomized to:
(a) Exercise training plus
usual care.
(b) Usual care alone.

Exercise training on a treadmill
or bicycle
ergometer three times a week for
6 months.

LVEF, E/A ratio, DT.

Exercise tolerance and LVEF
increased in exercise group, ↑
E/A ratio and ↓ DT in patients
with mild and preserved LVEF.
↓ E/A ratio and ↑ DT in patients
with moderate to severe systolic
dysfunction and advanced
diastolic dysfunction.

[165]

496 old people categorized
base on their daily physical
activities
(a) <4 hr weekly
(b) 4 hr weekly
(c) At least 1 hr daily
(d) Sport at least twice weekly.

Echocardiographic
assessment of cardiac
structure and function.

Mean EF was lower among
sedentary versus active women.
No other significant differences
(systolic or diastolic function)
were observed.

[166]

64 patients with HFpEF
randomized to:
(a) Endurance/resistance
training plus usual care
(b) Usual care alone.

Supervised, facility-based
training program consisting of
endurance and resistance
training (32 sessions).

(i) Changes in VO2 after 3
months.
(ii) cardiac structure,
diastolic function and Qol.

VO2 increased, E/e and left atrial
volume index decreased in ET
group. Physical functioning
score improved with ET group.

[167]

365 sedentary, overweight,
hypertensive, postmenopausal
women randomly assigned to:
(a) Sedentary controls
(b) Exercise groups at:

(a) 4 Kcal/kg/week
(b) 8 Kcal/kg/week
(c) 12 Kcal/kg/week.

Exercise group patients
underwent 50%
(4 Kcal/kg/week), 100%
(8 Kcal/kg/week), or 150%
(12 Kcal/kg/week) of the
NIH-CDP physical activity
guideline.

Time and frequency
domain indices of HRV.

Parasympathetic indices of
HRV increased in women that
were >60 years old.

[168]

34 patients with stable
symptoms of intermittent
claudication randomized to:
(a) Strength training (ST)
(b) Walking training (WT).

ST consisted of eight exercises, 3
sets of 10 repetitions, intensity of
11–13 on 15 grade Borg scale.
WT consisted of walking on
treadmill, 15 bouts of 2 min,
intensity of 11–13 on grade Brog
scale.

Resting systolic BP, HR,
rate-pressure product,
maximal exercise time.

Resting systolic BP, HR and rate
pressure product decreased in
both groups.
Submaximal systolic BP and
rate-pressure product also
decreased in both groups.
Maximal exercise time
increased in both groups.

[169]

29 patients with stable chronic
MI were assigned to:
(a) Training group (n = 17)
(b) Control (n = 12).

Exercise intensity set at 55–70%
of VO2 max, subjects perceived
exertion rating of 12-13 Borg
scale, 3 bouts a week for 12 weeks

Myocardial perfusion study.

Exercise induced perfusion
changes in the infarct zone is
proportional to the amount of
residual viable myocardium.

[170]

26 young healthy subjects
assigned to:
(a) Training group (n = 13)
(b) Control group (n = 13).

The subjects performed LSR
twice a week at 50% of one
repetition maximum for 10
weeks. Training consisted of 5
sets of ten repetitions with an
interest rest period of 30 s.

Changes in baPWV and
FMD.

FMD increased and baPWV
decreased in exercise group.

[171]

38 type II diabetic patients
were assigned to:
(a) Exercise group (n = 21)
(b) Control group (n = 17).

Exercise group received 3–5
bouts a week for 3 months, each
bout consisted of 75 min
combination of aerobic and
resistance exercise.

Endothelial function (by
FMD), insulin resistance,
adipocytokines and
inflammatory markers.

BMI decreased while VO2 and
FMD were significantly
increased in exercise group
(changes in HbA1C, LDL and
HDL cholesterol, adiponectin,
hsCRP were similar in both
groups).
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Table 1: Continued.

Reference
Patient groups and
characteristics

Intervention and followup Measured parameters Outcome

[172]

37 patients with CHF
randomly assigned to:
(a) Exercise training group
(b) Sedentary.

12 weeks of exercise (20–30 min
a day) on a bicycle ergometer
adjusted to the work load of
50–60% of VO2 max.

VO2 max, LVEF, number and
functional capacity of CPC,
FMD, and capillary density
in skeletal muscles.

Exercise training
improved VO2 max, LVEF, FMD,
CPC number and function also
increased capillary density in
skeletal muscles.

[173]

44 health young FH+ women,
assigned to:
(a) AIT (n = 16)
(b) CMT (n = 16)
(c) Controls with FH+
(n = 12)
15 healthy young women with
normotensive parents and
negative FH as the 2nd control
group.

Exercise protocol consisted of
60 min (AIT or CMT) endurance
exercise 3 times a week for 16
weeks.

ABP, insulin, insulin
sensitivity, carotid-femoral
PWV, NE, ET-1, NOx.

AIT and CMT were equally
effective in improving ABP,
insulin and insulin sensitivity.
AIT was superior in improving
cardiovascular fitness, BP, NE,
ET-1 and NOx response.

[174]

44 pre-pubertal obese children
were randomly assigned to:
(a) Exercise group (n = 22)
(b) Control group (n = 22)
(c) 22 lean matched controls.

The exercise group trained
60 min 3x a week for 3 months,
then both groups trained twice
per week for another 3 months.

BP, IMT, FMD, BMI, body
fat, VO2 max, physical
activity and biological
markers were assessed at 3
and 6 months.

After 3 months: significant
differences in BP, BMI,
abdominal fat, and VO2 max.
After 6 months: significant
changes changes in arterial
stiffness and IMT were
significant.

ABP: ambulatorial blood pressure; AIT: high-intensity aerobic interval training; AT: anaerobic threshold; baPWV: brachial ankle pulse wave velocity; BMI:
body mass index; CMT: moderate-intensity continuous exercise training; CPC: circulating progenitor cells; CPET: cardiopulmonary exercise test; DT:
deceleration time of the mitral E wave; E/A ratio: peak mitral filling velocities during early (E) and late (A) diastole; E/e ratio: the ratio of mitral velocity
to early diastolic velocity of the mitral annulus; Ea/Aa ratio: tissue Doppler indices mean; EF: ejection fraction; Et: exercise training; ET-1: endothelin-1;
FH+: positive family history of hypertension; FMD: brachial flow mediated dilation; HDL: high density lipoprotein; HFpEF: heart failure with preserved
ejection fraction; HRrest: heart rate at rest; HRV: heart rate variability; hsCRP: high sensitivity C-reactive protein; IMT: arterial intima-media thickness; IVST:
interventricular septum thickness in diastole; LAVI: left atrial volume index; LDL: low density lipoprotein; LSR: low intensity resistance training with short
inter-set rest period; LVEF: left ventricular ejection fraction; NE: norepinephrine; NIG-CDP: national institutes of health consensus development panel; NOx :
nitrite/nitrate level; PWV: pulse wave velocity; Qol: qullity of life; tAT time from beginning to anaerobic threshold; VO2 volume of consumed oxygen; VO2AT:
volume of consumed oxygen at anaerobic threshold; VO2 max: maximal oxygen consumption.

seems that the results of different studies on exercise and
hemostatic function have been biased by several confounding
variables, such as age, exercise protocol, or time and methods
for hemostatic evaluation. Most studies show a transient
hypercoagulable state after acute and exhaustive physical
activity. This could explain increased thrombotic events and
sudden death during or immediately after exercise. These
changes, however, appear to be reversible after a few hours,
offering some protection, particularly in trained individuals,
against the risk of thrombosis and adverse cardiovascular
events [150]. This antithrombotic effect of chronic exercise
is also reversible and will return to previous values within 4
weeks of exercise cessation [151, 152]. Figure 1 summarizes
the mentioned effects of exercise on cardiovascular system.

15. Clinical Evidence

Increased levels of physical activity and fitness, both in men
and women, reduce the relative risk of death by about 20–
35% [153, 154]. Some studies even suggest greater benefits
(up to 50% risk reduction) for exercise in terms of all-
cause mortality and death from cardiovascular disease [155].

Blair et al. in an eight-year followup study evaluated physical
fitness and risk of all-cause and cause-specific mortality in
a large number of healthy men and women. The lowest
quintiles of physical fitness were associated with significant
higher risk of death from any cause compared with the top
quintiles [156]. Lee and Skerrett reviewed 44 observational
studies to determine the dose-response relation between
physical activity and all-cause mortality. They reported an
inverse dose-response relation between volume of physical
activity and all-cause mortality rate; thus a 1000 Kcal/week
was associated with significant 20–30% risk reduction [157];
these studies were later confirmed by others [158, 159]. Most
experts currently encourage a minimum amount of exercise
that uses one 1000 Kcal per week and acknowledge increased
benefits of higher energy expenditures. It should be reiter-
ated, however, that lower levels of energy expenditure are
also associated with health benefits [159–161]. A systematic
review by Oguma and Shinoda-Tagowa showed that there
is a graded inverse relationship between physical activity
and cardiovascular adverse events where a minimum of one
hour walking per week (and possibly less) has protective
effects [162]. Table 1 summarizes recent clinical studies on
the cardiovascular benefits of exercise.
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16. Summary

There is great interest in changes as a means to effectively
reduce cardiovascular disease risks. In particular, physi-
cal activity has been widely studied because of its well-
known effects on the metabolic syndrome, insulin sensitivity,
cardiovascular disease risks, and all-cause mortality. The
detailed molecular mechanisms for these favorable effects
remain unknown and continue to be actively investigated at
various levels. Of the many findings reported, it is clear that
modifications of oxidative stress have an important role in
the cardiovascular protection offered by exercise.

Among the proposed mechanisms for exercise-induced
cardiac effects, changes in mitochondrial function and sarco-
lemma KATP channel regulation play significant roles. Indeed,
mitochondria are important determinants of survival in car-
diac myocytes exposed to I/R. Thus modifications in mito-
chondrial function by exercise can greatly impact on cardiac
muscle. In the vasculature NO is a major role player:
the anti-inflammatory, vasodilatory, and platelet inhibitory
effects of NO are indispensable for the maintenance of
vascular hemostasis. Exercise increases the expression and
activity of eNOS, likely by changes in shear stress, and
so modulates the production of NO. Besides the vascular
and metabolic effects of NO, it also possesses a number of
physiological properties, which makes it a cardioprotective
molecule in the setting of myocardial I/R injury. Exercise-
induced increases in arterial compliance, which is mediated
by reduction of plasma ET-1 concentration and has an
impact on vascular morphology, are among other speculated
mechanisms for vascular changes in trained subjects. Exer-
cise also exerts anti-inflammatory effect in both cardiac and
vascular compartments. An increased number and mobi-
lization of hematopoietic stem cells, endothelial progenitor,
and angiogenic cells as well as rheological alterations are
hematological component of this harmonized concert.

Further studies are clearly warranted so that we can
gleam a better understanding of the mechanisms of exercise
as a preventive and therapeutic measure for the cardiovascu-
lar system. An additional benefit is that by so doing, we will
better customize appropriate levels of physical training for
individual patients.
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