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Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause
DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and
small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve
renal injury by regulating several signaling pathways, such as NF-«B, TGF- 8, Nrf2-oxidative stress, and MAPK. In this review,
we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment

strategy of DN.

1. Introduction

Diabetic nephropathy (DN) is a common and characteristic
microvascular complication of diabetes. About 30-40% of
patients with type 1 diabetes (TIDM) and 20-30% of patients
with type 2 diabetes (T2DM) would develop DN after the
disease duration of 15-30 years [1, 2]. The morbidity of DN
is rising year by year with the increasing incidence and
prevalence of diabetes dramatically and disproportionately,
and the pathogenesis of DN has not been completely clarified;
its treatment is limited, unsatisfactory, and expensive [3]. DN
patients always have a poor prognosis which is a leading cause
of end-stage renal disease and a contributor to significant
morbidity and mortality in patients with diabetes [4].
Hyperglycemia, oxidative stress, advanced glycation end
products, and angiotensin II can lead to the occurrence of
DN by activating the transforming growth factor- (TGF-
B) signaling pathway, nuclear factor kB (NF-«xB) signaling
pathway, Nrf2-oxidative stress, and mitogen-activated pro-
tein kinase (MAPK) pathway. Recent studies found the ubiq-
uitin proteasome system and small ubiquitin-like modifier
(SUMO) can be involved in these pathways through the
regulation of protein ubiquitination and SUMO [5]. However,
the relationship between ubiquitination, SUMO, and DN
remains to be elucidated, although several recent papers have

suggested that ubiquitination and SUMO are involved in the
pathogenesis of DN. In this review, we summarize and discuss
recent findings on the role of ubiquitination and SUMO in
diabetic nephropathy.

2. Ubiquitination

Ubiquitin is a small, highly conserved, ubiquitously expressed
protein with immensely important and diverse regulatory
functions. Ubiquitination is a multistep process involving the
sequential action of three enzymes: ATP-dependent activat-
ing enzyme El, ubiquitin-carrier protein E2, and ubiquitin-
protein ligase E3 enzyme. The conjugation process begins
with the activation of ubiquitin by the El followed by transfer
of ubiquitin to the E2, forming a thioester linked E2-ubiquitin
(E2-Ub) intermediate. The substrate-recruiting E3 interacts
with the E2-Ub allowing for the transfer of ubiquitin to the
target (Figure 1) [6]. There is usually a single E1 and there are
many E2 proteins and multiple specific E3 proteins. Each E3
protein appears to be responsible for the specific ubiquitin-
protein ligation [7-9]. A well-studied function of ubiquitin is
its role in selective proteolysis by the ubiquitin-proteasome
system (UPS), which serves as a mechanism to modify
cellular functions and protein function such as cell signaling,
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FIGURE 1: Protein ubiquitination: ubiquitination is a multistep sequential process, which begins with the activation of ubiquitin by the ATP-
dependent activating enzyme El followed by transfer of ubiquitin to the ubiquitin-carrier protein E2, forming a thioester linked E2-ubiquitin
(E2-Ub) intermediate. The substrate-recruiting ubiquitin-protein ligase E3 interacts with the E2-Ub allowing for the transfer of ubiquitin to

the target.

protein trafficking, DNA repair, chromatin modifications,
cell-cycle progression, and cell death. The highly specific
modification of USP to numerous proteins is made possible
by the abundance and diversity of ubiquitin ligases, especially
the large number of E3.

The grinder UPS machinery contains a barrel-shaped 20S
proteolytic core particle (CP) with 28 subunits which was
complemented with either the 19S regulatory complex and/or
the 11S regulatory heptamers [10]. The proteolytic sites of
the core particle are blocked within the proteasome barrel,
which ensures inertness of the proteolytic activity. So, with-
out the regulatory subunits, the 20S complex is known as
an inherently repressed enzyme. Attainability and delivery
of target proteins within the 20S barrel for degradation
are dependent on the function of proteasome regulators.
Selecting target proteins to ubiquitination and degradation
is fulfilled by specific ubiquitin ligase (E2 and E3 enzymes)
[11]. This selection is balanced by interactions among different
target substrates, ubiquitin ligases, ubiquitin ligase adapter
proteins, and chaperons. And the timely and selective ubiqui-
tination and degradation of redundant, dysfunctional and/or
abnormal proteins are crucial for normal cellular physiology.
Any delay, disturbance in the process of degradation by the
UPS will break the homeostasis between cellular and tissue
[12]. Itis involved in a great deal of cell signal pathways which
participate in the progression of DN.

The inhibition of systemic proteasome could ameliorate
renal pathologies, so the ability to modulate UPS activity has
a good effect on battling nephropathies. Studies found that
members of UPS, cullin-1, cullin-3, and the 11S proteasome
regulators PA28-f3 and PA28-g are definitely upregulated in
intraglomerular capillaries of mice with DN [13].

3. SUMO

A more recently identified transient protein modification is
the attachment of a SUMO peptide, the process of which is

often referred to as SUMOylation. SUMO polypeptides are
approximately 18% identical to ubiquitin at the amino acid
sequence level and their three-dimensional (3D) structural
folds are highly similar to those of ubiquitin. First reported by
two research groups in late 1996 and early 1997, sumoylation is
now known to modify various eukaryotic proteins in organ-
isms ranging from yeast to humans. Sumoylation has also
been shown to occur in signaling pathways. Initially found
only within the nucleus, SUMOylated proteins have now been
discovered in the cytoplasm, including the mitochondria and
the plasma membrane [14]. SUMO, both monomeric and
polymeric addition to substrates, has been documented, but
distinct biological functions have only recently been ascribed
to these modifications [15].

Mammalian cells express three major SUMO hypotypes,
called SUMO-1, SUMO-2, and SUMO-3. SUMO-1 shares
50% sequence identity with SUMO-2 and SUMO-3, while
SUMO-2/3 shares a 95% identity. Also, SUMO-2/3 possess
consensus SUMOylation sites at their N-terminal tails that
allow formation of poly-SUMO chains, in contrast to SUMO-
1, where these sites are absent, along with the capacity for
chain formation. SUMO-4 is the most recently identified gene
and has an 86% similarity to SUMO-2. Its mRNA transcripts
are mainly present in kidney, lymph system, and spleen
but show limited expression compared to the other SUMIO
species [16]. Since no native SUMO-4 protein has yet been
detected in any tissue, it has been suggested that SUMO-4
might be an expressed pseudogene [17].

SUMO conjugation necessitates an enzymatic cascade
resembling that of ubiquitination. The mature form of SUMO
is activated in an ATP-dependent manner by an El-activating
enzyme, which consists of an SAE1-SAE2 heterodimer. Acti-
vated SUMO is transferred to Ubc9 (E2 conjugase) to form a
thioester bond and is subsequently attached to the e-amino
group of a lysine residue in the target substrates [18]. The
mature form of SUMO is activated in an ATP-dependent
manner by an El-activating enzyme, which consists of
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an SAEI-SAE2 heterodimer. Activated SUMO is transferred
to Ubc9 (E2 conjugase) to form a thioester bond and is sub-
sequently attached to the e-amino group of a lysine residue in
the target substrates. Even though Ubc9 itself associates with
SUMO and transfers SUMO to targets, specific SUMO E3
ligases are required for efficient modification. Several classes
of SUMO ligases have been identified: the family of protein
inhibitor of activated STAT (PIAS; PIASI, PIAS2(x), PIAS3,
PIASA4(y)), Polycomb-2 protein (Pc2), and RanBP2/Nup358,
a component of the nuclear pore complex [19].

SUMO attachment is a reversible and highly transient
modification. The same enzymes that facilitate the initial
maturation of SUMO molecules also catalyze the cleavage
from their substrates. To conjugate SUMO to the substrates,
the proform of SUMO needs to be cleaved by sentrin/SUMO-
specific proteases (SENPs) that hydrolyse C-terminal end to
expose Gly-Gly motif [20]. SENP not only has a hydrolase
activity but also has an isopeptidase activity, which regulates
deconjugation of sumoylated substrates. Six human SENP
family proteins, SENPs 1-3 and 5-7, have been shown to be
SUMO-specific proteases. Unlike the enzymes catalyzing
SUMO attachment, SUMO proteases show little similarity to
the equivalent enzymes in the ubiquitin pathway but appear
closely related to viral proteases. The differential subcellular
localisation of the SENP proteins, most likely dictated by non-
conserved N-terminal sequences, is thought to provide the
specificity for the SUMO-substrate complexes they regulate.

4. Ubiquitination and SUMO

An association between SUMOylation and the ubiquitin
pathway is not surprising because of the close relation
between the two proteins. Since SUMO peptides can use
the same lysine residues as ubiquitin, the SUMOylation of
substrate protein may lead to protection from degradation in
ubiquitin pathway. This interaction may have a competitive
basis, in which SUMO and ubiquitin contend for attachment
at the same lysine residue on the substrate and which will
result in the conferral of opposite or different fates. For
example, inhibitor of nuclear factor-«B (IxB«) is degraded
upon its phosphorylation-induced ubiquitination on Lys21
and Lys22, whereas SUMOylation on Lys21 stabilizes the
protein [21]. Similarly, SUMOylation on Lys277 and Lys309
translocates NEMO (IxB kinase regulatory particle) to the
nucleus, whereas phosphorylation-induced ubiquitination of
the same residues translocates NEMO back to the cytoplasm
[22].

By contrast to the competitive nature of the SUMO/
ubiquitin interplay described above for other proteins, these
posttranslational modifications can also cooperate to pro-
duce a similar outcome. In a sequential manner, SUMO
modification can serve as a targeting signal for the ubiq-
uitin proteasome pathway. The concept of a mechanism
for proteolytic regulation of proteins modified by poly-
SUMO signals has emerged from the finding that SUMO-
2/3 polychain conjugates accumulate when mammalian cells
are exposed to proteasome inhibitors. This finding led to
the identification of a new class of SUMO-targeted ubiquitin
ligases in yeast and, subsequently, the human orthologue.

As exemplified in humans, SUMO-Ub chains synthesized
by RNF4 target PML (promyelocytic leukemia protein) for
proteasomal degradation [23]. However, it remained unclear
whether SUMO-Ub chains are recognized as distinct signals
by hybrid chain-specific receptors or by receptors recognizing
ubiquitin alone.

The connections between the SUMO and ubiquitin path-
ways become even more intricate when considering the
fact that the enzymes of one pathway can be regulated by
the other. For example, the stability of two SUMO-specific
proteases, SENP2 and 3, is regulated by the ubiquitin protea-
some system. Moreover, the ubiquitin-conjugating enzyme,
E2-25k, is inactivated by its SUMOylation. Mdm2 is an
ubiquitin ligase E3, it can be self-ubiquitinated, leading to its
degradation, which can be prevented by SUMOylation at the
same lysine residue [24].

5. Ubiquitination, SUMO in
the Progression of DN

Diabetic nephropathy (DN) is a common and serious
microvascular complication of diabetes mellitus, which is the
leading cause of end-stage renal disease and renal failure in
western countries. Recent studies have shown that inflamma-
tion is a key link in the development of early DN [25]. Distur-
bance of glucose metabolism and abnormal hemodynamics
can trigger inflammation and infiltration of mononuclear
macrophage and excessive secretion of inflammatory factors
could be detected in kidney tissue in early stage, which
would cause kidney damage and accelerate renal fibrosis.
Studies found ubiquitination and SUMO are involved in the
incidence of DN widely [26]. Altering the activity of UPS
and SUMO may contribute to the development of microvas-
cular complications of diabetes. Moreover, studies found the
ubiquitin fusion protein UbA52 increased significantly in
urine of diabetes mellitus with macro- or microalbuminuria
(DM-NP) patients by proteomic analysis. The alteration of
UbAS52 concentrations would be a marker for diagnosing and
predicting the clinical course of DN [27].

5.1. Ubiquitination, SUMO, and Nuclear Factor Kappa B (NF-
kB). Nuclear factor kappa B (NF-«B) pathway is the main
pathway in inflammation of DN, and it comprises a family
of transcription factors and plays a central regulatory role in
expression of various inflammatory cytokines involved in the
occurrence of DN [28]. The extensive researches discovered
NF-xB family of transcription factors were regulated by the
UPS system [26]. In the resting state, NF-xB combined with
suppressed protein IxB to compose a heterotrimer in the
cytoplasm by an inactive form that would stop NF-«B from
entering the nucleus. The mechanism of activation of NF-
xB is a complex process usually caused by the infection of
bacteria, virus, and inflammation factor including TNF-a, IL-
183, and LPS (lipopolysaccharide) [29, 30]. First, the subunit
of I kappa B kinase (IxB kinase, IKK), IKKJ3, is phospho-
rylated. Then in IxkB N terminal regulatory domain of the
heterotrimer of NF-«B, Ser32/36 can also be phosphorylated,
and the lysine residues in this domain occur ubiquitination.
After the ubiquitination of IxB, it would be degraded by
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FIGURE 2: The process of activation of NF-«B. In the resting state, NF-«B combined with suppressed protein IxkB to compose a heterotrimer
in the cytoplasm by an inactive form that would stop NF-xB from entering the nucleus. When cell was stimulated by extracellular stress,
the subunit of I kappa B kinase (IxB kinase, IKK), IKKf3 would be activated first, and then the IxB would be phosphorylated, and the lysine
residues in this domain cause ubiquitination. After the ubiquitination of IxB, it would be degraded by the 26S proteasome of UPP. At last,
the heterotrimer dissociate, so that the heterodimers of p50-p65 exhibit the activity of NF-xB and enter in the nucleus to be involved in gene

transcription and protein synthesis.

the 26S proteasome of UPP. At last, the heterotrimer dissoci-
ate, so that the heterodimers of p50-p65 exhibit the activity
of NF-xB and enter in the nucleus to be involved in gene
transcription and protein synthesis (Figure 2) [5].

Ubiquitination of IxkB and NF-«B dissociation is a key
step in NF-xB activation, which would be involved in the
occurrence and development of inflammation. Increased
expression of ubiquitin was involved in the activation of
NF-«B in the atherosclerotic plaque of T2DM, which would
influence the stability of atherosclerotic plaque [31]. Com-
pared to the normal rats the expression of NF-«B increased
significantly in nucleus with DM, and the ubiquitin expres-
sion was increased sharply in cytoplasm of glomerular cells.
So ubiquitin mediated the inflammatory pathway of NF-xB
which would lead to renal injury in diabetic rats [32].

The present study found that multiple signal transduction
molecules of NF-xB pathway, such as IkBa, NEMO, RelA,
and P100, can be modified by SUMO [21]. Because the
relationship between SUMO and ubiquitination is not clear,
so the role of sumoylation in the regulation of NF-«xB
signal has been controversial. Examples include SUMO-1
modification of IxBa, the main inhibitor of canonical NF-
«kB dimers, which prevents signal-induced ubiquitination
and degradation of IxBa and thus limits NF-«B activation.
IxBa conjugated to the SUMO-1, which is resistant to
signal-induced degradation. SUMO-1 modified IxBa remains
associated with NF-xB and thus overexpression of SUMO-
1 inhibits the signal-induced activation of NF-«xB-dependent
transcription. Reconstitution of the conjugation reaction with

highly purified proteins demonstrated that in the presence
of a novel E1 SUMO-1 activating enzyme, Ubc9 directly
conjugated SUMO-1 to IxBa on residues K21 and K22,
which are also used for ubiquitin modification. Thus, while
ubiquitination targets proteins for rapid degradation, SUMO-
1 modification acts antagonistically to generate proteins
resistant to degradation [33].

The activation of NF-xB by cytokines under hyper-
glycemic conditions is a potential mechanism for compli-
cations in diabetes. The renal expression of TNF-«, NEF-
kB (p65), IxkBa, and SUMO4 was significantly higher in
diabetic GK rats. Translocation of NF-«B (p65) and IxBa
into the nucleus was observed, and the expression of SUMO4
and IxkBa was upregulated in the glomerular endothelial
cells. SUMO4 was localized in the cytoplasm and nucleus,
while IxBa was predominantly located in the nucleus after
stimulation with TNF-« [34]. These showed that cytokines
have a unique effect in regulating the sumoylation of NF-xB
and SUMO4 plays a role in regulating NF-«B signaling in
glomerular cells [34].

It is not clear whether SUMO-2/3 follows the same func-
tional role as SUMO-1 and SUMO-4 during the activation
of NF-«B. Studies results showed the expression of SUMOI
and SUMO2/3 under high glucose was obviously enhanced.
High glucose induced degradation of IxBa and activation
of NF-«xB. SUMO2/3-induced modification of IxBx was
only affected by high glucose [35]. Whether SUMO E3 is
involved in the sumoylation of Ix-Ba and whether a specific
SENP removes the SUMO moiety from Ix-Ba have yet to
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FIGURE 3: Regulation of NF-«B signaling pathway by SUMO. Multiple signal transduction molecules of NF-«B pathway, such as IkBa, NEMO,
RelA, and P100, can be modified by SUMO. After SUMO-1 conjugated to NEMO, the IKK would be activated, similarly, SUMOylation IxBer
conjugated to the SUMO-1, and this would lead to the degradation of IxB« and activation of the NF-xB pathway. And the SUMOylation of

RelA and P100 was in accord with NEMO.

be determined. Other researches showed that the ectopic
expression of mouse SUMO-2 inhibited IL-12 secretion by
blocking the translocation of the p65 subunit of NF-«B into
the nucleus, which led to the polarization of naive CD4+ T
cells to T helper 2 (Th2) shift in vitro, and indicate that high
glucose may activate NF-xB inflammatory signaling through
IxBa sumoylation and the functional role of SUMO-2/3 in the
regulation of NF-xB activity was conserved during evolution
[36].

Similarly, posttranslational modification of pl00 by
SUMO is a determining factor for stimuli-induced p100 pro-
cessing, which is the primary step in activating the alternative
NF-«B, and blocking SUMOylation of p100 would inhibit
ultimate activation of the alternative NF-«B pathway [37]. The
SUMO-1 modification of NEMO (NF-xB essential modula-
tor) would mediate NF-«B activation in response to genotoxic
stress. Now, specific SUMO ligase or SUMO-specific protease
(SENP) in SUMOylation or deSUMOylation for respective
substrate remains unclear; the critical ligase is defined as
PIASy [38].

A recent study reported the identification of SENP2,
among the six known SUMO proteases, as the major SUMO
protease for NEMO [39]. This study also provided a new con-
cept that SUMO and NF-«B ties are not simply one way but
can be bidirectional, SUMO regulating NF-«B signaling on

one hand and NF-xB modulating SUMOylation via induction
of SUMO proteases on the other, thereby implicating new
roles for the NF-«xB system.

NEF-«B is regulated by SUMOylation, where the RelA
subunit of NF-xB is SUMOylated by PIAS3 [40]. PIAS3-
mediated NF-«B repression was compromised by either RelA
mutant resistant to SUMOylation or PIAS3 mutant defective
in SUMOylation. PIAS3-mediated SUMOylation of endoge-
nous RelA was induced by NF-«B activation thus forming a
negative regulatory loop. The SUMOylation of endogenous
RelA was enhanced in IxBa null as compared with wild type
fibroblasts. The RelA SUMOylation was induced by TNFa but
not leptomycin B mediated RelA nuclear translocation. Fur-
thermore, RelA mutants defective in DNA binding were not
SUMOylated by PIAS3, suggesting that RelA DNA binding is
a signal for PIAS3-mediated SUMOylation (Figure 3).

5.2. Ubiquitination, SUMO, and Transforming Growth Factor
B (TGF-B). Glomerular sclerosis and interstitial fibrosis
are the major pathological changes of advanced diabetic
nephropathy; transforming growth factor 3 (TGF-f) is a key
factor in renal fibrosis of DN [41]. Studies showed that high
glucose, angiotensin II (Ang II), and other profibrotic factor
were involved in the activation of TGF-f3 pathway [42, 43].



TGEF- 8 plays an important role in diabetic nephropathy fibro-
sis, TGF- 8 induced glomerular and tubular cell hypertrophy,
extracellular matrix (ECM) accumulation, the promotion of
glomerular sclerosis, and renal interstitial fibrosis.

The multifunctional proteins TGF-fs, activin, and bone
morphogenetic proteins (BMPs) are the members of TGF-f3
family, which regulate a wide variety of cellular responses, for
example, proliferation, differentiation, migration, and apop-
tosis. Smad protein is an important signaling molecule and
mainly negative controlling protein in TGF-f3 downstream
[44]. This signaling is tightly regulated by various posttrans-
lational modifications including ubiquitination. Type I TGF-
B receptor (TGF-SR 1) is degraded by Smad7-dependent
ubiquitination-proteasomal pathway, which is deubiqui-
tinated by ubiquitin C-terminal hydrolase-L5 (UCHL5).
UCHLS is required for high glucose-induced TGF-SR I pro-
tein expression and deubiquitination in mesangial cells and
for fibronectin expression and cell hypertrophy [42]. Several
E3 ubiquitin ligases play a crucial role in the specific reco-
gnition and ubiquitin-dependent degradation of Smad [45].

Smad ubiquitination regulatory factor (smurf) is the
specific ubiquitin ligase of Smad degradation, which dis-
closed Smad signal pathway terminating in the ubiquitin
proteasome degradation. Smurfl and Smurf2 are the two
members of the Smurf; Smurfl can directly bind to Smadl,
degrade Smadl, Smad5, and Smad7; Smurf2 could combine
with Smad7 and the complexes of TGF-f receptor and
that would result in the degradation of TGF-f3 receptor
complexes and Smad7; the inhibition of TGF-f signal by
Smad7 weakened, thus TGF-f3 signal enhanced. In the tubules
interstitial fibrosis mouse model after unilateral ureteral
obstruction, Asano et al. found the expression of Smad7
reduced, but Smad7 mRNA expression did not decrease in
the kidney, and increased ubiquitin degradation of Smurf1/2
led to low expression of Smad7 protein, which suggested the
degradation of Smad7 by UPS is important for the fibrosis
of renal tubule interstitial [46]. The same results have also
been found in the studies of scleroderma skin fibrosis and
liver fibrosis, so feedback signal of TGF-f3 Smad reduced with
the degradation of Smad7 by UPS increased, which was an
important mechanism of organ fibrosis.

Our recent studies found the ubiquitination of histone
H2A and deubiquitination of histone H2B in glomerular
mesangial cells could activate TGF-f signaling pathway,
which is involved in the pathogenesis of diabetic nephropathy
[47]. In glomerular mesangial cells induced by high glucose
for 6~24 hours, the expression of Smurf2 and Smad2/3
increased and on the contrary the expression of Smad7
decreased, so TGF-f3 signaling pathway was activated, which
would induce the secretion of extracellular matrix protein FN
and lead to fibrosis of diabetic nephropathy [48-50]. We also
detected that Smad7 protein expression decreased in DN rats,
but Smurf2 and FN mRNA expression and TGF-f3 protein
expression increased [51].

In recent years, the role of SUMOylation in regulation of
TGE-f signaling becomes the focus of research; the present
study supports that the Smad protein SUMOylation inhibits
the transcriptional activity, but SUMOylation of TGF recep-
tor increased the affinity with its ligand. Smad3 and Smad4
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play crucial roles in transforming growth factor-beta- (TGF-
B-) mediated signaling pathway, which produce a variety of
cellular responses, including cell proliferation and differenti-
ation. A previous study demonstrated that PIASy suppresses
TGF- 3 signaling by interacting with and sumoylating Smad3.
Sumoylation of Smad4 regulated its stability. The present
study found coexpression of Smad3 with PIASy and SUMO1
stimulated the nuclear export of Smad3 [52]. Mutation of
the Smad4 sumoylation sites or cotransfection with SuPr-1
greatly increases Smad4 transcriptional activity. Moreover,
direct fusion of SUMO-1 to the sumoylation mutant Smad4
potently inhibits its transcriptional activity [53]. These results
suggest that PIASy regulates TGF-beta/Smad3-mediated sig-
naling by stimulating sumoylation and nuclear export of
Smad3. Sumoylation also represses Smad4 transcriptional
activity.

SUMO can conjugate to cell-surface receptors for growth
factors to regulate their functions [54]. Studies show that
the type I transforming growth factor-f (TGF-p) receptor,
TBRL is sumoylated in response to TGF-f and that its
sumoylation requires the kinase activities of both TSRI and
the type II TGF-f receptor, TSRII. Sumoylation of TSRI
enhances receptor function by facilitating the recruitment
and phosphorylation of Smad3, consequently regulating
TGEF-S-induced transcription and growth inhibition. TRI
sumoylation modulates the dissemination of transformed
cells in a mouse model of TSRI-stimulated metastasis. T3RI
sumoylation therefore controls responsiveness to TGE-f3,
with implications for tumour progression.

Recent progress has been made on the role of onco-
proteins c-Ski and related SnoN in the control of cel-
lular transformation. c-Ski/SnoN potently repress TGF-f
antiproliferative signaling through physical interaction with
signal transducers called Smads. SnoN is modified by small
ubiquitin-like modifier-1 (SUMO-1) [55]. Sumoylation occurs
primarily at lysine 50 (Lys-50). PIASI and PIASx serve as
SUMO-protein isopeptide ligases (E3) for SnoN sumoylation.
SnoN sumoylation does not alter its metabolic stability or its
ability to repress TGF-beta signaling.

Arkadia is a RING domain E3 ubiquitin ligase that
activates TGF-f pathway by inducing degradation of the
inhibitor SnoN/Ski. Studies showed evidence that Arkadia
can function as a SUMO-targeted ubiquitin ligase (STUBL)
by ubiquitinating SUMO chains. While the SIMs of Arkadia
are not essential for SnoN/Ski degradation in response to
TGF-p, they are necessary for the interaction of Arkadia
with polysumoylated PML in response to arsenic and its
concomitant accumulation into PML nuclear bodies [56],
suggesting Arkadia to be a novel STUBL that can trigger
degradation of signal-induced polysumoylated proteins.

5.3. Ubiquitination, SUMO, and Nrf2-Oxidative Stress.
Oxidative stress may play an important role in the patho-
genesis of diabetic nephropathy (DN). Nrf2 as a transcription
factor is a valuable therapeutic target for prevention of
oxidative stress and damage for regulating the expression of
a group of antioxidant genes [19, 20]. In the nucleus, Nrf2
increases gene expression of antioxidant enzymes such as
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superoxide dismutase (SOD), glutathione peroxidase (GPx),
catalase (CAT), and NAD (P) H [57-59].

Recent studies have shown that the ubiquitin-proteasome
pathway (UPP) and oxidative stress have interaction.
Inhibitor of UPS MGI32 upregulated antioxidant genes and
had a preventive effect on DN development and progression
in rats [60]. In diabetic patients, oxidative stress can also
target kidney by impairing UPS activity, which, caused by
hydrogen peroxide (H,0,), inhibited proteasome activity
and increased the levels of ubiquitin proteins [61]. Oxidative
stress is closely touched with the regulation of proteasome’s
proteolytic activity. Kelch-like ECH-associated protein
1 (Keapl) is known as an actin cytoskeleton-associated
protein; it always binds very tightly to Nrf2 in the cytoplasm
[62] and serves as a substrate adaptor for Cullin-3 to form
the E3 ubiquitin-ligase complex, which ultimately leads to
ubiquitin degradation of Nrf2 [63].

PA28 protein is 11S regulatory subunits of the mammalian
ubiquitin proteasome. Hyperglycemia regulates UPS activity
in vascular units of the glomerulus. Researches detected
that increased level of PA28 proteins in the glomerulus also
synchronized with oxidative stress in DN, which might play
a protective role against oxidative damage [64, 65]. Further-
more, the initial activation of PA28 proteins may protect
glomerulus from oxidative stress induced by hyperglycemia,
but the chronic activation of PA28 proteins would exacerbate
the pathogenesis of DN [26]. Luo et al. found that the activity
of 26S proteasome in the kidney of DN rats is 3.68 times
greater than that of normal control rats at 12 weeks. At
the same time, the activity of superoxide dismutase (SOD)
and glutathione peroxidase (GPX) decreased significantly,
which would weaken the ability of scavenging oxyradical and
thereby the oxidative stress of kidney increased [66].

5.4. Ubiquitination, SUMO, and MAPK. The MAPK path-
ways are one of the important routes by which extracellular
signals are transduced into intracellular responses. Through
protein phosphorylation mechanisms, they can play a pivotal
role in regulating other posttranslational modifications such
as protein acetylation and ubiquitination. Previously, a study
found that Ste7, a prototype MAPKK in yeast, is ubiquitinated
upon pheromone stimulation; ubiquitin ligase SCF (Cdc4)
and the ubiquitin protease Ubp3 have opposing effects on
Ste7 ubiquitination, even SCF (Cdc4) is necessary for proper
activation of the pheromone MAPK Fus3, and Ubp3 is
needed to limit activation of the invasive growth MAPK
Kssl [67]. MKP-1 is a specific negative regulator of MAPK
signaling pathway, which has promised to inactivate MAPK
by regulating the dephosphorylation of MAPK. Studies have
found that MKP-1 was regulated by ubiquitin degradation of
UPS [68].

Our experiment detected that ubiquitin degradation of
MKP-1 increased in DN rats, and MGI132 as an ubiquitin
proteasome inhibitor can inhibit the degradation of MKP-1
and block the activation of the MAPK pathway [69].

In addition, protein sumoylation has emerged as an impo-
rtant pathway which also functions through posttranslational
modification. The SUMO pathway modulates a diverse
range of cellular processes including signal transduction,

chromosome integrity, and transcription. Interestingly,
recent studies have provided links between the SUMO and
MAPK signaling pathways which converge to modulate
transcription factor activity [70]. This was first demonstrated
by the observation that the activation of the ERK pathway
caused desumoylation of the transcription factor, Elk-1 [71].
Furthermore, a growing number of links are now being
made between the MAPK pathway and protein sumoylation.
SUMO covalently attaches to certain residues of specific
target transcription factors and could inhibit its activity,
suggesting the involvement of ERK5 SUMOylation on its
transcriptional activity. Point-mutation analyses showed that
ERKS5 is covalently modified by SUMO at 2 conserved sites,
Lys6 and Lys22, and small interfering RNA PIASI reversed
H(2)O(2) and AGE-mediated reduction of shear stress-
mediated ERK5/myocyte enhancer factor 2 transcriptional
activity [72]. These data defined SUMOylation-dependent
ERK5 transcriptional repression independent of kinase
activity and suggested this process as among the molecular
mechanisms of diabetes-mediated endothelial dysfunction.
Given the nature of protein sumoylation in diverse biological
functions, it is not surprising that the effect of MAPK path-
ways on sumoylation varies between different proteins.

Tissue transglutaminase (TG2), a multifunctional
enzyme critical to several diseases, is constitutively upregu-
lated in driving chronic inflammation. Alessandro Luciani
[73] demonstrates that the generation of an oxidative
stress induced by CFTR-defective function leads to pro-
tein inhibitor of activated STAT (PIAS) y-mediated TG2
SUMOylation and inhibits TG2 ubiquitination and protea-
some degradation, leading to sustained TG2 activation. This
PPAR and IxBa SUMOylation leads to NF-KB activation
and to an uncontrolled inflammatory response. TG2 may
function as a link between oxidative stress and inflammation
by driving the decision as to whether a protein should
undergo SUMO-mediated regulation or degradation. Targe-
ting TG2-SUMO interactions might represent a new option
to control disease evolution in CF patients as well as in other
chronic inflammatory diseases, such as DN.

6. Ubiquitination, SUMO,
and the Treatment of DN

Nowadays, the treatment of DN is limited, unsatisfactory,
and expensive. UPS is involved in the progress of DN by
regulating several signaling pathways, such as NF-«xB, TGF-
B, Nrf2-oxidative stress, and MAPK. MG132, a proteasome
inhibitor, was constructed by Lee et al. in 1994 and has
been widely used in studying the treatment of DN [74, 75].
Research has shown that MG132 has therapeutic effects on
DN [47, 60, 76], but the mechanism by which it acts is unclear.

Reports exposed that MG132 prevents NF-kB activation
by inhibiting ubiquitin proteasome specifically in experimen-
tal diabetes and DN, and the typical features of DN, such
as inflammation, proteinuria, basement membrane thicken-
ing, and glomerular mesangial expansion were improved
obviously after the treatment of MGI132 in diabetic mice
[59, 77]. In our experiments, we detected that the expres-
sion of SUMOI1 and SUMO2/3 enhanced in rat glomerular
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FIGURE 4: The result of our experiments. (a) SUMOI and SUMO2/3 protein expression after various glucose concentrations’ challenge
determined by Western blot. (b) IxB« protein expression after various glucose concentrations” challenge determined by Western blot. (c)
NE-xBp65 protein expression after various glucose concentrations’ challenge determined by Western blot. (d) MCP-1 mRNA expression after
various glucose concentrations’ challenge determined by RT-PCR. The expression of SUMOI and SUMO2/3 enhanced in rat glomerular
mesangial cells induced by high glucose, while IxBa sumoylation decreased significantly, but NF-«Bp65 and MCP-1 were increased under

high glucose conditions.

mesangial cells induced by high glucose, while IxB& sumoy-
lation decreased significantly, but NF-xBp65 and MCP-1 were
increased under high glucose conditions, and all the changes
can be reversed by adding MG132 (Figure 4) [35]. So, the
inhibition of UPS is enough to alleviate the adverse effects of
NEF-kB activation on the development of DN.

TGEF-f is a therapeutic target for renal fibrosis. Scientists
have long sought ways to antagonize TGF-J3 to treat diabetic
nephropathy. UPS can activate TGF-f signaling pathway by
degrading negative protein Smad7 We found that MG132 as
a ubiquitin proteasome could block ubiquitin degradation of
Smad7 and inhibit activation of the TGF-f3 signaling pathway
in DN rats [51].

Accumulating investigation has demonstrated that pro-
teasome inhibitor MG132 could reduce degradation of ubiq-
uitin conjugated Nrf2 by inhibiting activity of the subunits
of the core particle of 26S proteasome and activating the
Nrf2-ARE signaling pathway [76, 78-80]. Luo et al. provided
experimental evidence indicating that Nrf2-ARE signaling
pathway activation can be used therapeutically to alleviate
renal damage induced by type 1 diabetes [60, 76].

Antifibrotic effect of MGI32 at low doses has been
observed in rat renal fibroblasts and mesangial cells [81, 82].
Luo et al. found MGI32 can significantly decrease the 26S
proteasome activity, increase SOD and GSH-PX activity in
DN rats, and enhance the antioxidative ability to inhibit the
oxidative damage of kidney in DN rats [66]. Through sys-
temically analyzing dose-dependent effects of MGI32 using
human umbilical cord vein cells, Meiners et al. found that
nontoxic MG132 might offer a new therapeutic approach for
the treatment of oxidative stress-associated renal diseases,
whereas high doses of MG132 (200 nM) induced apoptosis in
endothelial cells [83]. In OVE26 diabetic mice, researchers
also found that MGI32 upregulated Nrf2 function via
inhibiting the increased proteasomal activity, which provided

therapeutic effects on the kidney against oxidative damage,
fibrosis, and eventually dysfunction [60]. In addition, MG132
selectively upregulates PAI-1 expression and activates MAPK
pathways as well as PI3 K/Akt pathways. Inhibitors of these
signaling pathways reduced MGI132-mediated upregulation
of PAI-1in varying degrees [84]. Therefore, MGI132 has great
potential as a therapeutic agent for DN.

In summary, ubiquitination and SUMO could activate
NF-«B, TGF-f, and MAPK and inhibit Nrf2-oxidative stress
by degrading the related signal proteins to be involved in
the progression of DN. Low dose of MGI32 could reverse
these changes and improve renal injury, and maybe it is a
potent target for amelioration of DN patient. However, study
of the treatment in DN still requires more research. Maybe,
using a proteomic approach could study more substrates
of ubiquitination and SUMO, which would reveal the new
pathogenesis of DN. This may find new therapeutic target for
DN and identified DN-related biomarkers earlier.
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