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Abstract: SHIV variants KB9 and 89.6 show differential pathogenesis in primate models with KB9
causing rapid CD4 decline while 89.6 failing to induce disease. We attempted to determine whether
the differential pathogenicity of KB9 versus 89.6 was a result of differential bystander apoptosis
inducing potential (AIP) of the Env glycoproteins from these viruses. We find that the KB9 Env was
highly potent at inducing bystander apoptosis in CD4+ target cells compared to 89.6 Env. Cell death
induction by KB9 showed classical signs of apoptosis including mitochondrial depolarization, caspase
activation and PARP cleavage. Inhibiting Env mediated fusion by T20 peptide inhibited KB9 mediated
bystander apoptosis. KB9 and 89.6 differed in terms of co-receptor usage with 89.6 preferring CXCR4
while KB9 using both CXCR4 and CCR5 with equal efficiency. Our study suggests that higher
bystander AIP of KB9 Env compared to 89.6 may be the basis for the differential pathogenesis of
these viruses.
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1. Introduction

HIV-1 infection in humans leads to a selective depletion of CD4+ T cells leading to
immunodeficiency. While the outcome of HIV-1 infection in humans is immunodeficiency in most
cases; the outcome of natural infection in primates is strikingly different [1]. Natural infection in Sooty
Mangabeys and African Green Monkeys with SIVsm and SIVagm variants respectively fails to induce
CD4 loss or AIDS development [2]. However, Rhesus Macaques infected with SIVmac virus are known
to succumb to AIDS like illness albeit at different frequency than humans [3,4]. The lack of a suitable
animal model that recapitulates the immunopathogenic outcome of HIV resulted in the development
of the chimeric SHIV model [5,6].

The chimeric SHIV model has been used extensively for pathogenesis studies and the SHIV 89.6
and KB9 are well established model systems to study differential pathogenesis of viral variants [7].
While the original SHIV 89.6 virus replicated to high levels in Rhesus Macaques, it failed to induce AIDS
like illness. Passage of SHIV89.6 in Rhesus Macaques resulted in generation of the pathogenic variant
designated as SHIV-89.6P [6]. SHIV-KB9 is the molecular clone of this pathogenic virus isolated from
Rhesus Macaques which has been shown to be highly pathogenic and results in CD4 loss within several
months [8]. The differential pathogenesis of these variants has been mapped to the Env glycoprotein
with the membrane fusogenic activity directly associated with this phenomenon [9–11].

HIV-1 Env glycoprotein is a major determinant of HIV pathogenesis and bystander apoptosis
mediated by HIV Env has been implicated in disease induced CD4 loss [12–14]. Variations in HIV Env
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glycoprotein phenotype in terms of bystander apoptosis inducing potential (AIP) have been associated
with CD4 loss and disease progression [15,16]. Coincidentally, HIV Env mediated bystander apoptosis
also correlates with Env fusogenic activity with a more specific role of hemifusion between membranes
being implicated in this phenomenon [17,18]. Whether SHIV Env variants with altered pathogenicity
in vivo also differ in AIP in vitro remains undetermined.

In this study, we determined whether differential pathogenicity of KB9 versus 89.6 was due to
different bystander AIP of the Env glycoproteins from these viruses using an in vitro co-culture model.
We find that KB9 Env causes significantly higher apoptosis in CD4 T cell lines as well as human and
Rhesus peripheral blood mononuclear cells (PBMCs) that is dependent on membrane fusion and
caspase activation.

2. Materials and Methods

2.1. Cells and Reagents

SupT1 cells (kindly provided by the NIH AIDS Reagent Program) were maintained in RPMI
media supplemented with 10% FBS and penicillin streptomycin (5000 U/mL). HeLa and TZM-bl cells
(NIH AIDS reagent program) were maintained in Dulbecco’s modified eagle’s medium (DMEM)
supplemented with 10% FBS and penicillin streptomycin (5000 U/mL). The CCR5 expressing SupT cell
line (SupT-R5-H6) has been described previously [19] and was maintained in RPMI with 10% FBS and
3 µg/mL blasticidin. Peripheral blood mononuclear cells (PBMCs) from Indian Rhesus Macaques were
obtained from Fisher Scientific and cultured in RPMI supplemented with 20% FBS. Fusion inhibitor
T20 (Enfuvirtide), CXCR4 antagonist AMD3100 and CCR5 antagonist Maraviroc were kindly provided
by the NIH AIDS reagent program. Pan Caspase inhibitor Z-VAD-fmk and mitochondrial potential
sensor dye DiOC6 were obtained from EMD Millipore.

2.2. Plasmid Constructs

Plasmids expressing YU-2, 89.6 and Lai Env have been described before [19]. pSHIV-KB9 3′ and
SHIV 89.6P 3′ [8] were obtained from the NIH AIDS Reagent Program and used as template for cloning
SHIV KB9 and SHIV 89.6 Env regions. Briefly, the env and rev regions of SHIV KB9 and SHIV 89.6 were
PCR amplified with subtype B specific primers HZBIE: 5′ AGC TGG ATC CGT CTC GAG ATA CTG
CTC CCA CCC 3′ and HZBIB: 5′ CAC CGA TCA AGC TTT AGG CAT CTC CTA TGG CAG GAA GAA
G using the Phusion High Fidelity PCR kit (New England Biolabs, Ipswich, MA, USA). The amplified
Env region was cloned into the pCDNA3.1 vector using the pCDNA3.1 directional TOPO® Expression
kit (Invitrogen, Carlsbad, CA, USA). Authenticity of the inserts was confirmed by sequencing.

2.3. Expression and Shedding of SHIV Envs

HeLa cells plated in 24 well plates at 105 cells/well were transfected with different Env constructs
using the TurboFect transfection Reagent (Thermofisher Scientific, Waltham, MA, USA). Twenty-four
hours post-transfection, the media was removed and SupT1 or SuPT-R5-H6 cells were added to the
cultures at 0.5 × 106 cells per well. The cells were co-cultured for 24 h following which apoptosis was
determined via different methods. The suspension cells were collected, stained with Annexin V (BD
bioscience) and analyzed by flow cytometry using a Beckman Coulter Gallios Flow cytometer. For
some assays, apoptosis was detected by staining with mitochondrial membrane potential sensitive
dye DiOC6 (10nM) followed by flow cytometry. At least 10,000 events were acquired and analyzed
using the Flow Jo software (Tree Star). HIV inhibitors T20, AMD3100 and Maraviroc were added at
the time of co-culture, while z-VAD-fmk was incubated with SupT cells for 30 min prior to addition
to HeLa cells expressing the different Envs. For measurement of cell surface Env expression, HeLa
cells transfected in a 96-well plate were stained with anti-Env antibody (b12, kindly provided by
the NIH AIDS reagent program) in RPMI-10 medium followed by staining with secondary antibody
anti-human alexa-594. Nuclei were visualized using DAPI staining and images acquired using the
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NikonTi fluorescent microscope. For quantitation of Env expression, entire wells (N = 4) of the 96-well
plate were scanned using the Cytation5 imager (Biotek, Winooski, VT, USA) and mean fluorescent
intensity (MFI) of staining, cell count and object sum area was calculated using the Gen5 software.

For Env shedding, transfected HeLa cells were cultured overnight in RPMI medium lacking Met
and Cys and supplemented with 10% FBS and [35S] Met/Cys. Cell lysates and culture supernatants
were immunoprecipitated with HIV-Ig (kindly provided by the NIH AIDS reagent program) coated
protein A beads. Immunoprecipitated complexes were washed, resolved by SDS-PAGE followed by
PhosphorImager analysis.

2.4. Measurement of Apoptosis Induction

For apoptosis induction in primary cells, cryopreserved PBMCs from healthy donors were used.
Unstimulated PBMCs were cocultured with HeLa cells transfected with either SHIV KB9 or 89.6 Env
for 48h. The suspension cells were collected and stained with an apoptosis panel comprising of the
following antibodies: CD3-Cy7, CD4-Tx Red, CD8-APC (Beckman Coulter) along with CaspACE
FITC-VAD-FMK (Promega, Madison, WI, USA) as described previously [16]. Stained cells were washed
and fixed using IOTest 3 Fixative Solution (Beckman Coulter) and assayed by flow cytometry. At least
20,000 events for each sample were acquired. Data was analyzed using FlowJo software (Tree Star).
Cells were first gated on the CD3+ population and apoptosis in CD4+ and CD8+ T cell subsets was
determined along with the CD4:CD8 ratio. Apoptosis induction in Rhesus PBMCs was measured as
above and human antibodies with cross reactivity to Rhesus CD4 (BD Biosciences 562402) and CD3
antigens (BD Biosciences 557749) were used.

2.5. Pseudotyped Virus Studies

The 293T cells were transfected with the pNLLuc-R−/E− [20] HIV backbone along with different Env
constructs. Virus supernatants were harvested 48 h post-transfection, cleared of cellular components
by centrifugation, aliquoted and stored at –80 ◦C. Pseudotyped virus stocks were used to infect the
indicator TZM-bl cell line in the presence of 20µg/mL DEAE dextran (Sigma). Luciferase activity was
determined 48 h or 72 h post infection using the BriteLite plus Luciferase assay substrate (PerkinElmer,
Waltham, MA, USA) using FLUOstar Omega multi-mode microplate reader (BMG Labtech, Ortenberg,
Germany). Each pseudotyped virus stock was titrated in TZM-bl cells and virus concentration in the
linear range was used for experiments. Different inhibitors like T20, AMD3100 and Maraviroc were
added at different concentrations at the time of infection.

2.6. Immunoblotting

Detection of full length and cleaved PARP was achieved via Western blotting. SupT1 cells
collected from the coculture experiments were lysed with RIPA buffer (1×) supplemented with protease
inhibitors. Samples were boiled at 92 ◦C for 6 min, resolved on a 4–12% SDS-PAGE gel followed by
transfer onto PVDF membranes (Millipore). Following transfer, the membrane was blocked with 5%
skim milk solution for 1 h at room temperature. Blots were incubated with primary anti-PARP antibody
(Cell signaling #9542) overnight at 4 ◦C followed by secondary anti-rabbit HRP antibody for 1h at room
temperature. Bands were visualized using the SuperSignal™West Pico enhanced chemiluminescence
detection reagent (Thermofisher Scientific, Waltham, MA, USA) and quantitated using the GeneTools
software (SYNGENE, New Castle, England).

2.7. Statistical Analysis

Statistical analysis was conducted using the GraphPad Prism software (San Diego, CA). Annexin-V
and DiOC6 staining data, cell surface staining using B12 antibody and co-receptor usage determination
were analyzed utilizing one-way ANOVA followed by Dunnett’s multiple comparison test. Data
from T20 and ZVAD-FMK experiments was analyzed using two tailed unpaired student’s t-test.
Human PBMC co-culture data was analyzed using the Wilcoxon matched-pairs signed rank test and
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Rhesus Macaque co-culture data was analyzed with one-way ANOVA followed by Dunnett’s multiple
comparison test.

3. Results

3.1. HIV KB9 is More Potent at InducingBbystander Apoptosis in SupT1 Cell Lines in Coculture Model

Previously, we and others have studied HIV Env mediated bystander apoptosis in coculture models
whereby HIV Env expressing cells (effectors) induce apoptosis in CD4+ T cells (target) [18,21–24].
Studies from these experiments have shown that the differential in vitro AIP of both HIV Env mutants
and primary Env variants correlates with CD4 loss in the humanized mice model as well as in HIV
patients [15–17,25]. To determine whether KB9 and 89.6 Envs have differential AIP we utilized the
same coculture model system. SHIV KB9 and 89.6 env and rev regions were cloned into pcDNA3.1
expression vector and used to transfect HeLa cells which were then cocultured with SupT1 cells.
AIP of the respective Envs was determined 24 h post coculture by measuring apoptosis markers like
mitochondrial membrane depolarization or phosphatidyl serine (PS) exposure on the cell surface.
Demonstrated in Figure 1 is the flow cytometry analysis of bystander apoptosis mediated by KB9, Lai,
HIV-89.6 and SHIV-89.6 Envs in SupT cells determined either via Annexin V staining (Figure 1A) or
mitochondrial depolarization measured via DiOC6 staining (Figure 1B). We found that KB9 shows
higher AIP compared to SHIV 89.6 as well as Lai Env, used as positive control, both in Annexin V
(Figure 1C) and DiOC6 staining (Figure 1D). As HIV 89.6 and SHIV 89.6 have minor sequence variation
in the 5′ and 3′ regions of the genome, we also compared the two Envs in their capacity to induce
bystander apoptosis in our assay and found similar results. These data suggest that SHIV KB9 Env, at
least in vitro, is fundamentally more pathogenic as a result of higher AIP compared to SHIV 89.6.

3.2. Bystander Apoptosis Induction Mediated by SHIV-KB9 Env is gp41 Dependent

HIV Env is composed of two subunits. The gp120 surface unit binds to the CD4 receptor and the
coreceptor, while the transmembrane gp41 subunit mediates fusion of viral and cellular membranes.
This leads to cell to cell fusion or hemifusion in coculture experiments when Env expressing cells
come in contact with CD4/co-receptor expressing cells [26]. Hemifusion mediated by the gp41 subunit
is required for HIV Env mediated bystander apoptosis which has been demonstrated by the use of
gp41 inhibitors like C34 and T20 [18,22] that also prevent apoptosis. Interestingly, the membrane
fusogenic activity of KB9 is significantly higher than SHIV 89.6 and has been implicated in their
variable pathogenesis [9,27]. We hence tested whether the bystander apoptosis induction by SHIV KB9
in our model was gp41 dependent by using the T20 fusion inhibitor. As seen in Figure 2, SHIV KB9
mediated bystander apoptosis was completely inhibited by gp41 fusion inhibitor T20 as measured by
Annexin V (Figure 2A) or DiOC6 staining (Figure 2B). This inhibition was similar to that seen with
Lai and SHIV 89.6 Envs in the presence of T20 while expression of control vector pCDNA3.1 did not
alter background apoptosis in the presence of T20 suggesting that the phenomenon was specific to
HIV Env. These data demonstrate that AIP of SHIV KB9 Env is dependent on gp41 function and is
fundamental to bystander apoptosis induction. This is also consistent with findings by Labonte et al.
whereby membrane fusion activity of KB9 was associated with cytopathic effect [27].
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Figure 1. SHIV KB9 Env mediates higher apoptosis in bystander CD4+ T cells. HeLa cells were
transfected with pSHIV-Env (KB-9 or 89.6), pHIV-1-Env (89.6 or Lai) or control vector pcDNA3.1 and
co-cultured with the SupT1 cell line. Apoptosis was detected either via annexin V staining or DiOC6
staining 24 hours post co-culture. Representative dot plots for annexin V (A) and DiOC6 staining (B) are
shown. Apoptosis induction by different Envs as determined by Annexin V (C) or DiOC6 staining (D)
is shown. Data are mean ± SD of triplicate observations. p ≤ 0.0001 as determined by one-way ANOVA
followed by Dunnett’s multiple comparison test. All experiments were repeated with similar results.
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Figure 2. HIV gp41 inhibitor T20 inhibits SHIV KB9 mediated bystander apoptosis. HeLa cells
transfected with different Env constructs or control vector were cocultured with SupT cells in the
presence or absence of T20 (2 µM). Apoptosis was detected 24 h post co-culture using Annexin-V
staining (A). Mitochondrial depolarization was detected via DiOC6 staining followed by flow cytometry
analysis (B). Data are mean ± SD of triplicate observations. **** = p ≤ 0.0001; *** = p ≤ 0.001; ** = p ≤
0.01 as determined by two tailed unpaired t-test. All experiments were repeated with similar results.

3.3. Differences in Bystander Apoptosis Between the KB9 and 89.6 Envs are Not Due to Differences in Env
Expression or Env Shedding

It is conceivable that differences in Env expression between the KB9 and 89.6 Envs were responsible
for the higher apoptosis seen in SHIV KB9 Env expressing co-cultures. We hence determined whether
differences in AIP by KB9 and 89.6 Envs were due to different transfection efficiencies of the two
constructs or different levels of Env expression after transfection with the KB9 and 89.6 Env expression
constructs. For this, HeLa cells were transfected using the same protocol as for apoptosis assays
and surface Env expression was determined after staining with the Env binding b12 antibody. As
demonstrated in Figure 3A, cell surface Env expression was comparable after transfection of HeLa
cells with SHIV KB9 and the SHIV 89.6 Env constructs. Analysis of cells from whole wells (N = 4) of a
96-well plate also revealed no differences between the number of Env expressing cells and the sum of
the Env positively staining area (Figure 3B). However, there was a significant difference between the
MFI of Env staining between SHIV KB9 and SHIV 89.6 transfected wells (Figure 3B).

Further, we assessed the role of Env shedding in KB9 and 89.6 expressing cultures and if that
translated to differences in apoptosis induction by the two Envs. As demonstrated in Figure 3C, minor
differences were visible between cell associated and shed Env between the two Envs. The KB9 Env
was slightly less associated with the cells with more shedding into the supernatants. However, the
total functional Env (gp120) expression in the cell lysates and culture supernatants was similar for both
KB9 and 89.6 Envs (Figure 3D). This Env shedding data correlates well with fluorescent microscopy
data in Figure 3B where SHIV 89.6 shows higher MFI than SHIV KB9. Overall these data suggest that
the differences in bystander apoptosis seen between KB9 and 89.6 Envs are not due to differences in
transfection, Env expression levels or Env shedding.
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Figure 3. Env expression and Env shedding for KB9 and 89.6 Envs. HeLa cells were transfected
with Env expression constructs for KB9, 89.6 or control pcDNA3.1 vector. Surface Env expression
was determined 48 hrs post transfection after staining with the b12 antibody flowed by fluorescence
microscopy (A). Whole wells of 96-well plate were scanned to determine MFI, positive cell counts and
object sum area. p ≤ 0.0001 as determined by one-way ANOVA (B). HeLa cells were transfected as
above and Env shedding was determined after radiolabeling of cells with [35S] Met/Cys followed by
immunoprecipitation of cell lysates and supernatants using HIV Ig (C). Quantitation of cell associated
and shed gp120 (D). One representative of two independent experiments is shown.

3.4. SHIV 89.6 Prefers CXCR4 Co-Receptor Usage While KB9 Utilizes CXCR4 or CCR5 with Equal Efficacy
for Viral Entry

Both SHIV-89.6 and KB9 are dual tropic viruses known to be capable of utilizing either CXCR4 or
CCR5 for viral entry [28]. However, it is unclear whether these viruses prefer one of the two receptors
when both receptors are available on cells. We hence conducted pseudotyped virus infection studies in
the presence of AMD3100 (CXCR4 antagonist), Maraviroc (CCR5 antagonist) or a combination of both
to determine the co-receptor preference of the two Envs. As demonstrated in Figure 4, SHIV 89.6 was
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not inhibited by Maraviroc (MVC) but almost completely inhibited by AMD3100. The results were
similar for HIV 89.6 suggesting these two Envs are phenotypically similar even with the differences
in the 5′ and 3′ regions. Interestingly, a combination of both AMD3100 (AMD) and MVC inhibited
SHIV 89.6 and HIV 89.6 pseudotyped viruses completely. On the other hand, neither AMD nor MVC
were able to inhibit KB9 more than 50% but a combination of both the antagonists inhibited the
virus completely. Lai and YU-2 yielded results consistent with their dependence on CXCR4 or CCR5
receptors respectively. These data suggest that while SHIV-89.6 Env prefers to use CXCR4 for entry,
KB9 utilizes either CXCR4 or the CCR5 co-receptor with similar efficiency. These differences in CCR5
binding affinity for KB9 versus 89.6 have been reported previously [9] and is consistent with our data.

Figure 4. Variable coreceptor usage by SHIV Envs. HIV-1 virions pseudotyped with indicated Envs
were used to infect TZM-bl indicator cell line. Pseudotyped virus infections were conducted in the
presence of inhibitors Maraviroc (MVC), AMD 3100 (AMD), a combination of both AMD and MVC
(AMD + MVC) or no inhibitor (media). Virus infectivity was determined 72 h later by measuring
luciferase activity. **** = p ≤ 0.0001; *** = p ≤ 0.001; ** = p ≤ 0.01 as determined by one-way ANOVA
followed by Dunnett’s multiple comparison test.

3.5. SHIV-KB9 Env Utilizes both CCR5 and CXCR4 Equally for Apoptosis Induction

Our data above demonstrated that the KB9 Env utilizes CXCR4 or CCR5 with equal efficacy for
viral entry. As KB9 is a potent inducer of bystander apoptosis, we asked whether KB9 selectively
utilizes CXCR4 or CCR5 for induction of apoptosis in our above described coculture model system.
For the HeLa-Env and T cell coculture experiment we utilized the SupT-R5-H6 cells as targets that are
engineered to express CCR5 along with constitutive expression of CXCR4 [19]. As seen in Figure 5,
AMD3100 or MVC when used alone, failed to inhibit KB9 mediated bystander apoptosis completely as
evident via Annexin V (Figure 5A) or DiOC6 (Figure 5B) staining. However, a combination of both
AMD and MVC inhibited apoptosis completely (Figure 5A,B). This suggests that KB9 can utilize either
CXCR4 or CCR5 for induction of bystander apoptosis similar to the results seen with virus entry above.
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Figure 5. SHIV KB9 uses both CXCR4 and CCR5 equally for induction of bystander apoptosis. HeLa cells
transfected with various Envs were cocultured with SupT-R5-H6 cells. Coreceptor inhibitors AMD3100
(CXCR4) and MVC (CCR5) were used to inhibit apoptosis either alone or in combination (AMD +

MVC). Apoptosis was determined 24 h later via annexin V staining (A) or detecting mitochondrial
depolarization via DiOC6 staining (B). Data was normalized for each Env and percent Env specific
apoptosis was calculated. Data are mean ± SD of triplicate observations. **** = p ≤ 0.0001; ** = p ≤ 0.01
and * = p ≤ 0.05 as determined by one-way ANOVA followed by Dunnett’s multiple comparison test.
All experiments were repeated with similar results.

3.6. SHIV KB9 Mediated Bystander Apoptosis is Partially Caspase Dependent

The signaling pathway involved in HIV Env and cellular interactions resulting in apoptosis
remains debated. The role of classical apoptosis pathways including caspase 3 activation has been
demonstrated in this process by us and others [22,23]. We hence asked whether KB9 Env mediated
bystander apoptosis involves activation of the classical pathways of apoptosis. For this, we tested
whether KB9 and 89.6 Env mediated apoptosis was inhibited by Z-VAD-fmk, a pan caspase inhibitor
in our co-culture model system. Apoptosis mediated by SHIV Envs was reduced but not completely
inhibited by the pan caspase inhibitor Z-VAD-fmk both in Annexin V staining (Figure 6A) and DiOC6

staining (Figure 6B). We next tested whether this apoptosis involved activation of caspases by utilizing
ZVAD-FITC staining that binds to active caspases and detects cells undergoing apoptosis. Here again
we found that KB9 Env induced higher number of active caspase + bystander cells than 89.6 (Figure 6C
and D). One of the most prominent downstream markers of classical apoptosis is PARP cleavage by
caspases. We hence tested whether KB9 mediated apoptosis involved PARP cleavage and compared
this phenomenon to 89.6 Env. As seen in Figure 6E, KB9 Env showed higher levels of cleaved PARP
compared to 89.6. A quantitation of cleaved PARP to total PARP (Figure 6F) further validated the
increased AIP of KB9 Env. These studies support the hypothesis that KB9 Env induces increased
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bystander apoptosis in CD4 target cells via a classical apoptosis pathway involving caspase activation,
PARP cleavage, mitochondrial membrane depolarization and phosphatidyl serine (PS) exposure.

Figure 6. Bystander apoptosis mediated by SHIV KB9 is caspase dependent. HeLa cells expressing SHIV
Env were cocultured with SupT cell in the presence or absence of pan caspase inhibitor ZVAD-fmk.
Apoptosis was detected 24 h later using Annexin V (A) or DiOC6 staining (B). **** = p ≤ 0.0001;
*** = p ≤ 0.001; ** = p ≤ 0.01 as determined by two tailed unpaired t-test. Activation of caspases in HeLa
Env-SupT cocultures was detected by staining with ZVAD-FITC. Representative dot plots are shown
(C) and data from triplicate observations is shown in (D). **** = p ≤ 0.0001; ** = p ≤ 0.01 as determined
by one-way ANOVA followed by Dunnett’s multiple comparison test. PARP cleavage was detected in
SupT cells cocultured with HeLa cells transfected with different SHIV Envs or control vector. Western
blot of PARP protein levels and tublin control is shown in (E). Quantitation of PARP cleavage as ratio of
cleaved PARP/total PARP is shown in (F).

3.7. Coculture of SHIV KB9 Env Expressing Cells with Unstimulated PBMCs Results in a Specific Loss of
CD4+ T cells Via Apoptosis

To further assess the relevance of differential AIP between SHIV 89.6 and KB9 Envs to differential
pathogenesis, we conducted co-culture experiments using human PBMCs from healthy donors as
target cells. As total PBMCs comprise of both CD4 and CD8 T cells, this model also provides the
advantage of analyzing the specificity of apoptosis induction in CD4 cells and determining changes in
the CD4:CD8 ratio [16]. As demonstrated in Figure 7, co-culture of unstimulated PBMCs with KB9 Env
expressing cells resulted in a dramatic loss of CD4 cells with a significant reduction in the CD4:CD8
ratio (Figure 7A,B) compared to 89.6 Env or the pcDNA 3.1 control. Further analysis of apoptosis in
different cell populations was conducted using ZVAD-FITC staining that binds to active caspases. Cells
were gated for CD3 + CD4+ or CD3 + CD8 + apoptosis in each population determined by ZVAD-FITC
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staining. As seen in Figure 7C, we saw a marked increase in CD4 apoptosis in KB9 cocultures compared
to 89.6 Env or the pcDNA3.1 control. Interestingly, there was minimal apoptosis detected in CD8 cells
(Figure 7D,E) in all of the cocultures, further validating the specificity of Env mediated apoptosis for
CD4 cells. These results also suggest that the inversion of the CD4:CD8 ratio seen in Figure 6A was a
consequence of specific loss of CD4 cells via apoptosis. A total of eight different PBMC donor samples
were tested for reproducibility which showed significant differences in the CD4:CD8 ratio (Figure 7B)
and CD4 apoptosis (Figure 7D) but there was no difference in CD8 apoptosis between KB9 and 89.6
Envs (Figure 7F). These findings indicate that specific apoptosis of CD4 cells mediated by KB9 Env
may be responsible for the higher pathogenesis of this viral variant.

Figure 7. SHIV KB9 Env caused specific loss of CD4 cells via apoptosis in PBMC from healthy donors.
HeLa cells were transfected with SHIV Envs (KB-9 and 89.6), or control vectors (pcDNA3.1) and
co-cultured with PBMCs from healthy donors. At 48-hours post co-culture, PBMCs were collected
and stained for CD3, CD4, CD8 and ZVAD-FITC and analyzed by flow cytometry. Cells gated on
CD3+ population were analyzed for the CD4:CD8 ratio. Representative dot plots of the CD4:CD8 ratio
are shown in (A) and results from eight different donors are shown in (B). Apoptosis was detected as
ZVAD-FITC+ cells in CD3 + CD4 + population. Representative dot plots of CD4 apoptosis are shown
in (C) and results from 8 different donors are shown in (D). Apoptosis was detected as ZVAD – FITC
+ cells in CD3 + CD8 + population. Representative dot plots of CD8 apoptosis are shown in (E) and
results from eight different donors are shown in (F). Wilcoxon matched-pairs signed rank test was used
for statistical analysis (** = p ≤ 0.01).

3.8. Coculture of SHIV KB9 Env Expressing Cells with Rhesus PBMCs Also Results in a Specific Loss of CD4 +
T cells Via Apoptosis

The SupT1 and PBMCs used to assess AIP in the above experiments were of human origin.
However, the KB9 and 89.6 Envs have previously been shown to cause differential pathogenesis in
Rhesus Macaques. We hence evaluated whether differential AIP of SHIV 89.6 and KB9 Envs seen in
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Figure 7 above also translates to Rhesus PBMCs. For this, we conducted the co-culture experiments
using PBMCs from healthy Rhesus Macaques as target cells. As demonstrated in Figure 8, co-culture
of Rhesus PBMCs with KB9 Env expressing cells resulted in a dramatic loss of CD4 cells with a
significant reduction in CD4:CD8 ratio (Figure 8A and B) compared to 89.6 Env or the pcDNA 3.1
control. Further analysis of apoptosis in different cell populations was conducted using ZVAD-FITC
staining as in Figure 7 above. As seen in Figure 8C,D, there was a significant increase in CD4 apoptosis
in KB9 cocultures compared to 89.6 Env or the pcDNA3.1 control. Interestingly, minimal apoptosis
was detected in CD8 cells (Figure 8E,F) in all of the cocultures, further validating the specificity of
Env mediated apoptosis for Rhesus CD4+ T cells as well. These results demonstrate that KB-9 Env
causes specific loss of CD4 + T cells via apoptosis in Rhesus PBMC co-cultures resulting in a significant
reduction in CD4:CD8 ratio.

Figure 8. SHIV KB9 Env causes specific loss of CD4 cells via apoptosis in PBMC from Rhesus Macaques.
HeLa cells were transfected with SHIV Envs (KB-9 and 89.6), or control vector (pcDNA3.1) and
co-cultured with PBMCs from Indian Rhesus Macaques. At 48-hours post co-culture, PBMCs were
collected and stained for CD3, CD4, CD8 and ZVAD-FITC and analyzed by flow cytometry. Cells
gated on CD3+ population were analyzed for the CD4:CD8 ratio. Representative dot plots of the
CD4:CD8 ratio are shown in (A) and average ± SD of triplicate observations are shown in (B). Apoptosis
was detected as ZVAD-FITC+ cells in CD3 + CD4 + population. Representative dot plots of CD4
apoptosis are shown in (C) and average ± SD of triplicate observations are shown in (D). Apoptosis was
detected as ZVAD-FITC+ cells in CD3 + CD8 + population. Representative dot plots of CD8 apoptosis
are shown in (E) and average ± SD of triplicate observations are shown (F). Data are expressed as
mean ± SD and were compared using one-way ANOVA followed by Dunnett’s multiple comparison
test. **** = p ≤ 0.0001.
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4. Discussion

Several lines of evidence suggest that the Env glycoprotein remains a major determinant of HIV
pathogenesis [29]. The phenotypic characteristics of HIV Env like syncytia inducing phenotype have
long been associated with poor prognosis in patients [30]. Mutagenesis studies show that Envs that
are deficient in cell to cell fusion fail to induce apoptosis both in vitro and in vivo in humanized
mice [15,31]. Similarly, the fusogenic activity of SHIV Envs has been associated with CD4 decline
in Macaque model of HIV infection [9]. Previous studies by our lab have shown that the apoptosis
inducing potential or AIP of primary Envs derived from patients varies considerably [25]. More
recently, we have found that this AIP of Envs correlates with CD4 decline with Envs with higher
AIP associated with lower CD4 counts in patients [16]. Our in vitro assay of determining AIP could
potentially serve as a surrogate for viral pathogenesis and could have prognostic value. Further
validation of this phenomenon in other models like SHIV variants is warranted and forms the basis of
our study.

The SHIV model of HIV infection has been extensively used for studying HIV pathogenesis.
The differential pathogenesis of the SHIV variant KB9 and the parental virus SHIV 89.6 has been
mapped to the Env glycoprotein [9]. More particularly, the membrane fusing activity of KB9 Env is
specifically associated with pathogenesis [10]. In vitro studies with KB9 Env have also shown that
the membrane fusion activity of KB9 is associated with higher syncytia formation and cytopathic
affect [27]. However, it was not clear from these studies whether this cytopathic effect was related to
bystander apoptosis induction. We hypothesized that our in vitro co-culture method for determination
of AIP would be appropriate to test whether KB9 induces higher bystander apoptosis. Interestingly,
using this model we indeed found that KB9 showed high bystander AIP both in SupT cells as well as
PBMCs. In PBMC coculture experiments, KB9 showed a specific depletion of CD4 cells via apoptosis
while having no effect on the CD8 T cell population. The alteration of the CD4:CD8 ratio in the PBMC
coculture model was reminiscent of in vivo findings. Our findings are largely in agreement with
Labonte et al. who were the first to demonstrate the cytopathic effect of KB9 Env in primary CD4 T
cells [27], although their study found that the majority of cell death was occurring in CD4+ T cells and
not in bystander cells. The differences in our findings are likely due to the differences in the model
systems used. While we used a coculture model whereby Env is expressed on Hela cells that are
cocultured with CD4+ T cells, the model by Labonte et al. involved Env expression directly in primary
CD4+ T cells. Differences in the model system used for studying Env function can have a marked
effect on the outcomes as shown by Cunyat et al. [32].

The Env glycoprotein of HIV is a highly complex and variable protein [33] with the two subunits
gp120 and g41 having varied and distinct functions. While gp120 binds to receptor and coreceptor
on target cells, the gp41 subunit mediates fusion of viral and cellular membrane [34]. As this fusion
mediated by Env is a concerted effort between the functions of gp120 and gp41, variation in either of
these subunits can alter Env fusogenicity. Mutations in gp120 that alter binding affinity for CD4 or
coreceptor can alter Env fusion and pathogenesis [35–37]. Similarly, mutations in gp41 heptad repeat
regions are well documented for affecting Env fusion function as well as pathogenesis [17,31,38].

Evolution of HIV Env has been extensively studied in HIV patients with late stage AIDS associated
Envs being significantly different from chronic stage Envs. This evolution of Env has been correlated
with phenotypic changes in Env towards increased fusogenicity, fitness and pathogenesis [39,40].
The evolution of the pathogenic SHIV KB9 from the non-pathogenic SHIV 89.6 is reminiscent of a
similar evolution of the Env glycoprotein towards increased pathogenesis. Genotypic differences in
SHIV KB9 and 89.6 gp120 region have been shown to be associated with differences in binding affinity
for CCR5 [9]. We also find that there were differences in coreceptor usage between 89.6 and KB9 which
could potentially affect pathogenicity of the viruses. Particularly, KB9 could utilize either CCR5 or
CXCR4 for viral entry and apoptosis induction while 89.6 preferred CXCR4. Interestingly, Tsao et al.
have demonstrated that CCR5 interaction is important for CD4 T cell depletion by a dual tropic (X4/R5)
virus in humanized mice [41].
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As Env fusogenicity correlates with bystander apoptosis, it is not surprising that KB9 mediated
bystander apoptosis was inhibited by gp41 fusion inhibitor T20. This is consistent with other studies
whereby gp41 inhibitors like T20 have been shown to inhibit Env mediated bystander apoptosis in
various models [17,18,22,42]. Further support of fusion mediated by gp41 in HIV pathogenesis comes
from studies using mutants that have reduced or lack gp41 mediated fusion activity and show little or
no bystander apoptosis [17,31]. In support of this observation, a clinical trial of gp41 fusion inhibitor
T20 (Enfuvirtide) found that resistant viruses with mutations in gp41 region were associated with
increased CD4 count even after virological failure [43]. Coincidently, we found that these Enfuvirtide
resistant Envs showed lower bystander apoptosis in our coculture model [31]. Our study in humanized
mice using Enfuvirtide resistant gp41 mutant V38E, that lacks AIP in vitro, showed a lack of apoptosis
induction in vivo and slower CD4 decline compared to WT virus in humanized mice [15]. Studies
by Tsao et al. have also shown that Env variants with different coreceptor binding specificity and
fusion have differential pathogenesis in humanized mice despite both viruses replicating to similar
levels. [41].

The involvement of apoptosis induction in other primate models of HIV infection like SIV infection
in Macaques has also been studied [44]. The non-pathogenic infection of Sooty Mangabeys with SIVagm

compared to pathogenic infection of Rhesus Macaques with SIVmac251 has in part been associated
with apoptosis induction [2,45,46]. Several studies have shown that differential pathogenesis in SIV
models correlates with CD4+ T cell apoptosis during early stages of the disease [3,44,47,48]. Recently,
Laforge et al. [49] demonstrated the potential of a caspase inhibitor Q-VD-OPH to limit CD4 T cell
apoptosis and progression to AIDS in Rhesus Macaques infected with SIV [49]. Mathematical modeling
by Matrajt et al. concluded that bystander apoptosis plays a key role in CD4+T cell depletion during
SHIV89.6P infection in Rhesus Macaques [50].

We find that the apoptotic signaling in bystander cells in our coculture model shows signs of
classical apoptosis including mitochondrial depolarization, PS exposure, caspase activation and PARP
cleavage. Moreover, studies with the pan-caspase inhibitor ZVAD-fmk demonstrate that apoptosis
is at least partially inhibited via inhibition of this pathway although other mechanisms of cell death
may be involved as well. Collectively, these findings support a role of bystander apoptosis induction
by Env glycoprotein in CD4 loss by SHIV-KB9 Env glycoprotein. Our study also provides evidence
that selective induction of apoptosis in bystander CD4+ T cells might be the mechanism behind the
differential pathogenesis of SHIV 89.6 and KB9. Finally, in vitro determination of AIP of primary Envs
via coculture assay might provide new insights into the determinants of HIV pathogenesis.
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