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Abstract

The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring
accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1
exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here,
we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are
involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites
impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC
effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8
autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the
Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus,
our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome
segregation and ensuring proper mitotic progression.
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Introduction

The faithful distribution of duplicated genome into two

daughter cells is governed by the spindle assembly checkpoint

(SAC), requiring multiple mitotic kinases including CDK1, PLK1,

Aurora A/B, Mps1, Bub1 and BubR1 [1–3]. Among these kinases,

Aurora B, Mps1, Bub1 and BubR1 are involved in SAC signaling

to halt mitosis at metaphase until all chromosomes are properly bi-

orientated [4–5]. Until the SAC is satisfied, the anaphase

promoting complex/cyclosome (APC/C) activator Cdc20 forms

mitotic checkpoint complex (MCC) with other core SAC proteins

Mad2, Mad3/BubR1 and Bub3 to inhibit the E3 ligase activity of

APC/C, thus enabling to temporally halt mitosis before anaphase

[6–7].

Mps1 (monopolar spindle 1) was originally identified in budding

yeast as a gene required for spindle pole body (SPB) duplication

[8]. Subsequently, Mps1 orthologues were found in different

species from fungi to mammals. Strikingly, the role of Mps1 in the

SAC is well conserved through evolution. The human Mps1

protein (also known as TTK) displays maximum expression and

kinase activity in mitosis and exhibits dynamic subcellular

localization throughout mitosis [9–10]. In the absence of Mps1,

the SAC is compromised [9,11]. It is likely that Mps1 executes its

function by recruiting Mad1 and Mad2 to unattached kineto-

chores. In addition to the SAC function, Mps1 was shown to

contribute to the correction of improper kinetochore-microtubule

attachments in different species [12–17].

Recently, the employment of small molecular inhibitors of

Mps1 allows four groups to dissect the function of the human

Mps1 independently [12–13,16,18]. Their chemical biology

studies confirmed an indispensable role of Mps1 kinase activity

in the SAC. In addition, these studies show that the kinase activity

of Mps1 is required for the proper chromosome congression and

accurate chromosome segregation. However, how Mps1 does so

remains unclear. One model that Mps1 enhances Aurora B

activity to promote proper chromosome congression and segrega-

tion has gained much attention, but still controversial [15,19]. In

contrast, the mechanistic detail as to how Mps1 is involved in the

SAC has become much clearer recently. Several studies show that

Mps1 phosphorylates its newly identified substrate KNL1 to

promote the recruitment of Bub1 and Bub3 to kinetochore, thus

maintaining robust SAC signaling [20–22].

The localization of Mps1 to kinetochore is important for its

SAC function. Previous studies have mapped the kinetochore
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targeting domain of Mps1 to its N-terminal region (1–303 amino

acids) [11,23]. Interestingly, structural studies show that this N-

terminal region contains a TPR domain (55–210 amino acids),

highly similar to the TPR domains of Bub1 and BubR1 [24–25].

The kinetochore localization of Mps1 requires Aurora B kinase

activity [16,26]. Further, we demonstrated that Aurora B

phosphorylates Hec1 to promote Mps1 localization to kinetochore

[27]. As inhibition of Mps1 kinase activity significantly enhances

the kinetochore localization of Mps1 [12,16,28], the Aurora B

kinase activity may not be the sole contributor for the kinetochore

localization of Mps1. It is likely that Mps1 itself is another

contributing factor.

Mps1 undergoes autophosphorylation during mitosis [26,29–

31]. For example, autophosphorylation on Thr676 within the

activation loop of Mps1 occurs in mitosis and this phosphorylation

is required for its kinase activity in vitro and for the SAC in vivo
[32–33]. Inhibition of the phosphorylation on Thr676 residue

weakens the SAC and results in chromosomal instability without

affecting cell viability [30]. Despite this progress, it is believed that

more residues in Mps1 are autophosphorylated.

In this study, we first demonstrate that the previously identified

autophosphorylation sites Thr12 and Ser15 are dispensable for

Mps1 kinetochore localization. Further, we show that 8 other

autophosphorylation sites are involved in regulating the kineto-

chore localization of Mps1. Our findings suggest that dynamic

phosphorylation of Mps1 is essential for faithful chromosome

segregation during mitosis.

Materials and Methods

Cell culture and drug treatments
HeLa cells were routinely maintained in DMEM (Invitrogen)

supplemented with 10% FBS and penicillin-streptomycin

(100 IU/ml and 100 mg/ml, respectively, GIBCO). BAC Trans-

geneOmics LAP-Mps1 stable cell line was kindly provided by Dr.

Hyman and was maintained in the DMEM medium plus 0.5 mg/

ml G418 [34]. Thymidine was used at 2 mM, Nocodazole at

100 ng/ml, Eg5 inhibitor STLC at 10 mM, Mps1 inhibitor

Reversine at 0.5 mM, and MG132 at 20 mM.

Plasmids and transfection
Wild type and kinase dead LAP-Mps1 and Mps1 shRNA

constructs were described previously [15]. GFP-tagged Mps1

truncations Mps11–303 and Mps11–524 was generated by inserting

the corresponding PCR-amplified fragments into pEGFP-C1

vector at BglII and SalI sites. Mutagenesis was performed using

QuickChange site-directed mutagenesis kit (Stratagene) according

to the manufacturer’s instructions. All constructs were verified by

sequencing. All the plasmids and siRNAs were transfected into

cells using Lipofectamine 2000 (Invitrogen). To enrich mitotic

cells, 12 hours after transfection, cells were treated with Thymi-

dine for 14–16 hours, followed by release into normal DMEM

medium. At 8 hours after release, cells were either treated with

Eg5 motor inhibitor STLC or Monastrol for 2 hours and then

were fixed for immunofluorescence staining. For rescue experi-

ments, Mps1 shRNA was co-transfected with different rescue

plasmids (or empty vector) at a 3:1 ratio.

Antibodies
Monoclonal anti-hMps1-N1 [9], anti-BubR1 [35], anti-Mad1

and anti-Mad2 [36] antibodies were used as previously described.

Anti-a-tubulin (DM1A, Sigma) and ACA (Immunovision, Spring-

dale, AR) were obtained commercially. For western blotting,

HRP-conjugated anti-mouse or anti-rabbit antibodies (Pierce)

were used.

Kinase assays
Mps1 kinases were immunoprecipitated from 293T cell

expressing different LAP-tagged Mps1 constructs. Recombinant

maltose-binding protein (MBP) tagged Borealin and recombinant

GST-Mps1were purified as previously described [26,37–38]. In
vitro phosphorylation assays were carried out at 30uC using

immunopurified Mps1 kinase in 40 ml of kinase reaction buffer

(50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.5 mM DTT, 10 mM

ATP, 5 mCi c-32P-ATP). Reactions were stopped after 30 minutes

by addition of SDS sample buffer. Samples were then resolved by

SDS-PAGE and visualized by autoradiography.

Immunofluorescence microscopy, image processing and
quantification

HeLa cells grown on coverslips were fixed and permeabilized

simultaneously with PTEMF buffer (50 mM PIPES, pH 6.8, 0.2%

Trition X-100, 10 mM EGTA, 1 mM MgCl2, 4% Formaldehyde)

at room temperature and were processed for indirect immunoflu-

orescence microscopy. Samples were examined on a Deltavision

microscope (Applied Precision), with optical sections acquired

0.2 mm apart in the Z-axis. Deconvolved images from each focal

plane were projected into a single picture using Softworx (Applied

Precision). In some case, images were collected using an Axioskop-

2 with a 636Plan Apochromat oil immersion objective of NA 1.4

(Zeiss). Images were taken at identical exposure times within each

experiment, acquired as 24-bit RGB images, and processed in

Adobe Photoshop. Images shown in the same panel have been

identically scaled. Measurement of kinetochore intensities was

performed in ImageJ (http://rsb.info.nih.gov/ij/) on non-decon-

volved images. Quantification of kinetochore intensities was

performed as previously described [39]. In brief, a circular region

with fixed diameter was centered on each kinetochore, and unless

indicated otherwise, anti-centromere antibody (ACA) intensity was

measured in the same region and used for normalization (after

subtraction of background intensity). The average pixel intensities

from at least 50 kinetochore pairs from five cells were measured

and the statistics analysis was performed using Excel software.

Results

Phosphorylation of Thr12 and Ser15 is dispensable for
the kinetochore localization of Mps1

During mitosis, Mps1 is hyperphosphorylated and has the

maximum kinase activity [9]. A number of phosphorylation sites in

Mps1 have been identified and many of them were shown to be

autophosphorylation sites [26,29–32,40]. Xu et al. identified 9 sites

as autophosphorylation sites, among which two autophosphory-

lation sites (Thr12, Ser15) within the kinetochore targeting region

are required for the kinetochore recruitment of Mps1 [31]. As

inhibition of Mps1 kinase activity significantly enhanced the

kinetochore localization of Mps1 (Fig. S1), consistent with recent

publications [12,16,28], it is unlikely that phosphorylation of

Thr12 and Ser15 is required for the kinetochore localization of

Mps1. It is also possible that the two phosphorylation sites are not

genuine autophosphorylation sites. To confirm that Thr12 and

Ser15 phosphorylation is not important for the localization of

Mps1 and for the SAC, we examined the localization of two Mps1

mutants: nonphosphorylatable mutant Mps12A (the residues

Thr12 and Ser15 were mutated to alanine) and phospho-mimetic

mutant Mps12D (the residues Thr12 and Ser15 were mutated to

aspartic acid), and their effect on the kinetochore localization of

Functional Characterization of Mps1 Autophosphorylation
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Figure 1. Autophosphorylation of Thr12 and Ser15 is dispensable for Mps1 kinetochore localization and SAC function. (A)
Representative immunofluorescence images of prometaphase cells expressing different LAP-tagged Mps1 constructs. At 36 hours after co-
transfection with the Mps1 shRNA and indicated plasmids, cells were fixed and co-stained for ACA (red), DNA (blue) and Mad2 (shown as gray scale
images). (B) Bar graph showing quantification of the relative Mad2 kinetochore signal intensity in LAP-Mps1WT or Mps1KD expressing cells. Bars
indicate mean 6SE from 5 cells measured (at least 20 kinetochores per cell). (C) and (E) Representative immunofluorescence images of prometaphase
cells expressing different LAP-tagged Mps1 constructs. At 36 hours after co-transfection with the Mps1 shRNA and indicated plasmids, cells were
fixed and co-stained for ACA (red), DNA (blue) and Mad1 (C, shown as gray scale images) or Mad2 (E, showing as gray scale images). Scale bar
represents 10 mm. (D) and (F) Bar graph showing quantification of the Mad1 (D) or Mad2 (F) kinetochore signal in cells treated as in (C) or (E). Bars

Functional Characterization of Mps1 Autophosphorylation
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Mad1 and Mad2. In cells treated with Mps1 shRNA, Mad2 was

not detected at kinetochore (Fig. S2). When knocking-down

endogenous Mps1 and simultaneously expressing shRNA-resistent

Mps1 wild type (WT), we found that Mad2 appeared again at

kinetochore, whereas it remained nearly undetectable at kineto-

chore in Mps1 kinase-dead (KD) expressing cells (Fig. 1A and 1B).

Similar findings were obtained when examining Mad1 (Fig. S3).

Note that this is inconsistent with an early report showing that

Mps1KD can restore the kinetochore localization of Mad1 [41]. In

the absence of endogenous Mps1, both Mps12A and Mps12D

localized to kinetochore and restored the kinetochore localization

of Mad1 and Mad2 (Fig. 1C, 1D, 1E and 1F). Since the fragment

of amino acids 1–303 is sufficient for efficient kinetochore

localization of Mps1, we further examined the localization of

Mps1 truncations (amino acids 1–303) containing either the two

nonphosphorylatable mutations (Mps11–303–2A) or the two phos-

pho-mimicking mutations (Mps11–303–2D). As shown in Fig. 1G

and 1H, both Mps11–303–2A and Mps11–303–2D localize to

kinetochore, similar to Mps11–303. Taken together, our findings

suggest that phosphorylation of Thr12 and Ser15 is not required

for the kinetochore localization of Mps1.

Autophosphorylation releases Mps1 from kinetochore
Consistent with the earlier publications [12,16], we observed

much stronger kinetochore localization for Mps1KD than Mps1WT

(Fig. 2A). Therefore, Mps1 kinase activity may negatively regulate

the kinetochore localization of Mps1. In general, the residues

within the activation loop of a kinase and their posttranslational

modification (mainly phosphorylation) are critical for the fully

activation of a protein kinase [42]. Previous studies showed that

Mps1T676A has less active kinase activity than Mps1WT [29–30]. In

addition, phospho-mimetic Mps1T676E is also less-active than

Mps1WT. Both phospho-deficient and phospho-mimetic mutants

of Thr686, another key phosphorylation site within the kinase P+1

loop, are completely inactive [29–30]. To further test our

hypothesis that the kinetochore localization of Mps1 may be

negatively regulated by its kinase activity, we examined the

localization of these mutants: Mps1T676A, Mps1T676E, Mps1T686A

and Mps1T686E. As shown in Fig. 2A, both Mps1T676A and

Mps1T676E displayed strong kinetochore staining with moderate

cytoplasmic signals. Similarly, both Mps1T686A and Mps1T686E

displayed strong kinetochore staining but had faint staining in the

cytoplasm, indistinguishable from Mps1KD (Fig. 2A and 2B). As all

these Mps1 mutants were expressed at a level comparable to

Mps1WT (Fig. 2C), we concluded that the different kinetochore

staining observed was not due to variable protein expression levels.

Our observation that the completely inactive mutants Mps1T686A

and Mps1T686E showed stronger kinetochore signals than the less-

active mutants Mps1T676A and Mps1T676E suggests that the

kinetochore localization of Mps1 is negatively regulated by its

own kinase activity.

It is possible that Mps1 regulates its own kinetochore

localization by phosphorylating an as yet unknown kinetochore

substrate that is responsible for recruiting Mps1. Alternatively,

Mps1 inhibits its localization by autophosphorylation. If the latter

case is true, one would expect to see stronger kinetochore staining

for phospho-deficient autophosphorylation mutant compared to

the phospho-mimetic autophosphorylation mutant. It has been

shown that many phosphorylation sites of Mps1 are autopho-

sphorylated [26,30–31]. To test if autophosphorylation plays a

critical role in regulating the kinetochore localization of Mps1, we

created LAP-tagged Mps1 mutants that were either phospho-

deficient (Mps18A) or phospho-mimetic (Mps18D) for the 8

autophosphorylation sites (Ser7, Thr12, Thr33, Ser37, Ser321,

Thr360, Thr363 and Thr371) that conform to our proposed Mps1

consensus motif E/D/N/Q-X-pS/pT-X (Fig. 2D) [26]. As shown

(Fig. 2E), we observed elevated kinetochore signal intensity of

Mps18A and decreased kinetochore signal intensity of Mps18D.

Interestingly, the kinetochore staining of Mps18A was still weaker

than that of Mps1KD. These observations suggest that autophos-

phorylation is required for the release of Mps1 from kinetochore.

Further, we made Mps18A and Mps18D become kinase-dead by

mutagenesis and examined their localization. If autophosphory-

lation is required for the release of Mps1 from kinetochore, one

would expect to see a weaker kinetochore staining for the

autophosphorylation mimetic Mps1KD–8D than for the

autophosphorylation deficient Mps1KD–8A mutant. Consistently,

Mps1KD–8D staining at kinetochores became much weaker and

displayed strong straining in the cytoplasm (Fig. 2E). In contrast,

Mps1KD–8A and Mps1KD localized mainly to kinetochores.

Quantification of the ratio of kinetochore/cytosol signal intensity

for each mutant also confirmed our observations (Fig. 2F). Similar

results were obtained when examining the phospho-mutants

lacking the kinase domain (Fig. S4). Note that all the mutants

examined were expressed at a comparable level (Fig. 2G). Thus,

we conclude that autophosphorylation of Mps1 facilitates the

kinetochore release of Mps1.

Autophosphorylation of Mps1 at its N-terminal region
does not affect its kinase activity

Generally, autophosphorylation in the activation loop of Mps1

is required for full kinase activity [30,32–33]. We, therefore, asked

whether autophosphorylation taking place at the region outside of

the kinase domain can influence Mps1 kinase activity. To test this,

we carried out an in vitro kinase assay using recombinant Borealin

as substrate with approximate the same amount of different

immunoprecipitated Mps1 proteins (Fig. S5A) [15]. As shown (Fig.

S5B), Mps1WT, not Mps1KD, could phosphorylate Borealin.

Similar to Mps1WT, both autophosphorylation site mutants

Mps18A and Mps18D could efficiently phosphorylate Borealin

(Fig. S5B), suggesting that autophosphorylation of the N-terminal

region (at least at the sites described here) does not affect Mps1

kinase activity. Consistent with the previous report that CDK1

potentiate Mps1 activity [43],the positive control phospho-

mimetic mutant Mps15D (5 CDK1 phosphorylation sites S281,

S436, T453, T468, S821) used in these assays displayed enhanced

kinase activity.

Interestingly, we observed two separated phosphorylation

species in the Mps1 immuno-precipitates and the kinase assays

(Fig. S5B). Two possibilities may account for this observation: 1)

both bands represent Mps1, but they are phosphorylated to

different degrees; and 2) only one band is Mps1 and the other is a

contamination from either kinase immunoprecipitates or substrate

preparation. For clarification, we performed an in vitro kinase

assay with recombinant GST-Mps1, but without Borealin. GST-

Mps1 displayed two clearly separated bands (Fig. S5C). The upper

indicate mean 6SE from 5 cells measured (at least 20 kinetochores per cell). A.U. means arbitrary unit. (G) Representative immunofluorescence
images of prometaphase cells expressing different GFP-tagged Mps1 truncations. At 36 hours after co-transfection with the Mps1 shRNA and
indicated plasmids, cells were fixed and co-stained for ACA (red) and DNA (blue). Scale bar represents 10 mm. (H) Bar graph showing quantification of
the kinetochore signal of indicated Mps1 truncation protein as in (G). Bars indicate mean 6SE from 5 cells measured (at least 20 kinetochores per cell).
doi:10.1371/journal.pone.0104723.g001
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Figure 2. Autophosphorylation negatively regulates Mps1 kinetochore localization. (A) and (E) Representative immunofluorescence
images of prometaphase cells expressing different LAP-tagged Mps1 constructs. At 36 hours after co-transfection with the Mps1 shRNA and
indicated plasmids, cells were fixed and co-stained for ACA (red) and DNA (blue). Scale bar represents 10 mm. (B) and (F) Bar graph showing
quantification of the ratios of kinetochore signal to cytoplasmic signal of different Mps1 constructs as indicated. Bars indicate mean 6SE from 3

Functional Characterization of Mps1 Autophosphorylation
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band was not affected by Plk1 kinase inhibitor TAL, but

disappeared completely in the presence of Reversine, suggesting

that the upper autoradiography band represents a highly

phosphorylated pool of Mps1. Moreover, Mps18A, which lacks 8

autophosphorylation sites, does not shift to the same extent as

Mps1WT, further supporting the idea that the upper band

corresponds to Mps1 (Fig. S5B). As only very weak bands at the

position of upper autoradiography band were detected by Western

blotting (Fig. S5B), we proposed that upper autoradiography band

only accounts for a small proportion of the total Mps1, or that the

modifications preclude visualization of this band by Western

blotting.

Dynamic phosphorylation of Mps1 is required for proper
mitotic progression

Next, we employed live cell imaging to examine if autophos-

phorylation of Mps1 contributes to regulating mitotic progression.

The absence of endogenous Mps1 allowed cells to prematurely

enter anaphase and caused a defect in chromosome congression

(Fig. 3A). Ectopic expression of Mps1WT in cells lacking endog-

enous Mps1 restored normal mitotic progression and chromosome

congression. Interestingly, ectopic expression of Mps18A in cells

lacking endogenous Mps1 also restored normal mitotic progression

and chromosome congression, but delayed anaphase entry

(Fig. 3B). In Mps18D expressing cells, we observed delayed

anaphase entry, chromosome congression errors, and anaphase

lagging chromosomes (Fig. 3A, 3B and 3C), suggesting that the

SAC in these cells have been compromised. Consistently, although

the kinetochore localization of Mps1WT and Mps18A were clearly

visible in the live cell imaging condition, Mps18D was difficult to

see at kinetochores (Fig. 3D). Therefore, the compromised SAC in

Mps18D expressing cells may be due to decreased kinetochore

localization of Mps18D. In addition, the enhanced kinetochore

localization of Mps18A may contribute to the delayed anaphase

entry. Next, we examined carefully to see if Mps18A and Mps18D

also affect metaphase chromosome congression, employing the

drug MG132. In the presence of MG132, both Mps18A and

Mps18D expressing cells could be arrested at metaphase but did

not show defects in metaphase chromosome congression (Fig. 3E

and 3F). Despite normal chromosome congression, the high

frequency of anaphase lagging chromosome observed in Mps18D

expressing cells suggests that the correction of merotelic attach-

ment is defective in these cells. Taken together, our data suggest

that dynamic autophosphorylation of Mps1 is required for proper

mitotic progression timing but not for metaphase chromosome

alignment.

Persistent autophosphorylation of Mps1 causes a
decreased kinetochore localization of BubR1 and Mad2

To understand how Mps18D compromises SAC function, we

examined the kinetochore localization of two SAC effector

proteins: BubR1 and Mad2. In agreement with previous

publications [13] [44], BubR1 kinetochore signals decreased

significantly in Mps1 shRNA transfected cells (Fig. 4A, arrow-

head), as compared to the control cells (Fig. 4A, arrow). When

examining Mps18A and Mps1WT expressing cells, respectively, we

found that the kinetochore intensity of BubR1 in these two cells

was comparable (Fig. 4B). However, the kinetochore intensity of

BubR1 decreased significantly in Mps18D expressing cells (See

Fig. 4B and 4C for statistical analysis). In cells lacking Mps1,

expression of Mps1WT restored the kinetochore localization of

Mad2. As shown (Fig. 4C), in an Mps1WT-expressing cell

(arrowhead) and its adjacent untransfected cell (arrow), the

Mad2 kinetochore intensity was indistinguishable. Similarly,

Mad2 intensity in Mps18A-expressing cells was at a level

approximately equal to the Mad2 intensity in Mps1WT expressing

cells. In contrast, the Mad2 signal intensity decreased significantly

in Mps18D-expressing cells (Fig. 4C, 4D). Thus, our data suggest

that Mps18D compromises the SAC by affecting the kinetochore

recruitment of BubR1 and Mad2.

Discussion

Autophosphorylation at the activation loop is required for Mps1

activation [32–33]. Our previous study demonstrated that 8

phosphorylation sites outside of the activation loop are autophos-

phorylation sites [26]. Here, we demonstrate that these autophos-

phorylation sites that are not present in the activation loop are

involved in regulating the kinetochore localization of Mps1.

Autophosphorylation of these sites is required for the release of

Mps1 from kinetochore.

We provide several pieces of evidence to support our claim.

First, phospho-mimicking mutations of the 8 autophosphorylation

sites (Mps18D) cannot localize to kinetochore as efficiently as the

nonphosphorylatable Mps1 mutant Mps18A and Mps1WT

(Fig. 2E). Since multi-site phosphorylation is now recognized as

an important mechanism for attenuation of protein-protein and

protein-ligand interactions [45], it is possible that autophospho-

rylation may attenuate the interaction between Mps1 and Hec1 or

between Mps1 and its kinetochore adaptor proteins, thus causing a

kinetochore localization defect. Consistently, Jelluma et al.

reported that Mps1 is rapidly exchanged at unaligned kinetochores

by a mechanism involved Mps1-dependent phosphorylation [28].

Second, Mps1KD displayed much stronger kinetochore staining

than Mps1WT and even the less active Mps1 mutants (Mps1T676A,

Mps1T676E) exhibited stronger kinetochore staining than Mps1WT

(Fig. 2A). We reason that Mps1KD and the less active Mps1

mutants may not undergo autophosphorylation or at least less

efficiently, which then enhances their kinetochore localization.

Intriguingly, the kinetochore localization of Mps18A is signifi-

cantly weaker than Mps1KD, but clearly stronger than Mps1WT or

Mps18D. Mps1WT, Mps18A and Mps18D, except Mps1KD, have

comparable kinase activity (Fig. S5B). This means that Mps1WT,

Mps18A and Mps18D are capable of undergoing autophosphory-

lation. We speculate that more autophosphorylation sites may

exist, thus allowing Mps18A to be partially autophosphorylated.

This partial phosphorylation may then promote the release of

Mps18A from the kinetochore. Therefore, Mps18A displays weaker

kinetochore localization than Mps1KD, but stronger than Mps1WT

or Mps18D.

Mps18A causes shortly delayed anaphase entry. This may be due

to the enhanced and less dynamic kinetochore localization, which

is supported by the observation that tethering Mps1 to kinetochore

by expressing Mis12-Mps1 fusion protein similarly prolongs

metaphase [28]. In contrast, Mps18D causes premature anaphase

independent experiments. In each experiment, 5 cells were measured (.60 kinetochores per cell). Statistics significance was determined by an
unpaired Student’s t test. (C) and (G) Western blot showing the comparable expression of different Mps1 constructs as indicated. 24 hours after
transfection into 293T cells, cell lysates were prepared. After separation by SDS-PAGE, samples were probed with the indicated antibodies. (D)
Schematic showing Mps1 autophosphorylation sites. 8 autophosphorylation sites outside of kinase domain are shown in red. 2 autophosphorylation
sites within activation loop are shown in black.
doi:10.1371/journal.pone.0104723.g002
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Figure 3. Characterizing the mitotic phenotype of phospho-defective and phospho-mimetic mutants of autophosphorylation sites.
(A) and (D) Representative stills illustrating mitotic progression in H2B-mCherry expressing cells depleted of Mps1 and rescued with different LAP-
Mps1 constructs. Images were acquired at the indicated time points after the start of nuclear envelope breakdown (NEB). Scale bar represents10 mm.
(B) Scatter plots indicating the time elapsed from NEB to anaphase onset with the mean in cells treated as in A. Bars indicate mean 6SE from analyses
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entry with misaligned chromosomes and/or anaphase lagging

chromosomes. We reason that the phenotypes observed in Mps18D

expressing cells could due to 1) the compromised SAC and 2)

defective correction of merotelic attachment. The compromised

SAC is well supported by the fact that two key SAC effectors,

BubR1 and Mad2, display reduced kinetochore localization in

Mps18D expressing cells (Fig. 4D). It has been proposed that

instead of an all-or-none response, SAC signal strength varies in

different conditions [46–48]. These studies also revealed that SAC

strength correlates with the Mad2 signal intensity at kinetochore.

Therefore, Mps18D expressing cells may not lose the SAC

completely, but have compromised SAC. We emphasize that the

SAC is likely to be affected slightly in Mps18D expressing cells,

since the Mad2/BubR1 kinetochore signal decreased slightly.

Thus, in Mps18D expressing cells, the SAC is able to prevent

anaphase entry for a comparable time span with Mps1WT

expressing cells.

of at least 16 cells. Statistics significance was determined by an unpaired Student’s t test. (C) Bar graph showing quantification of the mitotic
progression phenotype of cells expressing indicated LAP-Mps1 constructs. ‘‘Delay’’ means mitotic delay (last more than 90 minutes to enter
anaphase). ‘‘Lagging’’ means the anaphase cells with lagging chromosome or unaligned chromosome. (E) Representative stills illustrating mitotic
progression in H2B-mCherry expressing cells depleted of Mps1 and rescued with different LAP-Mps1 constructs. Before imaging, the cells were
treated with MG132. Images were acquired at the indicated time points after the start of nuclear envelope breakdown (NEB). (F) Bar graph showing
the percentage of indicated phenotype of cells treated as in (E). 30 cells were counted in each group.
doi:10.1371/journal.pone.0104723.g003

Figure 4. Phospho-mimetic Mps18D impairs the kinetochore recruitment of BubR1 and Mad2. (A) Representative immunofluorescence
images of prometaphase cells co-transfected with Mps1 shRNA and GFP vector at a 3:1 ratio. Cells were fixed and co-stained for BubR1 (red) and DNA
(blue). Scale bar represents 10 mm. (B) and (C) Representative immunofluorescence images of prometaphase cells expressing different LAP-tagged
Mps1 constructs. At 36 hours after co-transfection with the Mps1 shRNA and indicated plasmids, cells were fixed and co-stained for BubR1 (red) (B) or
Mad2 (C), and DNA (blue). Scale bar represents 10 mm. (D) Bar graph showing quantification of kinetochore signal of BubR1 and Mad2 in cells
expressing different Mps1 constructs as indicated. Bars indicate mean 6SE from 3 independent experiments. In each experiment, 5 cells were
measured (.60 kinetochores per cell). * P,0.001 versus shMock or Mps1WT and Mps18A rescue groups.
doi:10.1371/journal.pone.0104723.g004
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As Mps18A and Mps18D expressing cells display proper chromo-

some bi-orientation in the presence of MG132 treatment (Fig. 3E, 3F),

the 8 autophosphorylation sites studied here may not be involved in

metaphase chromosome congression. Although chromosome congres-

sion is normal in the presence of MG132, the high frequency of lagging

chromosome observed in Mps18D expressing cells indicates the

presence of uncorrected merotelic attachments. Recent evidence

suggests that Mps1 plays a key role in the correction of merotelic

attachment [49]. Consistent with this notion, decreased kinetochore

localization of Mps18D may induce merotelic attachments. The other

possibility is the expression of Mps18D causes an additional

hypomorphic effect on K-fiber integrity.

A recent report suggested that Mps1 kinetochore targeting requires

its kinase activity and autophosphorylation at Thr12 and Ser15 [31].

However, our data show that both phospho-deficient and phospho-

mimetic Thr12 and Ser15 double mutants (Mps12A and Mps12D,

respectively) localized to kinetochore normally and that both mutants

do not affect the kinetochore localization of Mad1 and Mad2 (Fig. 1C

and 1E). It is likely that Mps1 has more (auto)phosphorylation sites

besides the 8 autophosphorylation sites we studied here. For example,

Chk2 can phosphorylate Mps1 at Thr288 and this is required for the

kinetochore localization of Mps1 [50–51]. Thus, a new theme for

systematic identification and characterization of all phosphorylation

sites in Mps1 is emerging.

In summary, we demonstrate that autophosphorylation is

required for the release of Mps1 from kinetochore and is involved

in regulating the kinetochore localization of SAC components

BubR1 and Mad2. Autophosphorylation-deficient Mps1 mutant

induces a shortly delayed mitotic progression and autophospho-

rylation-mimicking mutant perturbs faithful chromosome segre-

gation. Together, these data indicate that dynamic autophospho-

rylation of Mps1 ensures accurate chromosome segregation and

faithful mitotic progression.

Supporting Information

Figure S1 Mps1 kinetochore localization elevated great-
ly when its kinase activity was inhibited. (A) Representative

immunofluorescence images of prometaphase cells stably express-

ing LAP-tagged Mps1. At 2 hours after treatment with the

indicated drugs, cells were fixed and co-stained for Mps1 (green),

ACA (red), DNA (blue). Scale bar represents 10 mm. (B) Bar graph

showing quantification of the kinetochore signal of cells treated as

indicated. Bars indicate mean 6SE from 3 independent

experiments. In each experiment, 5 cells were measured (.60

kinetochores per cell). a. u. means arbitrary unit.

(TIF)

Figure S2 Mps1 kinase is required for the kinetochore
recruitment of Mad2. Representative immunofluorescence

images of prometaphase cells transfected with Mps1 shRNA and

Mock shRNA. At 36 hours after transfection, cells were fixed and

co-stained for Mad2 (green), ACA (red), DNA (blue). Scale bar

represents 10 mm.

(TIF)

Figure S3 Mps1 kinase activity is stringently required
for the kinetochore recruitment of Mad1. Representative

immunofluorescence images of prometaphase cells transfected

with Mps1 shRNA and different LAP-Mps1 constructs as

indicated. At 36 hours after transfection, cells were fixed and co-

stained for Mps1 (green), ACA (red), DNA (blue) and Mad1

(shown as gray scale images). Scale bar represents 10 mm.

(TIF)

Figure S4 Autophosphorylation negatively regulate the
kinetochore localization of Mps1 fragment lacking
kinase domain. (A) Representative immunofluorescence images

of prometaphase cells transfected with Mps1 shRNA and different

GFP-Mps1 constructs as indicated. At 36 hours after transfection,

cells were fixed and co-stained for Mps1 (green), ACA (red) and

DNA (blue). Scale bar represents 10 mm. (B) Bar graph showing

quantification of the kinetochore signal of different Mps1

truncations as indicated. Bars indicate mean 6SE from 3

independent experiments. In each experiment, 5 cells were

measured (.60 kinetochores per cell). a. u. means arbitrary unit.

(TIF)

Figure S5 Mps1 autophosphorylation doesn’t affect its
kinase activity in vitro. (A) Immunoblot (anti-hMps1) showing

the correct expression of wild type Mps1 and different Mps1

mutants and equal amount of input lysate for each immunopre-

cipitation reaction. (B) In vitro kinase assay of recombinant MBP-

tagged Borealin by LAP-tagged wild type and different Mps1

mutants. LAP-Mps1 transfected HeLa S3 cell were harvested and

cell lysates were incubated with anti-hMps1-N1 mAb coupled

protein G beads. Then the beads were incubated with MBP-

Borealin in the presence of c-32P-ATP. The left panel shows

Coomassie Blue staining of the gel (asterisk indicates an unspecific

band from MBP-Borealin purification), the right panel shows the

autoradiography result. The lower panel shows the anti-hMps1

blot of the kinase inputs used in different reactions. (C) In vitro
kinase assay of recombinant GST-Mps1-WT in kinase buffer with

DMSO, buffer with TAL and buffer with Reversine. The upper

panel shows the autoradiography result; the lower panel shows the

anti-hMps1 Western blot demonstrating equal loading.

(TIF)
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