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With more than 80% of flowering plant species specialized for animal
pollination, understanding how wild pollinators utilize resources
across environments can encourage efficient planting and mainte-
nance strategies to maximize pollination and establish resilience in
the face of environmental change. A fundamental question is how
generalist pollinators recognize “flower objects” in vastly different
ecologies and environments. On one hand, pollinators could employ
a specific set of floral cues regardless of environment. Alternatively,
wild pollinators could recognize an exclusive signature of cues unique
to each environment or flower species. Hoverflies, which are found
across the globe, are one of the most ecologically important alterna-
tive pollinators after bees and bumblebees. Here, we have exploited
their cosmopolitan status to understand how wild pollinator prefer-
ences change across different continents. Without employing any a
priori assumptions concerning the floral cues, we measured, pre-
dicted, and finally artificially recreated multimodal cues from individ-
ual flowers visited by hoverflies in three different environments
(hemiboreal, alpine, and tropical) using a field-based methodology.
We found that although “flower signatures” were unique for each
environment, some multimodal lures were ubiquitously attractive,
despite not carrying any reward, or resembling real flowers. While
it was unexpected that cue combinations found in real flowers were
not necessary, the robustness of our lures across insect species and
ecologies could reflect a general strategy of resource identification for
generalist pollinators. Our results provide insights into how cosmo-
politan pollinators such as hoverflies identify flowers and offer spe-
cific ecologically based cues and strategies for attracting pollinators
across diverse environments.
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The majority of the world’s flowering plant species rely on
animal pollinators (1), yet more than 40% of our invertebrate

pollinators are currently threatened by habitat loss, environmental
change, pesticide use, disease, and several other factors (2). Pre-
serving pollination in the face of decreasing numbers requires un-
derstanding the natural ecology of wild pollinators (3). Indeed,
identifying specific strategies that attract wild pollinators is a crucial
(4, 5), yet often overlooked, aspect of pollination. Our world’s
ecosystems are also experiencing rapid change due to changes in
climate and the so-called “Anthropocene Era” galvanized by human
effects on our planet (6). Combined with the impending effects of
environmental change, we are faced with a double-edged problem:
We need to understand why and how pollinators utilize certain
sources and then identify how these relationships change across
different environments. One major benefit to preserving cosmo-
politan pollinators across environments could be to bolster ecosys-
tem services over space and time (7).
Hoverflies, which are found across the globe, are one of the most

important alternative pollinators after bees and bumblebees (8, 9).
The agriculturally important marmalade hoverfly, Episyrphus bal-
teatus, can be found in tropical Bangalore and alpine Sikkim, India,
and in hemiboreal Uppsala, Sweden (Fig. 1A) (10–13). Meanwhile,
the drone fly, Eristalis tenax, is found in both Uppsala and Sikkim

(Fig. 1A), and the genus is spread across Holarctic, Asian, Neo-
tropical, and Ethiopian regions (10–14). These pollinators thus
provide an ideal model to assess how wild pollinator preferences
change across different environments.
Flowers may use scent, color, morphology, or local CO2 and

humidity gradients to attract pollinators (15–18). How do cos-
mopolitan pollinators recognize and distinguish suitable “flower
objects” in vastly different ecologies and environments? Many
wild pollinators, like hoverflies, are generalists and feed from
several flower species, suggesting that they must categorize
suitable flower objects rather than individual species. Hoverflies
have an innate preference for yellow (19–21), but are also
attracted to blue (22), pink (23), and purple (22, 24) flowers, as
well as by olfactory cues (23). Since interactions between olfac-
tion and vision enhance floral attraction for many pollinators
(25, 26), it is likely that hoverflies also use multimodal factors for
recognition of flower objects. Historically, pollination literature
was dominated by the concept of syndromes, namely specific
flower shapes, colors, and scent characteristics associated with
particular animal pollinators (27). However, recent studies have
focused on community-level characteristics such as pollination
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landscapes, webs, networks (27), and magnet species (28, 29), due
in large part to the apparent “paradox” of seemingly specialist
flowers being visited by many types of pollinators and vice versa
(27). As such, while specialist pollinator syndromes are relatively
well supported, the concept of a generalist syndrome encompassing
several flower species is often attributed to features that increase
the likelihood of encounter or apparency (cf. ref. 27).
On one hand, generalist pollinators could employ a specific

syndrome of cues present across several flower species to identify
flower objects regardless of environment or ecology. Alternatively,
they could recognize an exclusive signature of specific cues unique
to each environment and impacted by local community structure.
Flowers have evolved scent, color, and pattern together with the
anatomical, behavioral, physiological, and ecological features of
their pollinators, such as peaks in color vision or olfactory sensi-
tivity (27, 30–33). In turn, these cues can be impacted by phylo-
genetic, pleiotropic (e.g., carotenoids as accessory pigments for
chlorophyll), exaptative (e.g., pigmentation aiding plant survival),
and ecological constraints on the flowers themselves (33). Multi-
modal interactions between olfactory and visual cues could in-
dependently or interactively enhance the apparency or context of
individual cues (29) and also associative learning for flower rec-
ognition (26, 34) by exploiting parallel processing, sensory bias and
overload, and the perceptual variability achieved with multiple cues
(35). These lines of evidence suggest that generalist pollinators
could also be attracted to syndromes of floral cues (i.e., color and
scent combinations). Unfortunately, there has been little systematic
effort to identify multimodal combinations that could increase at-
tention, context, or exploit perceptual bias across multiple geo-
graphical environments and ecologies.
To explore these possibilities for “flower object identification” in

a generalist pollinator, we developed a unique in situ methodology
(SI Appendix, Fig. S1) to quantify the cues that hoverflies use to
categorize suitable flowers in three different environments, in-
cluding hemiboreal Uppsala, alpine North Sikkim, and tropical

Bangalore. Without employing any a priori assumptions on the
nature of the cues, we measured multiple phenotypic characters
likely associated with pollinator attraction to flowers (27), in-
cluding ratio and composition of volatiles, reflected wavelengths,
absolute size and shape of corolla and inflorescence, humidity,
temperature, and CO2 emission. We then used multivariate data
analysis to predict combinations of cues that were attractive, or
less attractive, to hoverflies in each environment, while being
agnostic to the flower species. Finally, we created artificial lures
exhibiting combinations of floral cues predicted by our multi-
variate data analysis, placed the lures in the same three envi-
ronments and temporal and spatial contexts, and recorded
hoverfly visits. This allowed us to disentangle individual vs.
community effects on the apparency or context of selected cues.

Results
To address wild pollinator preference across climates, we sampled
floral phenotypic and abiotic data resulting in >1,000,000 data
points from 153 individual flowers in three different environments,
of which 112 were “Hot” (i.e., visited by hoverflies). These points
consisted of illuminance, reflected UV and visual wavelengths
(308–760 nm), absolute flower size (area, maximum and minimum
ferret), corolla circularity and type, inflorescence type, volatile
identities and ratios (up to 96 volatiles), humidity, and CO2
measurements. Our observation of attractive (Hot, Fig. 1B, flower
species listed in SI Appendix, Table S1) and less attractive, al-
though not necessarily repellent (Cold, Fig. 1C) flowers in the
immediate vicinity of each other (SI Appendix, Fig. S2A) indicates
that it would be difficult to conclude that hoverfly flower choice is
based on visual cues alone. For example, composite flowers could
be either Hot (Fig. 1B, vi and viii) or Cold (Fig. 1C, viii), and the
same flower species could be both Hot and Cold (Fig. 1B, iii and
Fig. 1C, iii). Yellow flowers, which are often listed as attractive for
hoverflies (19–21, 27), were also found in both categories (Fig. 1B,
iii and Fig. 1C, iv). In total, 16 angiosperm families belonging to
13 orders of flowers were sampled from the three regions (SI
Appendix, Table S2). Overall, the variation of species suggests the
potential for large variations in floral signature among and be-
tween the different geographic regions.
We developed techniques for local sampling of spectral (Fig.

2A), abiotic (Fig. 2B), and volatile factors (Fig. 2C and SI Ap-
pendix, Fig. S2) from individual flowers in the field, without as-
suming any cue’s relative importance for hoverfly choice. We
used photographs to quantify flower size and circularity (Fig. 2A,
i–iv), manually score corolla shape (SI Appendix, Table S3), and
account for flower abundance in the immediate vicinity of the
measured flower (SI Appendix, Table S4). We also determined
the volatile signature emitted by each flower using a recently
developed technique for “snapshot” sampling of volatiles in the
field at any moment (36) (SI Appendix, Fig. S2). By analyzing all
samples with GC-MS (Fig. 2C, black data show a Hot and gray
data a Cold Rhododendron campanulatum flower), we identified
96 different compounds from the 153 samples (SI Appendix,
Table S5), constituting a variety of chemical classes, but only a
small number of compounds were significantly different between
Hot and Cold flowers (SI Appendix, Fig. S3).
We used multivariate data analysis to predict combinations of

attractive or less attractive cues for hoverflies in each environ-
ment. We performed separate multivariate data analyses (MVA)
for each region, first employing principal component analysis
(PCA) to reduce color information, and then orthogonal partial
least squares (OPLS) analysis to identify parameters associated
with Hot or Cold flowers (Fig. 3 A–F and SI Appendix, Fig. S4).
We pooled data from flowers visited by any hoverfly genus, as
their identity did not appear to influence the results (SI Appen-
dix, Fig. S5). From the OPLS, we identified variables with a
loading score (P value) greater than 0.1 (dashed lines, Fig. 3 A–
F) and error bars that did not cross 0, and used these to model
Hot and Cold floral signatures (colored bars, Fig. 3 A–F). As we
were not attempting to find the most attractive flower species,
and we often found both Hot and Cold flowers of the same

Fig. 1. Observing flowers in three climate regions. (A) Location of the three
regions used for collection of data at specified dates (coinciding with hov-
erfly peak seasons). Region color coding is used in all figures. Images show
Episyrphus sp. and Eristalis sp., respectively. Examples of (B) Hot and (C) Cold
flowers from the three regions as indicated by colored frames. Flower spe-
cies are listed in SI Appendix, Table S1.
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species (SI Appendix, Tables S1 and S2), species information was
not included in the analysis. Instead, we were investigating at-
tractive combinations of floral phenotypic and abiotic cues, as
they were detected in situ.
In all cases, hoverflies were predicted to use multimodal cues

for identifying suitable flower signatures (colored bars, Fig. 3 A–
F). Some parameters were found in all three regions, but
sometimes had opposite effects on hoverfly visitation. This in-
dicates that hoverflies use unique multimodal flower signatures
in each region and suggests that environmental or ecological
changes in the saliency of these signatures could also occur.
These parameters were not affected by parameter randomization
or by specific hoverfly genera (i.e., Episyrphus sp., SI Appendix,
Fig. S5), suggesting that they are neither a result of chance nor a
function of hoverfly genera sampled at each location.
We next used the predicted signatures for each region (Fig. 3 A–

F) to create artificial lures. Often, Hot and Cold cues were not
mutually exclusive (Fig. 3 G–J). Nevertheless, we had to choose
some color, shape, size, and odor for all lures (Fig. 4A) and for
parsimony chose the opposite of the predicted cue if no variable
was available. In Uppsala, for example, there were more variables
associated with Hot signatures (Fig. 3C) than Cold (Fig. 3D), but
since many contained information about size, shape, and color
(blue and red data, Fig. 3C), we predicted that they would impact
Cold signatures, too. For example, the Bangalore Cold lure (Fig.
4A, vi) consisted of stellate (blue bar, Fig. 3F), green (red bar, Fig.
3F), and comparatively large (blue bars, Fig. 3F) clustered corollas
(blue bar, Fig. 3F) with nonanal and decanal (green bars, Fig. 3F)

in a microcentrifuge tube. We used similar reasoning for the other
lures, and, where we had no inflorescence information from the
OPLS, lures were placed individually (Fig. 4A). We additionally
created a negative control (an odorless black circle, Fig. 4A, viii)
and a unique positive control for each region exhibiting color, size,
shape, and odor profiles from an exclusively Hot flower species
found in each environment (e.g., Potentilla fruticosa for Uppsala,
Fig. 4A, vii). Note that there was no sugar or pollen reward in the
lures to reduce risk of individual hoverflies returning to the lures,
or learning new flower signatures.
Finally, we placed the lures in the same three environments and

recorded hoverfly visits in the same spatial and temporal locations
where the floral data were collected the previous year (Fig. 4B and
SI Appendix, Fig. S6). In total, our lures attracted 150 visits in Sikkim,
112 in Uppsala, and 146 in Bangalore. Our data show that visits to
the eight lures were significantly different from chance (i.e., equal
visits to all lures, χ2 test, P < 0.0001 in all regions; P < 0.001 in all
regions when excluding visits to the real flower) and that the lures
were as attractive as a real flower in both Sikkim and Uppsala (Fig.
4B). Overall, our data show few hoverfly visits to the negative con-
trol, but other insects did visit it (SI Appendix, Fig. S6). For a detailed
breakdown of visits by certain hoverfly species, see SI Appendix, Fig.
S7. Cold lures exhibited varying degrees of attraction both within and
across environments, implying that the MVA was not necessarily
able to predict less attractive Cold signatures. We thus conclude that
it is possible to use OPLS multimodal signatures to create artificial
lures that are attractive to pollinators within and across environ-
ments, despite the lures not mimicking real flowers or manipulations
of real flowers (as in, e.g., refs. 25 and 37–39). This is important as
the specific combinations of color, shape, size, and odor in our lures
(SI Appendix, Fig. S8) do not exist in the natural environment.

Discussion
Our work offers a field-based methodology to examine cues in-
volved in insect pollination across different environments that
can be useful for other studies assessing how environmental and
ecological changes affect plant and animal interactions. While
we cannot confirm hoverfly perception of the floral cues, all
measured cues were quantified in situ in the field, whereas
previous analyses have often been laboratory-based, such as re-
cording flower color under a xenon lamp (e.g., ref. 40). When
measured in the field, cue variation in our lures across conditions
was striking (SI Appendix, Fig. S8), suggesting that hoverfly
sensory systems, or indeed those of any pollinator, must com-
pensate for such variation when locating a flower in nature.
Importantly, our methodology was agnostic to flower species,

and indeed, the same species could be found among both Hot and
Cold samples (Figs. 1 B and C and 2). Furthermore, we employed
no a priori assumptions about each cue’s relative importance. Our
resulting artificial lures (Fig. 4A) were solely based on the vari-
ables predicted from the MVA (Fig. 3) rather than attempting to
recreate or modify real flowers or presume hoverfly perception.
This is radically different from most previous work using artificial
flowers (25, 37) or modifications of real flowers (e.g., ref. 38). The
MVA (Fig. 3 A–F) was generally able to predict attractive signa-
tures, but was less effective at predicting nonattractive signatures
(Fig. 4B). While we controlled for local abiotic and biotic factors
that could affect attractiveness (i.e., microclimate or community
effects), the model could have been impacted by an inability to
identify true negatives in the field, the lack of mutually exclusive
cues between Hot and Cold flowers (Fig. 3 G–J) or unmeasured
factors (27) such as flower microstructure, movement, or pollen
and nectar content, which could have reduced our ability to pre-
dict nonattractive signatures.
Our use of artificial lures also allowed us to assess wild pol-

linator attraction to floral cues across environments without
confounding effects of environment on floral biology and floral
cues. Some signatures, such as the predicted Bangalore Hot lure,
were attractive only in their own environment, while the pre-
dicted Uppsala Hot lure was attractive everywhere except
Uppsala (Fig. 4B). These differences highlight the importance

Fig. 2. Measuring multimodal variables. (A) Data from five Hot R. campanu-
latum flowers (i) from North Sikkim (black in v and vi), and data for three Cold
R. campanulatum flowers (iii) (gray in v and vi). We used photographs for size
and shape quantification (i–iv), lux meter for illuminance (v, mean ± SD), and
spectrophotometer for color (vi, eight individual measurements shown). Pro-
jected flower size and circularity was quantified by counting black and white
pixels (ii–iv), using known size of background cloth. (B) CO2 and humidity were
sampled within each corolla, using a custom abiotic sensor (mean± SD). (C) Two
sample traces of a Hot (black) and a Cold (gray) R. campanulatum. Volatile data
were collected using PDMS and analyzed by GC-MS. Floral peaks were identi-
fied by comparison with the blank spectra (SI Appendix, Fig. S2B). Area under
each curve (AUC, magnified Inset) was used to calculate relative ratios of total
floral volatiles.
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of both individual and community effects of floral traits on the
apparency or context of selected cues. For example, while our
selection of Hot and Cold flowers attempted to decouple com-
munity effects, it is possible that the attractive observations,
particularly in Sweden, may still have been impacted by polli-
nation webs, networks, or magnet effects not measured here and
therefore not present in our artificial lures. Nevertheless, our
results also highlight the potential for hoverfly syndromes (myophily),

particularly with our Sikkim lure, which was attractive in all tested
environments. Hoverflies are known to exhibit landmark association,
specific visitation patterns, and floral constancy (27). While hoverflies
are suggested to overlap with bees in floral choice and constancy
(27), there are cases of potential selection for floral traits based on
hoverfly visitation (41, 42). In Sikkim, hoverflies and other flies are
the predominant pollinators, as bees, birds, and other animals are
uncommon at high elevations (43, 44). There could thus be strong
selection on Himalayan flowers to be attractive to hoverflies, their
major pollinators.
It is known that pollinators are selective to floral traits and

that floral signals are essential for the assessment of flowers (45).
As such, it was unexpected that our lures did not need to rep-
licate specific combinations of cues found in real flowers (e.g.,
the smell and color of a rose). Instead, our results show that
these generalist pollinators do not require real flowers, but can
be attracted to combinations of cues obtained from several at-
tractive flowers. These combinations were not random or likely
unimodal, as not all of our lures with similar characteristics (e.g.,
blue or yellow color) were equally attractive. This result is in
contrast to previous studies replicating real floral cue combina-
tions (25, 28, 29) and implies that generalist pollinators could
potentially select from a series of multimodal cues as a form of
independent, rather than interactive, syndrome (29). This strat-
egy would also allow pollinators to locate suitable resources in
unknown environments and contexts. Given the attractiveness of
our lures across insect species (SI Appendix, Figs. S6 and S7), our
results might reveal the potential for “generalist syndromes,”
particularly when the predictions were made by observing several
species (SI Appendix, Table S2). Further studies parsing the
relative attraction of multimodal cues to both naive and expe-
rienced pollinators can help us to unravel the role of pollinator
and floral ecology across environments.
This study provides unique strategies for understanding wild

pollinator preference. The robustness of our lures (e.g., the

Fig. 3. Modeling Hot and Cold flowers across regions. (A) Section of OPLS
output for flowers from alpine North Sikkim, showing the positive loadings
(p) for Hot parameters. Cues with loadings above 0.1 and an error bar not
crossing the midline are color coded by type (see color key). (B) OPLS output
for Cold flowers from Sikkim at P < −0.1. (C) OPLS output for Hot and
(D) Cold flowers from Uppsala. (E) Hot and (F) Cold flowers from Bangalore.
(G) Loading scores for color component 3 from Cold Sikkim flowers (red, B).
Hot color spectrum (black, Bottom), and Cold spectrum (gray, Bottom) cre-
ated by separating the color component into positive and negative loadings.
(H) Relative ratios of 6-methyl-5-hepten-2-one measured in Hot (black) and
Cold (gray) flowers in Sikkim. Green dashed line shows ratio used for Hot
lures. (I) Relative ratios of methyl benzoate in Hot (black) and Cold (gray)
Sikkim flowers with green dashed line indicating ratio used in Cold lure.
(J) Corolla size (area) for Sikkim Hot (black) and Cold (gray) flower with
green dashed lines for flower sizes used for lures.

Fig. 4. Assessing the variables in situ. (A) Artificial lures created for each
region (as color coded), with Hot flower lures in the Top row and Cold lures
in the Bottom row. (vii) The Uppsala positive control, mimicking P. fruticosa.
(viii) The negative control, used in all regions. (Scale bar, 1 cm.) (B) Total
number of hoverfly visits recorded in the three regions compared with
positive and negative controls (Fisher’s exact test, P < 0.05). “Real flower”
indicates visits to a natural flower within 90 cm of the lures.
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Himalayan signatures) across communities and climates suggests
that these cues, or flowers exhibiting these cues, could also in-
crease the attractiveness of habitats such as agricultural fields
over different ecologies and geographies. These cues must now
be tested in large-scale field trials to assess their efficacy. Our
methodology and large-scale data on wild pollinator preferences
could also be beneficial for current efforts to increase habitat
and forage resources in and around agricultural areas for polli-
nators (1), and could be used in many other ecological studies
that analyze changes in resource use across environments.
Nonetheless, since our results also suggest that wild pollinators
rely only on a small number of cues, drastic changes in flower
phenology due to habitat disruption, environmental change, or
monocultures could make it difficult for wild pollinators to lo-
cate suitable pollination sites. This is especially important con-
sidering that the current study sampled an extremely reduced
subset of all flowers in each region. As such, consideration
should be taken while planting crops and gardens to retain the
consistency of the floral signal. In addition, the region-specific
differences in attractive floral signatures also suggest that cli-
mate, habitat, and geography play an important role in shaping
plant–pollinator relationships. Therefore, there may not be a
“one size fits all” answer to attracting pollinators across all en-
vironments. Our results provide important insights about the
impact of climate and environment on plant–animal interactions.
Further experiments directly assessing the plasticity of pollinator
choice under ecological or environmental variation are needed to
test these predictions and to understand the ecology of alternate
pollinators in the face of our ever-changing environments.

Materials and Methods
Locations. We investigated hoverfly flower visitation in three environments
selected for differences in climate, altitude, and hoverfly presence (e.g., refs.
10 and 11): (i) alpine North Sikkim, India, at altitudes ranging from 2,300 m
(Chapten) to 4,200 m (Chopta valley) during May 10–15, 2015 and May 6–12,
2016; (ii) hemiboreal Uppsala, Sweden, at an altitude of 29 m during July 24–
August 7, 2015 and August 14–24, 2016; (iii) tropical Bangalore, India, at
1,500 m altitude during November 5–December 8, 2015 and November 22–
December 19, 2016. The 2015 season comprised data collection from indi-
vidual real flowers, and the 2016 season the attractiveness of artificial lures.
In all locations, both cultivated gardens and wild flower patches were
measured to provide different floral communities (SI Appendix, Table S2).
While agnostic to flower and hoverfly species, observations focused on
hoverflies found in multiple regions, specifically Eristalis sp. and E. balteatus.
All data were collected at the time of day and year for hoverfly activity at
that location, with floral species dictated by hoverfly choice. We collected
data from 57 real flowers in Sikkim (33 Hot and 24 Cold), 53 in Uppsala (43
Hot and 10 Cold), and 43 in Bangalore (36 Hot and 7 Cold). A flower was
classified as Hot (Fig. 1B) if a hoverfly landed on it, or Cold (Fig. 1C) if the
flower was in the immediate vicinity of Hot flowers (<2 m, SI Appendix, Fig.
S2A), but no hoverflies approached during the observation time (30 min–3 h
as determined by weather conditions and cue collection). Hot and Cold
flowers, which could be from the same species or even plant (e.g., Rhodo-
dendron sp.), were selected for relative proximity to avoid local biotic and
abiotic effects or plant–pollinator landscape issues (27) related to spatial or
temporal webs, networks, or matrices that could affect attraction (SI Ap-
pendix, Fig. S2A). Due to these stringent guidelines, not all Hot flowers were
accompanied by a corresponding Cold flower unless we could confirm a lack
of visitation, but all Cold flowers were selected as a function of Hot flowers.
We quantified data from flowers visited by any hoverfly, but Hot flowers
were visited by Eristalis (22 of 33 in Sikkim, 31 of 43 in Uppsala) and Episyrphus
(2 of 33 in Sikkim, 4 of 43 in Uppsala, 31 of 43 in Bangalore).

Visual Cues. We used a LM-120 light meter (Amprobe) to measure local,
ambient illuminance. Photographs of each flower were obtained with a Sony
DSC-HX1 with and without a 10- × 10-cm dull gray fabric collar around the
flower. Corolla shapes were manually scored (SI Appendix, Tables S3), as was
the relative abundance of conspecific flowers (SI Appendix, Tables S4). We
quantified the surface area of each flower as seen by an approaching hov-
erfly using Fiji software (46) by first removing the background collar (Fig. 2A,
ii and iii) and converting the flower pixels to black and white (Fig. 2A, iv) to
quantify the black pixels. These were converted to flower area in square
centimeters by comparison with the pixels corresponding to the background

fabric of known size (Fig. 2A, ii). We used Fiji software (46) to calculate
Feret’s diameter (solid lines, Fig. 2A, i) and minimum Feret (i.e., the longest
and shortest distances between two parallel tangents at the flower outline;
dashed lines, Fig. 2A, i), and to quantify flower circularity from 0 to 1, where
1 is a perfect circle. We measured each flower’s reflected light using an
Ocean Optics Jaz-200 spectrophotometer with the optic fiber tip (25-cm,
600-μm Premium Fiber, UV/VIS) at an ∼45° angle against the flower, using a
1-ms integration time, a boxcar of 10, and 10 averages. We standardized
against the reflectance from a Spectralon diffuse reflectance white standard.

Abiotic Cues. We used a custom-built portable sensor to record humidity and
CO2 from within or close to single flowers directly at the time of observation.
These were not compared with ambient conditions as values changed rapidly
due to wind, sun, or other natural perturbations. The sensor was custom built
by Daniel Veit, Max Planck Institute for Chemical Ecology, Jena, Germany, and
incorporated the following components: CO2 sensor, SENCO21002 (MB
Systemtechnik); temperature and humidity sensor, SHT75, 667–5271 (RS Com-
ponents); air pump, G12EB (Gardner Denver); 5 V (EXP-R24-347) and 24 V
(68-066357) Voltage Regulators (Exp Tech Saarbrüken and ELV Electronik, re-
spectively); and data acquisition, DAQ USB 6009 (National Instruments). The
abiotic sensor was controlled with LabView (National Instruments) from a PC
laptop. Measurements were made by placing a Teflon tube connected with the
air pump within 1 cm of the flower to bring local air to the sensors. Sampling
was performed for ∼3 min and averaged after removing the first 50 s.

Volatile Cues. Volatile signatures were collected using 5-mm-long, 1.5-mm
i.d./3.5-mm OD polydimethylsiloxane (PDMS) tubes (Carl Roth Rotilabo, sili-
cone tube) modified from a protocol by Kallenbach et al. (36). Tubes were
prepared in 1:1 acetonitrile/methanol for 3 h, dried under nitrogen, and
subsequently heated from 40 °C to 260 °C at 10 °C/min to 260 °C for 160 min
under 4 bar nitrogen in a Tube Conditioner (Gerstel). PDMS tubes were then
cooled to 25 °C, and the procedure was repeated. Conditioned PDMS tubes
were stored in amber vials flushed with nitrogen at −20 °C until use. Vola-
tiles were sampled for 4 h by three PDMS tubes suspended above the flower
on a steel wire at up to 3 cm and covered with an ethanol-cleaned plastic
cup to protect from sunlight and wind. Samples were stored in amber vials
at 4 °C until analysis (36). Blank tubes were taken to each sampling site,
stored with the samples, and analyzed along with the samples to identify
potential contaminants (SI Appendix, Fig. S2B).

Desorption of volatiles employed a Gerstel Thermal Desorption Unit (TDU) in
splitless mode and a Cooled Injection System (CIS 4) controlled by Gerstel
Modular Analytical Systems Controller C506 and Gerstel Maestro 1 software.
PDMS tubeswere introduced into the TDU at 30 °C using a Gerstel MultiPurpose
Sampler. After a 1-min delay at 30 °C, the TDU temperature was increased to
200 °C at 100 °C/min for 10 min. Desorbed volatiles were transferred at 210 °C
and trapped in a silanized glass wool liner of the CIS at −50 °C using liquid
nitrogen. After 0.20 min of equilibration, the CIS was ramped to 220 °C at 12 °C/s
and held for 5 min. Volatiles were separated and identified in solvent vent mode
with a purge flow to split vent of 30 mL/min at 1.5 min and vent flow of 70 mL/
min; vent pressure at 7.07 psi for 0.01 min using an Agilent 7890B gas chro-
matograph coupled with a 5977A MSD mass spectrometer using an HP-5 MS
column (30 m × 0.25 mm i.d., 0.25 μm film thickness) with helium carrier gas at
1 mL/min. The column oven was kept at 40 °C for 1 min, increased to 180 °C at
5 °C/min with a 5-min hold, and finally increased to 270 °C at 25 °C/min.

Compounds were identified by MS in electron impact mode with ionization
energy of 70 eV, a transfer temperature of 250 °C, and source and quadrupole
temperatures of 230 °C and 150 °C, respectively. GC-MS acquisition was per-
formed using Agilent MassHunter Workstation software B.07.02.1938. Quali-
tative analysis employed Masshunter Qualitative Analysis, version B.07.00, by
matching the mass spectral data of the peak with library spectra (National
Institute of Standards and Technology and libraries created from standards),
comparing their relative retention index (C6–C30 hydrocarbons; Sigma Aldrich),
comparing their elution order, and comparing their retention time with
standards. A silicon derivative peak, octamethylcyclotetrasiloxane (RRI-991,
Basepeak m/z 281), was used as an internal standard, and relative ratios
were determined based on normalized peak areas.

Statistical Analysis and Model Flowers. We performed two types of MVA for
data sampled from each region individually, using Simca (MKS Data Analytics
Solutions). We used PCA (SI Appendix, Figs. S4 and S5) to identify compo-
nents that vary together and OPLS to separate variables associated with Hot
or Cold flowers. The spectrophotometer data gave 1,500 data points for
each flower. To avoid the color data swamping the dataset, we employed
PCA on the color data alone and used the loadings from the significant
components in the total data analysis.
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Artificial lures were created using paper printed with an HP Laserjet Pro-500
Color MFP printer (M570dw; HP Inc.) with color verified by spectrophotometer.
Corolla shape was manually cut, and odor blends added to microcentrifuge
tubes were placed in the center of each flower or in the ground beneath the
lure. The negative control consisted of a large black circle (5-cm diameter)
with no odor in the microcentrifuge tube. We created a unique positive
control for each region, which closely mimicked the color, size, and odor
of a real, generally attractive flower species. In Uppsala, we mimicked a
P. fruticosa flower (Fig. 4A, vii ), in Sikkim a Ranunculus, and in Bangalore,
a Cosmos flower.

In the field, we placed the eight artificial lures equidistantly in two to three
circles with a 90-cm diameter (distance was set to control for potential crossover
effects of volatile cues from nearby lures and confirmed by PDMSmeasurement
in standardization trials). After placing the lures in the ground, we added the
odor compounds. Volatiles were replaced after 2 h for longer observational
periods. One of the circles was used to quantify the phenotypic and abiotic (not
added, but measured for consistency) cues (SI Appendix, Fig. S8). To control for
potential magnet effects (28) from our lures and surrounding flowers, as well as
local abiotic and biotic factors such as microclimates and community effects, we
executed two types of controls. First, all eight model placements were ran-
domized across trials. Second, on several days multiple circles were created—
one in a neutral area with no natural flowers and one in an attractive area
where hoverflies were observed to visit nearby flowers (within 90 cm as in lure
placement). In a few cases, we also assessed lure height as a potential factor for
attractiveness. There was no significant difference between these perturbations,

suggesting that local or community factors did not affect lure attractiveness.
During 2–4 h, we quantified the number of hoverfly visits to each of the eight
flowers in the circle (individual flies could not be scored, although obvious
multiple visits to the same lure were not counted). Visits were identified as either
a landing, if the hoverfly landed on the artificial lure, or as an approach, if a
hoverfly performed a directed flight toward the flower (to within 5–10 cm; SI
Appendix, Fig. S6 A, C, and E). As a comparison, we quantified visits by other
insects (SI Appendix, Fig. S6 B, D, and F).

To determine if the visits to the different lures were significantly different
from chance (equal visits to all lures), we performed a χ2 test with significance
of P < 0.05. We also compared the visits to the flower lures with the visits to
the positive and negative controls, respectively, using a Fisher’s exact test
with significance of P < 0.05.
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