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Lung cancer has been the focus of attention for many re-
searchers in recent years for the leading contribution to can-
cer-related death worldwide, in which lung adenocarcinoma
(LUAD) is themost commonhistological type.However, the po-
tential mechanism behind LUAD initiation and progression re-
mains unclear. Aiming to dissect the tumor microenvironment
of LUAD and to discover more informative prognosis signa-
tures, we investigated the immune-related differences in three
types of genetic or epigenetic characteristics (expression status,
somatic mutation, and DNA methylation) and considered the
potential roles that these alterations have in the immune
response and both the immune-related metabolic and neural
systems by analyzing the multi-omics data from The Cancer
GenomeAtlas (TCGA)portal. Additionally, a four-step strategy
based on lasso regression and Cox regression was used to
construct the prognostic prediction model. For the prognostic
predictions on the independent test set, the performance of
the trained models (average concordance index [C-index] =
0.839) is satisfied, with average 1-year, 3-year, and 5-year areas
under the curve (AUCs) equal to 0.796, 0.786, and 0.777.
Finally, the overall model was constructed based on all samples,
which comprised 27 variables and achieved a high degree of ac-
curacy on the 1-year (AUC = 0.861), 3-year (AUC = 0.850), and
5-year (AUC = 0.916) survival predictions.
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INTRODUCTION
Lung cancer represents the peaks of both incidence and mortality
among all cancer types, with 2,093,876 (11.6%) new worldwide cases
and 1,761,007 (18.4%) deaths out of all cancer types.1 Lung adenocar-
cinoma (LUAD) is the most common histological type of lung cancer.
Many epidemiological investigations and experimental studies have
attributed the occurrence and progression of LUAD largely to both
environmental factors and genetic alterations.2–4 Despite the
increasing prevalence of health education and the decrease in smok-
ing rates, the incidence trends have not changed considerably. A large
number of never-smokers suffering from LUAD overturned the pre-
vious theory based only on environmental factors and refocused the
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researchers’ attention on the in-depth alterations of genetic content.
Until now, there are twomajor types of genetically related therapeutic
strategies, i.e., targeted therapy and immunotherapy. Targeted ther-
apy requires a specific gene mutation in cancer patients, and the
epidermal growth factor receptor (EGFR) is the most representative
mutation in LUAD patients, especially in Asians (51.4%), and can
therefore act as a sensitive therapeutic target for the tyrosine kinase
inhibitor (TKI).5,6 Unfortunately, there remains a large proportion
of LUAD patients trapped in the lack of targetable mutations. Current
progress on immunotherapy paves an efficient and safe way to bail
them out. Immunotherapy is always realized by the introductions
of immune checkpoint blockers (ICBs) such as antibodies targeting
programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen-4
(CTLA-4), but this method is also largely affected by the tumor
microenvironment (TME) such as T cell abundance, tumor mutation
burden, and the regulatory relationships with other biomolecules,6–8

which highlights the importance and the urgent need of deeply under-
standing how TME orchestrates the therapeutic and prognostic
outcomes.

TME is commonly defined as the environment around a tumor,
which comprises the extracellular matrix, blood vessels, and cellular
players such as immune cells and neurons, all of which have a strong
association with tumor progression and therapeutic outcome.9

Increasing studies have experimentally elucidated the contributive
roles of TME infiltrates in the immunotherapy response and resis-
tance in various cancer types, and explored their influence on patient
prognosis.10–12 For example, B7-CD28 family-based signatures were
found to have significant prognostic values and demonstrated that
the tumor immune landscape plays a role in LUAD.13 Additionally,
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Figure 1. Construction of TME in LUAD

(A) Comparison of the distributions of estimate scores, immune scores, and stromal scores between tumor and control cohorts. (B) Comparison of immune scores on the

TNM stage. (C) Kaplan-Meier curves show the independent relevance between overall survival time and immune scores. (D–F) Comparisons of immune scores on (D) tumor

size, (E) distance metastasis, and (F) lymph nodes. (G) Comparisons of the immune cell members between high-immunity and low-immunity groups. (H) Relevance between

clinical factors and immune cell members. The red to white gradient represents the significance level. The positive and negative diagonals in the boxes respectively indicate

the significantly positive and negative relationships between cell fractions and the level of clinical factors (p < 0.05). (G) and (H) share the same y axis.
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Song et al.14 established a model comprising of 30 immune-related
genes as predictive signatures and attempted to determine their rela-
tionship with clinicopathological factors. However, most of the pro-
posed models for LUAD prognosis prediction14–16 only incorporate
expression changes and are therefore not comprehensive enough to
reach a satisfying performance.

In the present study, we aim to estimate the TME infiltration patterns,
especially the tumor-associated immune system in LUAD based on the
expression profiles from The Cancer Genome Atlas (TCGA) portal,
and then correlate the immune status with genetic or epigenetic char-
acteristics through analyzing the multi-omics data (RNA sequencing
[RNA-seq], whole-exome sequencing [WES], and DNA methylation
array), and finally establish a prognosis prediction model from the sig-
nificant alterations. It is expected that the results from this study could
provide a more comprehensive map of the immunogenomic landscape
and potentially find a better prognosis predictor for human LUAD.

RESULTS
Construction of the TME in LUAD

Tumor tissues are not simply composed of only tumor cells but also the
heterogeneousmicroenvironment constituents such as fibroblasts, blood
vessels, immune cells, stromal cells, and so on,which can be infiltrated by
tumor cells and thus equipped with tumor-associated influence. The in-
teractions between the tumor cells and the surrounding infiltrate, espe-
cially two major non-tumor constituents (stromal cells and immune
cells), are able to orchestrate either tumor progression or inhibition.17

To evaluate the tumor-associated effects of the infiltrating stromal
and immune cells, the TME was preliminarily established based on
the expression profiles from TCGA portal by using the ESTIMATE
(estimation of stromal and immune cells in malignant tumor tissues
using expression data) algorithm.18 ESTIMATE generates a stromal
score that measures the presence of tumor-associated stroma and
an immune score that represents the infiltration level of the immune
cells and combines them to produce an index termed “estimate score”
that comprehensively infers tumor purity. As shown in Figure 1A, the
estimate scores of the LUAD samples were distributed at the
significantly lower side, compared with those of the normal samples
(Mann-Whitney U test, p < 0.05), as were the stromal scores and im-
mune scores (Mann-Whitney U test, p < 0.05). The difference in the
distributions between the tumor and normal cohorts supports the
higher tumor purity in the selected LUAD samples.

Next, we investigated the relationship between tumor purity and clin-
ical factors. As shown in the results (Figure S1A), the estimate scores
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were significantly different in tumor size (Kruskal-Wallis test, p <
0.05), distant metastasis (Mann-Whitney U test, p < 0.05), and tumor
stage (Kruskal-Wallis test, p < 0.05). Pairwise comparisons (Table S1)
show that the samples in stage I have significantly higher estimate
scores than do the samples in stages III and IV (Mann-Whitney U
test, false discover rate [FDR] < 0.05). Furthermore, patients in the
cohort with low estimate scores (below the median) have a poorer
prognosis compared with those in the high-score (above the median)
cohort (Figure S1A). To separately elaborate the roles of the stromal
and immune cells, the relationships between the two types of scores
and clinical factors were further studied. From the aspect of the
TNM (tumor size, lymph node, and distant metastasis) staging sys-
tem, the immune scores were significantly different in different tumor
sizes (Kruskal-Wallis test, p < 0.05), but there was no difference in
lymph nodes and distant metastasis (Figures 1D–1F). As for the inte-
grative TNM stage classification, the immune scores were signifi-
cantly different between the early stage and advanced stage as shown
in Figure 1B (Kruskal-Wallis test, p < 0.05), of which those in stage I
were significantly higher than those in stages III and IV (Mann-Whit-
ney U test, FDR < 0.05) (Table S1). In contrast, stromal scores were
only significantly related with distant metastasis (Mann-Whitney U
test, p < 0.05) rather than tumor size, lymph nodes, and stage (Fig-
ure S1B), which conforms to the favorable functions of tumor-associ-
ated stroma in tumormetastasis.19,20 Amore important finding is that
higher immune scores were significantly associated with longer over-
all survival time (Figure 1C), whereas stromal scores have no signif-
icant relevance with patient prognosis (Figure S1B). Extrapolating
from all of the above results, we speculated that tumor-infiltrating im-
mune cells have a stronger evidential clinical relevance compared to
stromal cells in LUAD. Therefore, the following analyses mainly
focused on the tumor immune microenvironment (TIME) and im-
munity-related genes.

Dissecting the Infiltrating Immune Content in LUAD

Since immune infiltration level and cell composition are strongly
related to tumor progression and patient outcome,21 we divided the
LUAD samples into a high-immunity cohort and a low-immunity
cohort using their median immune score, and further characterized
cell composition using CIBERSORT22 to explore the relationship be-
tween the immune cell subsets and clinical features. The samples with
CIBERSORT22-generated p values greater than 0.05 were removed. A
total of 468 samples were reserved, of which 203 belong to the low-im-
munity cohort and 265 belong to the high-immunity cohort.

Then, the immune content of each sample was dissected into 22 types
of immune cell members. The high-immunity cohort had signifi-
cantly larger fractions of memory B cells, CD8 T cells, activated mem-
ory CD4 T cells, M1 macrophages, resting dendritic cells, activated
mast cells, and gamma delta T cells and smaller fractions of plasma
cells, M0 macrophages, and activated dendritic cells (Mann-Whitney
U test, p < 0.05) (Figure 1G), which is consistent with the proposed
anti-immune or pro-immune functions of these cell members.23–28

Of note, some of these immune cell members have potential correla-
tions, such as the positive correlation of activated dendritic cells on
862 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
CD8 T cell infiltration in lung cancer.29 While considering the rela-
tionships between the immune score and the clinical factors detected
above, we speculated that different immune cell members may have
different contributions to patient outcome, and, as we expected,
memory B cells, CD8 T cells, M0 macrophages, M2 macrophages,
and activated dendritic cells were detected to have significant differ-
ences in TNM stage, tumor size, or lymph nodes (Mann-Whitney
U test or Kruskal-Wallis test, p < 0.05), while the other cell subsets
appear to be statistically insignificant in all clinical factors (Figure 1H).
Furthermore, the single type of cell members contributed little to pa-
tient overall survival in LUAD (Figure 1H), although the combination
shows discriminative power (Figure 1C).

Identification of the Immune Infiltration-Dependent Differentially

Expressed Genes

The expression profiles of the LUAD samples fromTCGA portal were
used to identify the expression change between the high-
immunity and low-immunity cohorts. The genes meeting the stan-
dard of log2(fold change) >1 and FDR <0.05 (Student t test) were
considered to be differentially expressed, of which 611 and 164 genes
were, respectively, upregulated and downregulated in the high-immu-
nity cohort (Figure 2A). Note that 29 chemotactic factors such as
CXCR4 and CCL8 were found to be significantly upregulated (Fig-
ure 2B), which are capable of modulating the recruitment of a wide
variety of immune cells to tumor,30

Then, functional enrichment analyses using clusterProfiler31 were
performed to infer the potential functions of these two parts of genes.
As we expected, the upregulated genes were found to be enriched in
immune-related biological processes such as T cell activation and
leukocyte proliferation (Figure 2C), indicating that they have a posi-
tive role in the enhancement of tumor-associated immunity. Further-
more, some of the upregulated genes such as LILRB4,32 RUNX3,33,34

and CXCR335 have been experimentally verified in prior studies to
regulate T cell activation and support tumor infiltration. Alterna-
tively, the downregulated genes were mainly enriched in the meta-
bolic process (Figure 2D). The metabolic communication between
the tumor cells and infiltrating immune cells is a battleground for en-
ergy competition and can therefore influence tumor progression.36

Hence, we speculated that some downregulated genes modulate the
activities of immune and tumor cells using the metabolic switch;
for example, the role of AKR1C1/2/3 in the tumor infiltration level
of immune cells and the metabolic process has been partially
verified.37

Comparisons of Somatic Mutations under Different Immune

Infiltration Levels

After detecting the transcriptional alterations in the above section, we
further investigated whether there is evidence of the disparity in the
genomic layer between the high-immunity and low-immunity co-
horts. Somatic mutations including the single-nucleotide variant
(SNV), single-nucleotide polymorphism (SNP), insertion (INS),
and deletion (DEL) were analyzed and visualized using the R package
maftools38 based on the WES data from TCGA portal in which the



Figure 2. Investigation of the Immune Infiltration-Dependent Expression Change

(A) Volcano plot showing the differentially upregulated (blue nodes) and downregulated genes (red nodes). (B) Heatmap displaying the expression changes of 29 chemotactic

factors. The colors of the top bar and central plot represent the grouping information and gradient of normalized log2FPKM (fragments per kilobase of transcript per million

mapped reads), respectively. (C) Bar plot showing the biological processes enriched by the upregulated genes. (D) Bar plot showing the biological processes enriched by the

downregulated genes. The y axis in (C) and (D) reflects the name of GO terms. The x axis reflects the overlapped gene numbers between each GO term and query gene set.

The color of the bars represents the gradient of adjusted p values (FDR correction).
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mutations had been called by VarScan2.39 As shown in Figure 3A and
Figure S3A, most genomic variants were missense mutations in both
the high-immunity and low-immunity cohorts (around 60%). There-
fore, it was necessary to measure the mutation changes, classify the
types of variants, and uncover their potential meanings.

From a global perspective, the samples in the low-immunity cohort
hold a significantly larger number of variants (median = 235.00, quar-
tile range = 398.00) than those in the high-immunity cohort (me-
dian = 172.50, quartile range = 278.75) (Mann-Whitney U test, p =
0.001) (Figure S2). As for SNVs, a total of 64,344 and 88,708 SNVs
across all samples in both high-immunity and low-immunity cohorts
were detected, of which C>A was the most common type in both the
high-immunity cohort (median frequency = 45, median proportion =
42.65%) and low-immunity cohort (median frequency = 65, median
proportion = 42.15%). No matter the type of SNV, the mutation
numbers in the low-immunity cohort were significantly higher than
those in the high-immunity cohort, as shown in Figure 3B (Mann-
Whitney U test, p < 0.05). The ratios between transversion (Tv)
and transition (Ti) in all SNVs were approximate 2:1 and remained
stable in both cohorts (Figure S3D). Furthermore, Figure 3C shows
that the SNPs, INSs, and DELs in the high-immunity cohort (SNP:
median = 167.50, quartile range = 270.75; INS: median = 1, quartile
range = 3; DEL: median = 5, quartile range = 8) were also outnum-
bered by those in the low-immunity cohort (SNP: median = 226,
quartile range = 386; INS: median = 2, quartile range = 3; DEL: me-
dian = 6, quartile range = 9). Note that the samples in the low-immu-
nity cohort have a significantly higher level of variant allele fractions
(VAFs) than do those in the high-immunity cohort (Figure 3D),
which had been proposed to be associated with tumor progression
and a poorer prognosis,40,41 which supports the finding of relatively
higher tumor purity and lower heterogeneity in the low-immunity
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http://www.moleculartherapy.org


Figure 3. Landscape of Somatic Mutation in High-Immunity and Low-Immunity Cohorts

(A–D) Boxplots showing the comparisons of mutation frequencies of (A) every mutation type classified by effects, (B) SNV, (C) INDEL and SNP, and (D) the percentage of VAF

between high-immunity and low-immunity cohorts. (E) Waterfall plot shows the mutation distribution of the top 15 most frequently mutated genes. The central panel shows

the types of mutations in each LUAD sample. The upper panel shows the mutation frequency of each LUAD sample. The bar plots on the left and right side show the

frequency and mutation type of genes mutated in the low-immunity and high-immunity cohort, respectively. The lower part shows the clinical features (tumor stage, smoke,

resection or biopsy site, sex, and race) and SNV types of each sample. The bottom panel is the legend for mutation types and clinical features. (F) Forest plot displays the top

10 most significantly differentially mutated genes between two cohorts. (G) The lollipop plot illustrates the differential distribution of variants for STK11. (H) Kaplan-Meier

curves show the independent relevance between overall survival time and STK11mutation in high-immunity and low-immunity cohorts. (I) The boxplot shows the expression

(legend continued on next page)
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samples. Despite the significant differences in variant number of the
four types of somatic mutations between the two immune cohorts, the
inner constituent ratio of each mutation type occupied in all variants
stayed almost unchanged (Figures S3A–3C), suggesting that the dif-
ferences observed in mutation number are not caused by type shift.

In the low-immunity cohort, 129 genes were mutated in more than
10% of the samples while only 62 genes met this criterion in the
high-immunity cohort, of which there was an overlap of 56 genes.
The top 15 most frequently mutated genes in the corresponding co-
horts are illustrated in Figure 3E. Interestingly, TP53, TTN, and
MUC16 occupy the top three positions in both cohorts, and there
were interactions among them that were regulating various tumor-
associated biological processes in LUAD,42–44 which indicates that
they may be less involved in the immune infiltration process but
are mainly involved in tumor progression. Next, we investigated the
co-occurring and exclusive mutations of the top 25 most frequently
mutated genes by using the CoMEt algorithm.45 Compared with
the pervasive co-occurrence landscape, there are three unique cases
in two cohorts (KRAS-TP53, KRAS-TNR, and STK11-TP53) that
were exhibiting mutually exclusive mutations (Figure 3J), which sug-
gests their probably redundant effect in the same pathway and the se-
lective advantages between them to keep more than one copy of the
mutations. More interestingly, some genes had differential mutation
frequencies between the two cohorts. From the results, 268 differen-
tially mutated genes were detected using Fisher’s exact test, which
were sorted in ascending order of p value (Table S2), and the top
10 are shown in Figure 3F. Notably, different variants may exert
distinct impacts on other genetic alterations and even the clinical
outcome of patients. For example, KRAS was detected to hold a dif-
ferential SNP pattern between high-immunity and low-immunity co-
horts (Fisher’s exact test, p < 0.05). The expression levels of KRAS
without SNPs were significantly different between the high-immunity
and low-immunity cohorts (Mann-Whitney U test, p < 0.05), but the
reverse was observed when SNP rs121913530 (C>A) exists (Figure 3I).
Furthermore, STK11 is another typical example to demonstrate the
different mutation spots between two cohorts (Figure 3G) and the
plausible chain reaction of the differences in prognostic impact
(Figure 3H).

Depicting DNA Methylation Pattern in TIME of LUAD

Failure to maintain normal DNA methylation, which includes both
hypermethylation in CpG islands and hypomethylation in CpG-
poor regions, increases the susceptibility to triggering tumor forma-
tion and deterioration.46,47 Therefore, we aimed to detect and
compare the effects of DNA methylation patterns in different im-
mune cohorts using Illumina Infinium 450k DNA methylation data
from TCGA portal. In this section, 451 samples in which no more
than 20% genes have missing beta values were used to detect the dif-
ferential methylation probes (DMPs) by using ChAMP.48 A total of
changes of KRAS with or without SNP rs121913530 between the high-immunity and

exclusivemutations of the top 25 frequently mutated genes. The color and symbol in eac

pair of genes.
5,764 immune-related DMPs were identified according to the stan-
dard of Dbeta >0.15 and FDR <0.05 (Figure 4A; Table S3). Compared
with the low-immunity cohort, 5,647 (97.97%) hypermethylated po-
sitions involving 2,386 genes were detected in the high-immunity
cohort, of which 2,221 loci were located on 1,687 CpG islands. In
contrast, the hypomethylated positions were drastically outnumbered
with only 117 (2.03%) loci related to 68 genes and were located on 56
CpG islands. Therefore, the high-immunity cohort tends to have hy-
pomethylated positions overall, but hypomethylation only occurs in a
few genes. In summary, 2,441 DMP-associated genes were composed
of 2,393 genes containing either hypermethylated or hypomethylated
positions and 13 genes containing both hypermethylated and hypo-
methylated positions. Additionally, many DMP-associated genes
were found to be differentially expressed between the two cohorts
(log2FC > 1, p < 0.05). From the 2,386 hypermethylated genes in
the high-immunity cohort, there were 63 upregulated and 32 down-
regulated DEGs (Figure 4B; Table S4). However, from the hypome-
thylated gene set, only seven upregulated DEGs were detected (Table
S5). The functions of the DMP-associated genes were investigated
based on the Gene Ontology (GO) analysis. The top 15 enriched
GO terms of biological processes with the lowest FDRs indicated their
potential roles in cell differentiation and development (Figure 4G).
Meanwhile, they are also significantly enriched in various neuron-
associated biological processes. In particular, gene set enrichment
analysis (GSEA) of the DMP-associated genes shows that the hyper-
methylated genes with highly positive beta differences have more
essential contributions to the tumor-associated neural biological pro-
cesses such as axon guidance and axonogenesis (Figure 4D), indi-
cating that the aggressive behaviors induced by the aberrant methyl-
ations on tumor immunity are through the recognition and
participation in the neural pathways. More interestingly is that the
hypermethylation-associated upregulated DEGs were found to
participate in immune system activation (Figure S4), which suggests
that the probable effect of hypermethylation on gene overexpression
is to trigger an elevated level of immune cell infiltration.

While considering the previous finding about the correlations be-
tween DNAmethylations and gene expression levels,49 we speculated
whether there exists a similar phenomenon in our study and whether
the trend is stable across different immune levels. The results showed
that out of 2,441 DMP-associated genes, there were 329 positively
correlated and 926 negatively correlated genes (Table S6) in the
high-immunity cohort, and 346 positively correlated and 939 nega-
tively correlated genes (Table S7) in the low-immunity cohort (p <
0.05, Pearson correlation). Therefore, the preferred negative correla-
tions observed in the DMP-associated genes were as postulated. As
expected, the probe signals associated with the DMP-associated genes
were prone to be negatively correlated with expression level compared
with the relatively balanced distributions of correlation coefficients in
100 random sets, which were constructed using the randomly selected
low-immunity cohorts. (J) The heatmap illustrates the mutually co-occurring and

h cell represent the statistical significance of the exclusivity or co-occurrence for each
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probes (Figure 4C). For example, S100P, a well-studied driver in
LUAD,50 was hypomethylated in the low-immunity cohort and had
significant correlations between its low methylation signals and
high gene expressions (Figure S5). Furthermore, the immunity level
did not affect the correlations between methylation levels and expres-
sion levels overall, which is supported by the high consistency
observed in the correlation coefficients between the two cohorts as
shown in Figure 4E (r = 0.86, p < 0.05, Pearson correlation) and
the large overlaps in negatively (Venn diagram in Figure 5B) or posi-
tively (Venn diagram in Figure 5A) correlated gene sets between two
cohorts. These consistently positively and negatively correlated genes
in the low-immunity and high-immunity cohorts were respectively
enriched in the immune systems and cell proliferation, while the
genes with inconsistent trends had some distinctive functions. For
example, the uniquely positively correlated genes in low-immunity
cohorts could participate in synapse-associated functions (Figure 5A).
A previous study that immune synapse proteins produced by tumor
cells will suppress the immune system through epigenetic mecha-
nisms, especially DNA methylation,51 provides evidence for this
finding. Furthermore, the probes of the positively correlated genes
were more frequently located in the gene body and 30 UTR region
(p < 0.001, chi-square test), while the probes of the negatively corre-
lated genes preferred the regions adjacent to a promoter such as tran-
scription start sites (TSSs), the 50 UTR, and the first exon (Figure 4F),
indicating that there are regional differences in the effect of DNA
methylation on expression.

Multi-omics Characteristics Provide an Accurate Prognostic

Prediction

From the results obtained in the above sections, some significant
immune-related alterations in the multi-omics characteristics, which
include expression change, somatic mutation, and DNA methyl-
ation, were identified. For expression change, a total of 611 upregu-
lated and 164 downregulated genes were detected in the high-im-
munity cohort. For somatic mutation, 129 and 62 frequently
mutated genes were detected in the low-immunity and high-immu-
nity cohorts, respectively. For DNA methylation, 3,858 out of 5,764
DMPs were located at the regions of 2,442 annotated genes and
were differentially methylated.

To identify the immune-related prognostic signatures from the
numerous genetic alterations, a four-step strategy (see Materials
and Methods) based on lasso regression and Cox proportional haz-
ards regression was adopted. Additionally, the joint and separate ef-
fects of the three types of alterations were investigated separately to
Figure 4. DNA Methylation Pattern in TIME

(A) Manhattan plot of the genome-wide DNA differential methylation in high-immunity an

methylation level. The nodes in red represent the DEGs with log2FC of FPKM >2 and D

expression level and beta value in true DMP set and 100 random sets. (D) Gene set enri

biological processes. Genes are ranked byDbeta. (E) Scatterplot showing the correlation

immunity cohorts. (F) The histogram shows the regional difference between the positive

(GOBP) enrichment analyses on DMP-associated genes. The x axis (fold enrichment) re

involved in the given GO term and another is the proportion of genes in the given GO t
determine which model had the best performance. On the one
hand, for joint effect, all genetic alterations were combined, of which
337 items composed of DEGs, 5 mutations, and 217 DMPs were iden-
tified to have a significantly independent effect on the overall survival
time of patients using a univariate Cox proportional hazards model.
Due to the large number of significant alterations and the possible in-
teractions among them, a lasso regression model was adopted to crop
the less contributive variables. Under the optimal parameter
ln(lambda) = �3.7 (Figure 6A), 52 variables were reserved (Table
S8) and used to establish the multivariate Cox proportional hazards
regression model (stepwise method). For the lack of the matching
multi-omics data from other sources, we randomly divided TCGA
samples into a training and independent test set. Each third of the
samples (n = 142) took turns to be the independent test set, and the
other two-thirds served as the training set, thus constructing three
pairs of sample sets. In the results (Table 1; Figure S6), the perfor-
mance of the trained models is satisfied with the average concordance
index (C-index) equal to 0.839. Next, the risk score for each sample
was calculated based on the established models, which has great
discriminative power on survival status. The average AUC values of
1-year, 3-year, and 5-year prognosis predictions on training sets
reached 0.871, 0.875, and 0.928. With regard to the predictions on
the test sets, the performance exhibited a slight decline with the
average AUC values of 1-year, 3-year, and 5-year survival equal to
0.796, 0.786, and 0.777. Moreover, the samples were classified into
high-risk and low-risk cohorts by median risk score (Table S9; Fig-
ure 6F). Kaplan-Meier survival analyses (Figure 6G) show that the
high-risk cohort had a poorer overall survival compared with the
low-risk cohort (p < 0.001).

Considering the great robustness and validity of the above-con-
structed models, we then combined all TCGA samples and generated
an overall prediction model comprising of 27 variables (Figure 6D), of
which some such as the DMPs cg10122865 and cg13208438 seemed
to be statistically insignificant initially (p > 0.05) but are likely
associated with other signatures and outcome. The contributions of
27 variables on the overall model are shown in Figure S7. In brief,
the expression levels of PROZ, FOXN4, LCN15, UNC5D, CD70, and
BIRC3, the methylation levels of cg08780166, cg04240491,
cg01090026, cg25407540, and cg26904049 probes, and the mutation
of COL22A1 and PTPRT have significantly positive contributions to
a poorer prognosis, while the expression levels of CLEC12A and
CLEC17A and the methylation levels of cg22706883, cg03237845,
cg07379581, cg15149938, and cg13261536 probes played opposite
roles. Moreover, in line with our above findings, the prognosis of
d low-immunity cohorts. (B) The relationships between expression change and DNA

beta >0.15. (C) The distributions of Pearson correlation coefficients between gene

chment analysis (GSEA) shows the significant enrichment in four neuron-associated

s of methylation-expression correlation coefficients between high-immunity and low-

and negative probes. (G) Bubble plot showing the results of GO biological process

presents the ratio of two proportions, of which one is the proportion of input genes

erm involved in the background.
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Figure 5. Functional Enrichment Analyses of the Positively and Negatively Correlated Genes

(A) Positively correlated genes. (B) Negatively correlated genes. The results of the consistently correlated genes between the high-immunity and low-immunity cohorts are

shown at the top of the Venn diagram, and the results of the uniquely correlated genes are shown on the bottom. The x axis reflects the overlapped gene numbers between

each GO term and query gene set. The color of the bars represents the gradient of adjusted p values (FDR correction).
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the high-risk cohort is poorer compared to the low-risk cohort ac-
cording to the results of the survival analysis (Figures 5F and 5G).
Furthermore, no matter whether it is the 1-year, 3-year, or 5-year
survival rates, the risk score has high discriminative power, with
respective AUC values equal to 0.861, 0.850, and 0.916 (Figure 6B;
Figure S7). On the other hand, we adopted the same strategy as
mentioned above to determine whether the separate effect of each
type of genetic alterations has equal or even superior power and
whether the differential mutations between the high-immunity and
low-immunity cohorts can replace the role of frequently mutated
genes in the prediction model. From the results shown in Figure S9,
no matter the expression change, somatic mutations, and differential
DNA methylation, no single characteristic could provide a powerful
enough prognostic prediction compared to the joint model. Addition-
ally, when the frequent somatic mutations were replaced by differen-
tial mutations, a 23 variable-based prediction model was obtained,
but the performance had no improvement (Figure S10). Also, given
868 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
the relatively low frequency of these differential mutations, this model
was eventually not reserved.

In addition to the genetic alterations, some clinical factors may also
have predictive values for the overall survival time. Therefore, the
risk score of the joint model was further combined with three clinical
and demographic factors (stage, sex, and age) to construct another
Cox model. The contributions of the risk score and clinical factors
are as shown in Figure S8. Although the stage was significantly asso-
ciated with overall survival time, the discrimination ability of the new
model that incorporated the clinical factor was not improved as
shown in Figure 6E (C-index = 0.73), compared with the above overall
model constructed only based on multi-omics alterations (C-index =
0.82). Moreover, this new model did not achieve a better performance
on its 1-year (AUC = 0.861), 3-year (AUC = 0.848), and 5-year
(AUC = 0.914) survival predictions (Figure 6C). We speculated that
these clinical factors were highly correlated with and reflected by



Figure 6. Establishing a Prognostic Model for LUAD

(A) Identification of the optimal penalization coefficient lambda in the Lasso regression model. (B) ROC curves of the risk score for predicting 1-year, 3-year, and 5-year

survival. (C) ROC curves of the risk score combined with clinical factors for predicting 1-year, 3-year, and 5-year survival. (D) Forest plot of the prognostic impact of 27

variables. (E) Forest plot of the prognostic impact of risk score and clinical factors. (F) Heatmap in the top panel shows the gradient of 27 variables. The color in the heatmap

represents the normalized values of log2FPKM, log2Dbeta, and mutation status (0 for non-mutated and 1 for mutated). The scatterplots in the middle and bottom panels

respectively illustrate the distribution of risk score and survival status of LUAD patients. (G) Kaplan-Meier curves show the independent relevance between overall survival time

and risk scores.
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the genetic characteristics. Hence, only multi-omics characteristics
comprising the above 27 alterations already could produce an accu-
rate prognostic prediction.

DISCUSSION
Significant effort and attention have been invested to explore the so-
phisticated mechanism of LUAD, but the current understanding,
especially on TME, therapeutic target, and prognostic factors, re-
mains far from satisfactory. In the present study, we first used gene
expression profiles to construct the TME of LUAD and conducted
a further study on the immune infiltration landscape. As expected,
some immune member cells had distinct fractions between the
high-immunity and low-immunity cohorts, which had been partially
reported before. For instance, memory B cells, a kind of antigen-pre-
senting cell, can drive the expansion andmemory formation of T cells,
thus exerting their anti-tumor functions in tumors,52 which conforms
to our findings that memory B cells hold a higher fraction in the high-
immunity study and are negatively correlated with tumor stage and
lymph nodes in LUAD. Then, we turned to investigate the genetic
or epigenetic alterations under different immunity infiltration levels
and to infer their potential functions. Apart from the canonical im-
mune biological processes such as T cell activation and lymphocyte
proliferation, some altered genes are likely able to modulate the
immune-related metabolism and neural systems. The genes with
downregulated expression levels may have a role in the metabolic
communication between tumor cells and infiltrating immune cells.
Additionally, the differentially methylated genes may be associated
with axon guidance and axonogenesis, thus modulating cell migration
and tumor angiogenesis and further promoting LUAD progression.
Several studies had reported similar findings in various cancer
types.53–56 Finally, according to the detected genetic or epigenetic al-
terations, a prognosis model was constructed and was found to have a
superior performance with a higher C-index or AUC value compared
to the previous models.14–16 To our surprise, the trained models
showed higher accuracy of 5-year survival prediction on the training
sets compared with the result from the 1-year survival prediction,
whereas the superiority was lost when the prediction was done using
the test set. This is likely because the immune-related genetic
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 869
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Table 1. The AUC Values and C-indexes of Three Trained Models

Index

Model 1 Model 2 Model 3 Average

Training Set 1 Test Set 1 Training Set 2 Test Set 2 Training Set 3 Test Set 3 Training Set Test Set

1-Year AUC 0.881 0.775 0.869 0.862 0.863 0.752 0.871 0.796

3-Year AUC 0.854 0.787 0.873 0.811 0.897 0.761 0.875 0.786

5-Year AUC 0.943 0.723 0.909 0.793 0.933 0.814 0.928 0.777

C-index 0.841 0.839 0.836 0.839
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characteristics have increasingly amplified but uncertain alterations
during cancer progression. The uncertainty may be the increasingly
different compositions of tumor-infiltrating immune cells for long-
term cancer patients. For example, high levels of tumor-infiltrating
T cells and macrophages are respectively correlated with better and
worse prognosis,57 which caused higher individual variation, thus
making the model unstable when projecting long-term patient
survival.

Although this study provides a more comprehensive view into the
TIME of LUAD and establishes a powerful model for prognostic pre-
diction, there are still two major drawbacks that require further study.
The first drawback, that is, because matching multi-omics data and
clinical information are required, we were limited to data solely
from TCGA portal and cannot cover other data sources. This hin-
dered us from testing the robustness of the model when used for other
data. The second drawback was that the application of the prognostic
prediction model required three kinds of omics data, including RNA-
seq, WES, and DNA methylation array data, which is cost-intensive
and not easy to realize in practical use. Even so, the rapid develop-
ment of biological technologies will hopefully produce a three-in-
one toolkit and thereby blaze the way for its realization and popular-
ization. Yet, despite having such limitations, there is no denying that
our study provides significant clues for the elucidation of TIME in
LUAD. Moreover, our prognostic prediction model can potentially
exhibit compelling clinical value that may lead to the improvement
of overall survival and even for the development of new therapeutic
strategies for LUAD patients.
MATERIALS AND METHODS
Data Source

The data of 535 LUAD samples and 59 normal control samples of
RNA-seq profiles, 561 LUAD samples of WES data, and 504 profiles
of the Illumina 450k DNA methylation array were collected from
TCGA portal.
TME Construction

First, the ESTIMATE18 algorithm was used to construct the TME and
generate an estimate score, stromal score, and immune score based on
the expression profiles. A lower estimate score, stromal score, and im-
mune score respectively represent the higher tumor purity and lower
infiltration levels of stromal and immune cells in tumor tissue. Next,
the LUAD samples of expression profiles were divided into a high-im-
870 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
munity cohort (n = 268) and low-immunity (n = 267) cohort by the
median immune score. The infiltrating immune content for each
sample was dissected using the software CIBERSORT.22 Samples
with a p value greater than 0.05 were filtered out, which means that
there is no cell type in the signature matrix that can reflect on the
given gene expression profile mixture. The fraction levels of all 22 im-
mune cell members between the high-immunity and low-immunity
cohorts were compared using the Mann-Whitney U test. For the
LUAD samples of the WES and methylation profiles, we also con-
structed a high-immunity cohort and a low-immunity cohort by
mapping the sample IDs of the RNA-seq profiles.
Multi-omics Data Analyses

In this study, we aimed to investigate the differences in gene expres-
sion, somatic mutations, and DNA methylation between the high-
immunity cohort and low-immunity cohort, respectively, based on
the data obtained from TCGA portal. For gene expression change,
the differentially expressed genes (DEGs) between the high-immu-
nity cohort (n = 268) and low-immunity cohort (n = 267) were iden-
tified based on the RNA-seq data, which should meet the standard of
expression fold change greater than 2 and p value adjusted by FDR
correction lower than 0.05 (Student’s t test). For somatic mutations,
WES data of both high-immunity (n = 250) and low-immunity co-
horts (n = 257) were used to detect the SNVs, SNPs, and INDELs
using the software VarScan2.39 Fisher’s exact test was used to iden-
tify the differential mutation pattern, and genes with a p value lower
than 0.05 were defined as differentially mutated genes. The co-occur-
rence and mutually exclusive mutations were identified using the
CoMEt algorithm.45 R package maftools38 was used to create the
visualization of the somatic mutations. For DNA methylation, the
R package ChAMP was used to process the Illumina Infinium
450k DNA methylation array data. Samples with more than 20%
missing values were filtered out and 451 samples were used, which
were further divided into the high-immunity cohort with 219 sam-
ples and the low-immunity cohort with 232 samples. The remaining
missing values were statistically imputed using ChAMP’s imputation
function. The beta values were normalized using peak-based correc-
tion (PBC). Furthermore, the differential methylation probes and re-
gions were respectively identified using the limma package58 and
Bumphunter algorithm. The correlation between the probe signal
and gene expression level was investigated using the Pearson corre-
lation, and the same numbers of probes as in the true DMP set were
randomly selected from all probes to construct 100 random sets.
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Functional Enrichment Analysis

GO analyses of the DEGs and DMP-associated genes and GSEA were
performed using the R package clusterProfiler.31

Clinical Relevance Investigation

Clinical factors include the TNM staging system, integrative stage
classification, and overall survival. The differences of the scores gener-
ated by ESTIMATE and the fractions of immune cell members in
distant metastasis and lymph nodes were evaluated using the
Mann-Whitney U test, while those in integrative stages and tumor
size were evaluated using the Kruskal-Wallis test. Moreover, the con-
tributions to overall survival were investigated by Kaplan-Meier sur-
vival analysis (log-rank test).

Establishing and Evaluating the Prognosis Prediction Model

Survival time and status were used to evaluate the prognosis of LUAD
patients. We only considered cases that included their overall sur-
vival. Next, 494, 490, and 430 cases were reserved to construct the
prognosis prediction models based on gene expression values, gene
mutation, and methylation probe signals, respectively. For the model
with integrating characteristics from multi-omics data, we only
considered cases with all of the characteristics being studied, and
421 same cases were obtained. The workflow to explore the prog-
nostic signatures from multiple immunity-dependent genetic or
epigenetic alterations in LUAD consists of four steps: (1) univariate
Cox proportional hazards regression was used to assess the individual
effect of every alteration using the “survival” R package, and then the
features with a p value less than 0.05 were selected for further analysis;
(2) a lasso regression model was adopted to filter out some less infor-
mative variables using the R package glmnet; (3) multivariate Cox
proportional hazards regression with a stepwise procedure was used
to obtain the genetic variables-based prediction model and to
generate the risk scores for all samples using the R package survival.
In model construction, TCGA datasets (n = 423) were randomly
divided into three equal parts, of which each part took turns to serve
as the independent testing set and the remaining two parts to serve as
the training set to obtain the optimal variable combination. (4) The
risk score of each patient was predicted based on the training model
by using the “predict” function included in the survival R package.
The risk scores were combined with three other clinical and demo-
graphic characteristics (stage, sex, and age) and further introduced
into the multivariate Cox proportional hazards regression model to
assess the overall effect. Then, the patients were divided into a
high-risk group (above the median) and low-risk group (below the
median) by themedian risk score. We conducted the survival analyses
of LUAD patients with respect to the risk level and drew a 1-year, 3-
year, and 5-year receiver operating characteristic (ROC) curve using
the R package timeROC.59 The AUC value of the survival ROC curve
and C-index were calculated to evaluate the performance of the prog-
nosis prediction model.
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