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We report on the original integration of an automatic text categorization pipeline, so-called ToxiCat (Toxicogenomic

Categorizer), that we developed to perform biomedical documents classification and prioritization in order to speed up

the curation of the Comparative Toxicogenomics Database (CTD). The task can be basically described as a binary classifi-

cation task, where a scoring function is used to rank a selected set of articles. Then components of a question-answering

system are used to extract CTD-specific annotations from the ranked list of articles. The ranking function is generated using

a Support Vector Machine, which combines three main modules: an information retrieval engine for MEDLINE (EAGLi), a

gene normalization service (NormaGene) developed for a previous BioCreative campaign and finally, a set of answering

components and entity recognizer for diseases and chemicals. The main components of the pipeline are publicly available

both as web application and web services. The specific integration performed for the BioCreative competition is available

via a web user interface at http://pingu.unige.ch:8080/Toxicat.
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Introduction

We report on the original integration of an automatic text

categorization pipeline, so-called ToxiCat (Toxicogenomic

Categorizer), that we developed to perform biomedical

documents classification and prioritization in order to

speed up the curation of the Comparative Toxicogenomics

Database (CTD). The task can be basically described as a

binary classification task, where a scoring function is used

to rank a selected set of articles. Then components of a

question-answering system are used to extract CTD-specific

annotations from the ranked list of articles. The ranking

function is generated using a Support Vector Machine

(SVM), which combines three main modules: an informa-

tion retrieval engine for MEDLINE (EAGLi), a gene normal-

ization (GN) service (NormaGene) developed for a previous

BioCreative campaign and finally, a set of answering com-

ponents and entity recognizer for diseases and chemicals.

The main components of the pipeline are publicly available

both as web application and web services. The specific in-

tegration performed for the BioCreative competition is

available via a web user interface at http://pingu.unige.

ch:8080/Toxicat.

Biocuration pipeline

Biocuration is a complex task, which requires domain ex-

pertise and specific training. The task, when performed by a

professional curator or by an automatic annotation system,

can be simplified into the following workflow (R.S.R.E.N.):

(1) Retrieval of documents given a particular query

(e.g. proteins, chemicals) in a particular document re-

pository (MEDLINE, patent library, PubMed Central,

etc.).

(2) Selection of articles: a subset of articles is chosen

by the curator, usually based on the title and the

abstract.
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(3) Reading of a particular article (or passage retrieval for

an automat): the full-text article is read by the

biologist.

(4) Extraction of information: a particular passage is ana-

lyzed to obtain a representation of the level of enti-

ties such as proteins, diseases, methods used to

generate a particular result (e.g. yeast two-hybrid)

and evidence codes (e.g. automatic inference, direct

interactions).

(5) Normalization of the extracted information: the

biologist transforms a particular passage into a nor-

malized identifier (e.g. a disease for CTD) or a set of

normalized descriptors (e.g. several protein identifiers

and an interaction type for protein–protein inter-

action databases such as IntAct).

(6) Feed-back: this step is optional; it aims at using the

generated annotation to improve or refine the search

initiated in Step 1.

It is worth observing that Step 1 is directly dependent on

the user interface of the curation platform. Various user

interaction models can be designed here: interactive

search (e.g. PubMed, EBIMed, EAGLi, etc.) or batch search,

where the curator receives regular (daily, weekly, etc.)

alerts and notifications. In the alerting model, queries

must have been previously registered by the curator.

Moreover, in many biocuration systems, Steps 1 and 2,

which are sometimes called ‘triage’ tasks, are performed

by professional biologists. Thus, functional annotation sys-

tems, like those originally designed during BioCreative I (1),

help curators to assign Gene Ontology descriptors to gene

products; only Steps 3–5 are performed by a computer, see

e.g. the GO categorizer (2). For the BioCreative 2012 evalu-

ation campaign, the organizers provided a flat list of PMIDs

so most systems did not need to provide any retrieval func-

tionalities (Step 1). Step 6 is also often ignored by designers

of text mining systems for biocuration and was not manda-

tory for the competition.

The system we designed tentatively covered all steps. A

graphic user interface (GUI) has been designed for the sake

of the BioCreative competition; however, such a GUI must

be regarded as a basic demonstrator; see Table 1 for an

overview of the basic integration we designed. This inte-

gration step is obviously critical for the success of a curation

system. However, it goes far beyond the scope of our

report, which focuses on the integration and evaluation

of a set of text mining services. The light integration we

prepared for BioCreative is thus based on the existing

EAGLi platform, which is used to acquire PMIDs and to fur-

ther answer questions resulting from an automatic annota-

tion process. Table 1 explains how the curation workflow

has been instantiated in our CTD curation system (ToxiCat).

The construction and evaluation of the ToxiCat binary clas-

sifier is then the main subject of this report since other

components have been described elsewhere: EAGLi search

(3), EAGLi’s question-answering (3), EAGLi’s Keyword ex-

tractor (3), GOCat (2) and NormaGene (4).

Data and methods

Data overview

BioCreative 2012 proposes to explore how text mining

methods can successfully be applied to practically help bio-

curation of a large molecular biology knowledge base. The

main objective of the Triage-I task is to explore how a set of

MEDLINE records, directly retrieved from PubMed using the

name of a particular chemical compound, can be ranked to

prioritize the most relevant articles. In addition to the prior-

itized list of PMIDs, competitors are also asked to provide

additional annotations of interest to maintain the CTD with

the interacting entities (small molecules and gene products)

and the pathologies likely to reflect the toxicity of the

chemical compound; see (5) for more detailed information

about all tasks of BioCreative 2012 and CTD.

The organizers provided a set of 1725 abstracts for train-

ing. This set was triaged and curated, but it is worth obser-

ving that CTD curators also use full-text articles to annotate

Table 1. Components used to generate the ToxiCat system that was designed during BioCreative 2012 to curate the Comparative
Toxicogenomics Database

Assisted EAGLi

or PubMed

Assisted ToxiCat’s

binary classifier

Keyword in

context (EAGLi)

Named-Entity

recognition ad hoc

NormaGeneGOCat

Categorization

EAGL, NormaGene

EAGLi Question-

Answering

Retrieval X

Selection X

Reading X

Extraction X

Normalization X

Feed-back X X
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the database. Approximately more than half of these art-

icles contain no information about the chemical compound

and/or the genes they are supposed to annotate. Symme-

trically, less than half of the articles contain information

about both a gene and a chemical, and only about an

eighth of the articles contain information about diseases.

The distribution of entity types in the benchmark is shown

in Table 2.

The data were distributed in a set of files that included

eight curated CTD entries describing the following chemical

compounds: raloxifene, aniline, amasacrine, doxorubicin,

aspartame, quercetin, 2-acetylaminofluorene and indo-

methacin (5). Our preliminary experiments show that

using only the four chemicals shown in Table 3 performed

better than using the eight compounds. This group of four

chemical compounds is annotated with 1059 articles. The

distribution of positive and negative instances in this subset

is nearly balanced (see Table 3).

Methods

We designed a SVM classifier for the binary classification of

articles with two classes: relevant for curation and not rele-

vant for curation. All our experiments and developments

use the libSVM package (6). The classifier returns a Boolean

value together with a class estimate, which directly

expresses the probability to belong either to the positive

or the negative class. The features, which were selected to

build the classification model, are shown in Table 4. An

F-score is provided, which expresses the respective contri-

bution of each feature to the binary classification model, as

described in (8).

Features can be split within three subsets. The first fea-

ture set contains information about MeSH terms of articles

Table 4. Selected features for the SVM Classifier

Features FScore Source

Normalized input chemical compound in MeSH terms 0.008 EAGLi

Journal name relevant for CTD task 0.1593

Appearance of ‘pharmacology’, ‘toxicity’, ‘drug therapy’, ‘metabolism’,

‘drug effects’, ‘chemistry’ and ‘chemical synthesis’ as the main MeSH

terms of the article

0.0672

Input chemical compound in the abstract 0.025 Ad hoc keywords Recognizer

Input chemical compound in the title 0.028

Chemical compounds in an abstract 0.023

Frequency of chemical compounds in an abstract 0.0009

Frequency of input chemical in an abstract 0.0036

Input chemical compound detected in first three sentencesa 0.0027

Diseases in the abstract 0.0111

Chemical compounds and genes in an abstract 0.072 NormaGene

Co-occurrence of genes and chemical compounds in a sentence 0.0036

Co-occurrence of main chemical and genes in a sentence 0.0001

Sum of score of every feature 0.04 EAGLi + ad hoc keywords

Recognizer + NormaGene

The features are grouped according to the sources that produced them.
aWe tried to use features generated by an argumentative classifier (7), but preliminary experiments were inconclusive.

Table 3. Distribution of curated articles for each chemical in
the selected sample

Chemical compound name Number of

articles per

chemical compound

%Positive

articles in

the sample

Raloxifene 270 60

2-Acetylaminofluorene 178 45.5

Amsacrine 69 53

Quercetimin 542 77

Table 2. Distribution of entities in the provided benchmark

Entity name Number

of articles

Chemical compounds 735

Genes 583

Diseases 204

Co-occurrence of genes and chemical compounds 542

Input chemical compound in titles 381

.............................................................................................................................................................................................................................................................................................
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extracted from the MEDLINE library, which is locally stored

and indexed by the EAGLi’s engine. The use of EAGLi has

two main advantages when compared with PubMed’s

e-Utilities: (i) the response time is significantly improved

from about 1 s per PMID to an average of 50 ms for

EAGLi, which results in an overall processing time at least

one order of magnitude faster; (ii) recently published art-

icles are not yet indexed with MeSH, while EAGLi offers the

possibility to automatically index those articles with a

modest processing time (�200 ms); see (2) for a presenta-

tion of the MeSH assignment system and (9) for a compari-

son against similar systems such as MetaMap. According to

our observations, curated articles are usually indexed with

major headings such as pharmacology, toxicity, drug ther-

apy, metabolism, drug effects, chemistry and chemical syn-

thesis. Very often, the indexing with MeSH also normalizes

the name of the main chemical with a unique identifier

(or preferred term) discussed in the article (i.e. raloxifene

or amsacrine). The second subset of features is obtained via

the NormaGene named-entity normalizer (4, 10). This gene

and protein named-entity recognizer was developed for

the BioCreative III task to address the GN task (4). Like

other named-entity recognizer, it identifies the boundaries

of the gene and protein name, but it also attempts to

assign a unique identifier at the level of a UniProt or

Entrez-Gene sequence. Thus, NormaGene also attempts to

recognize, when possible, what organisms are mentioned

in the article to ultimately link a gene/protein name with a

unique sequence. When the species are not explicitly men-

tioned, NormaGene attempts to derive it from other text-

ual entities such as cell lines or gene products. Internally,

NormaGene is able to recognize all gene candidates stored

in the Gene and Protein Synonyms DataBase (GPSDB) (11),

as well as all species stored in NEWT (12), which is appro-

priate to annotate contents for UniProt/SwissProtKB but

which does exceed the coverage of CTD. The internal

gene and gene product dictionaries of NormaGene are

therefore reduced to curate CTD. Finally, results returned

by NormaGene are compared with the CTD genes con-

trolled vocabulary to further reduce the list of results. The

controlled vocabulary of CTD contains over 257 000 NCBI

genes’ identifiers and over 479 000 genes’ names including

synonyms. If the entities recognized by NormaGene are

found in the CTD genes’ vocabulary, then we extract all

synonyms based on the approved genes ID and match

them against the abstract. Indeed, gene and protein iden-

tifiers suggested by NormaGene cannot always be explicitly

found in the body of the input document as NormaGene

uses a generative model, which exploits also functional

similarities (13) and not only textual similarities. Gene

names used by CTD are imported from EntrezGene but

unlike Entrez-Gene, a gene product in CTD is mostly con-

cerned with human-related toxicology, which simplifies the

gene recognition process.

The third set of features is an ad hoc keyword recognizer

for diseases and chemicals. This keyword recognizer is

based on the controlled vocabularies provided by CTD.

We discovered that CTD vocabularies for chemicals and dis-

eases contain several descriptors, which seems irrelevant for

the curation task. However, the description of CTD vocabul-

aries (see the ‘CTD curation overview’ on http://www.bio-

creative.org/tasks/bc-workshop-2012/triage/) explains that

several branches of the original MeSH vocabulary were

pruned from CTD’s chemical and disease vocabularies (14)

because of their weak relevance for CTD. Nevertheless, we

discovered that in the vocabularies provided by the organ-

izers, we have all these branches. It was therefore challen-

ging to decide a priori which descriptors should have been

excluded or not. For this task, we decided to rely on the

UMLS Metathesaurus. For both chemical and disease enti-

ties, we created a Word-Sense Disambiguator (WSD) based

on the UMLS Semantic Types (15). We remove non-relevant

types of chemicals and diseases as listed in Table 5. Further,

in order to eliminate common English words from the list of

Table 5. UMLS Semantic Types used by WSD to filter entities

UMLS Semantic Type Name

T023 Body part, organ or organ component

T031 Body substance

T037 Injury or poisoning

T046 Pathologic function

T073 Manufactured object

T080 Qualitative concept

T081 Quantitative concept

T086 Nucleotide sequence

T087 Amino acid sequence

T088 Carbohydrate sequence

T103 Compounds or substances of definite

molecular composition.

T114 Nucleic acid, nucleoside or nucleotide

T116 Amino acid, peptide or protein

T118 Carbohydrate

T119 Lipid

T120 Chemical viewed functionally

T123 Biologically active substance

T125 Hormone

T126 Enzyme

T127 Vitamin

T129 Immunologic factor

T168 Food

T196 Element, ion or isotope

T197 Inorganic chemical

.............................................................................................................................................................................................................................................................................................
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candidates, we created a common English word recognizer

based on a general-purpose English corpora. Unspecific dis-

ease and chemical names were thus discarded.

The general architecture of the ToxiCat workflow is

shown in Figure 1. Articles data such as the PMID, the ab-

stract and the journal name are passed to ToxiCat. The

PMID is used to query EAGLi’s services in order to retrieve

all MeSH terms of the article. The abstract of an article is

also passed to the ad hoc keyword recognizer to detect

chemicals and diseases candidates. Those candidates are

then filtered by the common English word filter and finally

by the WSD. In parallel, NormaGene detects the genes’

names in the abstract and pass them to the CTD genes

Control Vocabulary, which is going to filter out not relevant

genes. The remaining gene identifiers are sent to the ad

hoc synonyms recognizer, to detect all synonym names in

the abstract. The journal Mapper checks the name of the

journal against a list of domain-relevant journal names.

Finally, the resulting bag of features is processed by the

SVM classifier, which returns a score. This score directly

expresses the probability that the article is relevant or not

to be further annotated for CTD. The parameters of the

SVM classification model are obtained using 10-fold

cross-validation. We tested the model with a polynomial

kernel and a RBF kernel, but the results were not signifi-

cantly better than with the linear kernel we finally selected.

In Figures 2–5, we show an example of the full biocura-

tion process with the ToxiCat web interface.

Results and conclusion

The results of ToxiCat (Group 120), computed on the official

data provided by BioCreative 2012’s organizers using offi-

cial metrics, are shown in Table 6. This table provides two

types of results:

(1) Triage results: the mean average precision obtained

when ranking documents (or MAP score).

(2) Entity recognition results: the recalls obtained when

attempting to recognize disease entities (Curated

Disease Hit Rate), chemical entities (Curated

Chemical Hit Rate) and gene products (Curated Gene

Hit Rate).

In Table 6, ToxiCat shows competitive results in the fol-

lowing subtasks: relevance ranking, disease curation and

chemical entity curation. From the results in Figure 6, it is

also possible to see that recognition of genes and diseases

in articles is usually more difficult than recognition of

chemical entities. According to the results in Table 6, our

gene recognition method (NormaGene) scores relatively

low compared with the ad hoc chemical and disease recog-

nition methods we developed for the competition. This

result suggests that it is difficult to accurately customize a

general purpose gene normalizer for a specific database

curation task, although NormaGene obtained competitive

results on the cross-species BioCreative III’s GN task (4).

Figure 1. Workflow of ToxiCat and dependencies with existing online services.

.............................................................................................................................................................................................................................................................................................
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We evaluated the effectiveness of our ad hoc terms rec-

ognizer for diseases using usual recall and precision metrics.

Our methods achieved a precision of 95% and a recall of

92% when tagging diseases in the training sample. On the

training data, our optimal model obtained an accuracy of

80.5%. Then, we applied this model on the official data and

obtained an accuracy of 77%, which suggests some moder-

ate overfitting phenomena of our disease recognizer.

Figure 6 shows the results of the competition for each

participating team. Our team (Team 120) was ranked #3

Figure 2. This is the starting point and also—if the user decides to click on the final questions generated by the system, see
Figure 5—the end point of the search and annotation process. Here, the user can select some PMIDs, which will be then sent to
ToxiCat (Figure 3) to be prioritized (Figure 4) and finally processed to generate an annotation (Figures 4 and 5).

Figure 3. In this figure, 2-acetylaminofluorene is provided as input chemical compound together with a list of articles (PMIDs)
selected in Figure 2. Users can go directly to this page if the PMIDs have been obtained from other sources.

.............................................................................................................................................................................................................................................................................................
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Figure 5. The user can request to visualize in the abstract the context of the annotation proposed in Figure 4. Toxicat tags genes/
proteins, chemicals and diseases in the abstract, providing a direct link to the CTD database for each of these entities. Finally,
ToxiCat generates a set of questions (‘More. . .’) based on the entities that were earlier extracted. Optionally, the user can then
return to the EAGLi’s question-answering engine to obtain more information. The user can also obtain a list of Gene Ontology
descriptors proposed by the GOCat Gene Ontology categorizer (http://eagl.unige.ch/GOCat/) based on the content of the PMID,
cf. last line of the table.

Figure 4. The three selected PMIDs are ranked according to the statistical estimate (Score) computed by the SVM binary classifier.
Each information extraction module (Gene, Chemical, Disease) provides here a list of descriptors for each PMID together with
some meta-data (Journal name, Title, etc.), which are used as features by the classifier.

Table 6. Comparative results of ToxiCat (Team 120) for the Task-I of BioCreative 2012

Chemical/number of articles Intermediate MAP score Curated Gene

Hit Rate

Curated Chemical

Hit Rate

Curated Disease

Hit Rate

Urethane/204 0.637 0.08 0.705 0.3

Phenacetin/86 0.831 0.203 0.676 0.5

Cyclophosphamide/154 0.716 0.117 0.747 0.582

.............................................................................................................................................................................................................................................................................................
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when adding together entity recall and mean average pre-

cision. Such a result seems satisfying considering that our

main work was to integrate existing components. However,

it is worth to observe that the official evaluation was

mainly driven by recall; therefore, it was theoretically pos-

sible to achieve top performances by providing low-quality

precision. Thus, Team 116 apparently reports on competi-

tive results, while in fact it underperforms most other com-

petitors when looking at precision (mean average

precision). This observation suggests that results submitted

by this team contained more relevant descriptors but it is

also possible that the results obtained by this team do con-

tain more irrelevant descriptors!

Although current results seem suggesting that text

mining can effectively help curators’ tasks by providing

access to more relevant contents, it is worth noticing that

the effectiveness of ToxiCat is obtained by specializing

some of the components. Indirectly, we defined an ‘aver-

age user’, while the real curation work might request a

more complex design. When designing the system, we

somehow customize a rather generic text processing pipe-

line (a search engine, EAGLi, a gene named-entity normal-

izer, NormaGene and several terminological resources such

as GPSDB) to answer the specific needs of CTD. Such a step

seems both rationale and empirically effective; however, it

questions the role of the end-user platform. Indeed, if the

system must help the professional annotator to curate CTD

by basically speeding up prioritization of articles, then a

system like ToxiCat might be suitable. On the opposite, if

the system should help curating non-usual contents or

novel chemical products, then the system is very likely in-

appropriate. Ultimately, if the system was to be used as the

sole capturing tool for CTD curators, then it may hinder the

annotation of new interacting genes, which are not yet

listed in CTD as by design non-CTD genes are penalized

by the system.

In conclusion, ToxiCat showed competitive performance,

in particular for the recognition of disease and chemical

compounds, but such an observation must be handled

carefully since precision of the annotation has not been

officially evaluated. More informative, the mean average

precision (MAP), which measures the ranking effective-

ness of ToxiCat, is also fairly competitive. MAP score

showed that the selected SVM model produced promising

results. Interestingly, the identification of pathologies

seems nearly as difficult as the recognition of genes and

gene products, while compared with gene and protein

names such entities have been largely neglected. Finally,

we plan to further investigate how a question-answering

engine can be integrated into a biocuration pipeline, in

particular to address situations where training data are

not available.

Figure 6. Aggregated scores of all participants in Track-I. ToxiCat is denoted under Team 120 (5).
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