
Copyright © 2022 The Korean Society of 
Critical Care Medicine 

This is an Open Access article distributed 
under the terms of Creative Attributions 
Non-Commercial License (https://
creativecommons.org/li-censes/by-nc/4.0/) 
which permits unrestricted noncommercial 
use, distribution, and reproduction in any 
medium, provided the original work is 
properly cited.

137https://www.accjournal.org

INTRODUCTION 

Sepsis remains a pressing global healthcare concern [1,2]. Moreover, sepsis and septic com-

plications following infection continue to grow worldwide [3,4]. Sepsis and septic shock lead 

to death in 20%–50% of cases [5,6]. Until the 1990s, the most frequent primary source of sepsis 

was the abdominal cavity, but in subsequent years, lung infections have become the main 

reason for the emergence of sepsis [7,8]. Currently, sepsis is most commonly caused by pneu-

monia; the less frequent causes of sepsis are intra-abdominal infection, primary bacteremia, 

catheter-inserted infections, urinary tract infections, etc. [9,10]. Moreover, sepsis in pneumo-

nia causes the highest mortality [11]. The bacterial strains that cause sepsis vary over time. 

Gram-negative organisms have become less common, and gram-positive infections have 

begun to cause sepsis more frequently [12,13]. 

Treatment for sepsis includes antibiotics, elimination of infection foci, and maintenance of 

vital functions and homeostasis [14,15]. Appropriate guidelines, protocols, and clinical rec-

ommendations are used for the diagnosis and treatment of sepsis [16-18]. However, they do 

not contain clear criteria for oxygen therapy [19,20]. At the same time, respiratory disorders 

in patients with sepsis are overt and have a complex character. The lack of oxygen therapy 

recommendations seems particularly intriguing given the relatively long history surrounding 

oxygen in medicine. More than 220 years ago, Thomas Beddoes started to use oxygen for 

the treatment of asthma, heart disease, and various other illnesses [21], and in 1885, George 
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Holtzapple published the results of using oxygen to treat pneu-

monia and established its role in the treatment of critical con-

ditions [22]. 

In sepsis, acute pulmonary injury develops in more than 

40% of cases, and acute respiratory distress syndrome de-

velops in 35% of patients [23]. Mortality rate due to the latter 

complication (approximately 45%) has remained relatively 

unchanged over the past 40 years [23,24]. Respiratory failure 

is the main cause of multiple organ dysfunction and failure. In 

critical conditions, there is a correlation between changes in 

central venous oxygen saturation (ScvO2; the percentage of ox-

ygen bound to hemoglobin [Hb] in blood returning to the right 

side of the heart) and the level of tissue hypoxia due to reduced 

oxygen delivery [23,24]. It is necessary to correct several pa-

rameters at once, such as cardiac output, blood Hb count, and 

arterial blood oxygen saturation, to improve oxygen delivery to 

tissues. In this case, it is necessary to achieve the target level of 

70% ScvO2 [25]. The complexity of correcting many interrelat-

ed parameters of gas metabolism in sepsis leads to ambiguous 

criteria for sepsis oxygen therapy. The purpose of this article 

is to compare and contrast experimental and clinical data on 

oxygen therapy in animals and humans, to discuss factors that 

can influence the success or failure of oxygen therapy for sep-

sis (OTS) in humans, and to provide some recommendations 

to reducing oxidative stress and preventing disseminated in-

travascular coagulation (DIC) in septic patients during oxygen 

therapy.  

HYPERBARIC OTS IN ANIMALS 

Experiments in rats and mice provide most of the experimen-

tal evidence regarding the efficacy of OTS in animal models. 

These experiments use different techniques for provoking 

sepsis, such as cecum ligation and puncture (CLP) and in-

tra-abdominal pathogen injections [26]. Animal experiments 

are necessary for many reasons, but the extrapolation of ex-

perimental data into clinical practice can be improper [27]. 

Dissimilarities in interactions between pathogen and host, 

anatomical and physiological differences, variable human 

translatability of causative pathogenic sepsis agents, and many 

other factors are obstacles to the application of animal data in 

the clinic [28,29]. In most experiments, OTC increases animal 

survival. In rat models with a mortality rate of 100% without 

treatment, intermittent hyperbaric oxygen therapy (HBOT; 

breathing oxygen in a pressurized chamber or tube) reduced 

the mortality rate to 8% (P<0.005); in a model with a mortality 

rate of 79% without treatment, intermittent HBOT reduced 

the rate to 23% (P<0.005) [30]. It is easier to experimentally 

demonstrate the effectiveness of HBOT in different experimen-

tal models than to establish the optimal HBOT time [31]. Early 

HBOT (98% oxygen under pressure up to 2.4 atmospheres 

within 1 hour after CLP) reduces the systemic inflammatory 

response [32]. The protective role of HBOT in CLP-induced 

sepsis may be related to the expression of interleukin (IL)-10 

by peritoneal macrophages [33]. Other mechanisms describ-

ing the positive action of HBOT are also possible [34]. 

These mechanisms include the “superinduction” of heme 

oxygenase-1, inhibition of nitric oxide (NO) production and 

prevention of lung damage caused by lipopolysaccharides, re-

duction of inflammatory mediators due to HBOT, modulation 

of nuclear factor-kappa B activity and inhibition of excessive 

myeloperoxidase production, suppression of bacterial growth 

in the small intestine, preservation of erythrocyte deformabil-

ity, and acceleration of free radical acceptor synthesis to miti-

gate the effects of reactive oxygen species (ROS). Routine use 

of HBOT in addition to antibiotic therapy may increase surviv-

al in sepsis [35]. In addition, ozone therapy is highly effective 

in increasing animal survival after intraperitoneal pathogen 

inoculation [36]. HBOT and ozone therapy reduce oxidative 

stress and myeloperoxidase synthesis, decrease the concentra-

tion of tumor necrosis factor (TNF)-α and IL-1β, and prevent 

lung damage [36]. In CLP-induced sepsis, the use of 98% O2 (2.4 

atmospheres) provides a 52% survival rate compared to 13% 

in the control group [32]. The positive effect is represented by 

a decrease in the expression of TNF-α, IL-6, and IL-10 [32,37]. 

Thus, most experimental data demonstrates the beneficial ef-

fects of oxygen therapy in the treatment of sepsis. 

OTS IN HUMANS 

Analysis of the data available from Medline, the Cochrane 

Database of Systematic Reviews, and other sources indicated 

that different aspects of HBOT optimal use for sepsis treatment 

need further research [38]. More research is also needed re-

garding the use of normobaric oxygen (adjuvant oxygenation 

by nasal cannula or facemask at one atmosphere of pressure), 

which has the potential to be as effective as the use of antibi-

otics [39]. Normobaric oxygen should be used immediately 

after the development of sepsis; otherwise, it will not increase 

patient survival [40]. At the same time, other aspects of OTS 

are also important and should also be studied [41]. Data on 

the partial pressure of oxygen (PaO2) in arterial blood indicate 
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that both high and low PaO2 can increase sepsis mortality [42]. 

Even though hyperoxia stimulates the production of ROS, 

HBOT is used to treat sepsis in humans [43-45]. Oxygen ther-

apy reduces mortality by stimulating the anti-inflammatory 

response and suppressing the pro-inflammatory response 

[30,46]. Although early HBOT has a positive effect on anti-in-

flammatory parameters and mortality, it is not known whether 

delayed oxygen therapy prevents the development of septic 

shock [47,48]. Delayed HBOT promotes the oxidation of suc-

cinate to fumarate in the mitochondria and prevents the accu-

mulation of succinate, which leads to organ damage in sepsis 

[49]. Although theoretical explanations for the benefits of OTC 

are numerous, the adequate practical use of oxygen in sepsis 

does not have precise criteria An individualized approach is 

necessary to decrease the risk of oxygen injury to the lungs. 

Oxygenation of 90% and tolerable hypercapnia are considered 

acceptable [50]. 

In contrast, liberal oxygen therapy induces hyperoxemia in 

most patients and decreases their survival. Mild hyperoxe-

mia decreases oxygen delivery [51]. High oxygen levels in the 

central venous blood (ScvO2, 88%–100%) increase mortality 

in patients with sepsis [52]. High oxygen supplementation 

(FiO2>65%) and hypoxemia (PaO2<7 kPa) can increase in-hos-

pital mortality [53]. Short-term hyperoxia (<7–10 minutes) can 

cause atelectasis [54]. Providing normoxemia may reduce the 

negative effects of hyperoxemia in sepsis [55]. HBOT can pro-

voke a depletion of leukocytes and platelets and cause DIC [56]. 

Although liberal oxygen therapy has been a cornerstone of 

therapy for sepsis, alertness in hyperoxia necessitates titration 

of OTS to normoxia [57]. Hyperoxia also increases mortality 

in patients who achieve normoxia after hospitalization and 

therefore requires targeting for normoxia after the initiation of 

mechanical ventilation, which may improve patient outcomes 

[58]. Hyperoxia can cause damage to the alveoli, pulmonary 

edema, and a systemic inflammatory response; therefore, 

targets should be chosen to reduce oxygenation [59,60]. Hy-

peroxia also changes the composition of surfactant proteins; 

suppresses mucociliary clearance; causes vasoconstriction; 

and decreases coronary blood flow, cardiac output, and micro-

vascular perfusion [61]. On the other hand, until now, the idea 

of “acceptable hypoxemia” has not been tested [62]. But if not 

corrected, tissue hypoxia can cause multiple organ dysfunc-

tion and death. As a result, OTS is performed in many patients 

even without documented hypoxia. Hypoxia significantly in-

creases mortality, which increases in parallel with PO2 [63]. 

Thus, OTS may worsen some situations rather than improve 

survival [42,64]. Oxygen is a medicine: it has both the desired 

positive effects and dangerous side effects. The balance be-

tween the positive and negative effects of higher and lower 

doses of OTS is still unknown [65-67]. 

OXIDATIVE STRESS IN SEPSIS AND OXYGEN 
THERAPY 

Given that oxygen is a drug, its narrow range of therapeutic 

efficacy and safety in sepsis should be recognized. The toxic ef-

fects of hyperoxia are well known; particularly, high baromet-

ric pressure of oxygen (more than two atmospheres) “poisons” 

the brain, causing the Paul Ebert effect: nausea, blurred vision, 

coughing, trouble breathing, headache, dizziness, muscle 

twitching, irritability, disorientation, and convulsions among 

other effects [68-70]. Although oxygen therapy is recommend-

ed for many specific pathologies and clinical situations, for 

example, necrotizing fasciitis, chronic wounds, diabetic reti-

nopathy, and carbon monoxide poisoning [71-74], the use of 

oxygen for sepsis requires a cautious approach. Bacteremia is 

one of the reasons that increased caution should be taken sur-

rounding the use of oxygen in sepsis. Bacteremia complicates 

OTS because it increases oxidative stress in the blood plasma. 

The increase in oxidative stress is associated with a mecha-

nism for removing bacterial infection from the bloodstream in 

humans, the main mechanism for doing so being oxycytosis 

[75]. This occurs in arterial blood, where red blood cells kill 

bacteria through the oxygen released by oxyhemoglobin. Usu-

ally, the amount of oxygen released is limited by the amount 

required to kill bacteria, and oxycytosis does not lead to sig-

nificant oxidation of blood plasma or a decrease in its redox 

potential [76]. 

The situation changes with sepsis. The latter is primari-

ly caused by the so-called sepsis-causing bacteria that can 

survive oxidation. Being resistant to active oxygen and ROS, 

they provoke red blood cells to release the maximal possible 

amount of oxygen from oxyhemoglobin (Figure 1). The re-

leased oxygen dissolves in the blood plasma. Oxygen therapy, 

especially HBOT, raises the quantity of dissolved oxygen in 

the blood plasma [58-61]. The increased concentration of 

dissolved oxygen causes oxidation of plasma components 

(proteins, lipids, hormones, amino acids, peptides, vitamins, 

etc.),depletion of the antioxidant capacity of plasma, and 

platelet activation [56,76]. Oxidation of plasma components 

causes disruption of hormonal regulation and homeostasis 

[77]. Depletion of the antioxidant capacity of plasma causes 
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damage to cell membranes and DNA [78]. Oxygen dissolved 

in blood plasma activates platelets, which can cause DIC after 

activation by oxygen [79-82]. Activated platelets also generate 

ROS [83] following glycoprotein (GP) IIb/IIIa receptor stimu-

lation, arachidonic acid metabolism, glutathione (GSH) cycle, 

phosphoinositide metabolism, etc [84,85]. As a result, ROS 

generation continues as a chain reaction. Sepsis-causing bac-

teria penetrate the erythrocyte membranes and cause Hb leak-

age and hemolysis [77,79]. In turn, intravascular hemolysis ac-

tivates platelets due to direct activation by Hb, increased ROS, 

nitrogen oxide (NO) removed by liberated Hb, and the release 

of intra-erythrocyte adenosine diphosphate [86]. Platelets are 

also activated by extracellular neutrophil traps, histones, and 

aggregates of platelets and leukocytes [87-89]. Thrombin also 

activates platelets. With sepsis, an overproduction of thrombin 

occurs, which increases inflammation. Thrombin activates 

platelets via GPIbα and protease-activated receptors PAR1 and 

PAR4 [90]. Thrombin generation occurs through the fibrin net-

work, extracellular neutrophil traps, and histones [91]; expres-

sion of encoded tissue factor, cytokines, and microparticles 

by endothelial cells [92]; initiation of bacterial polyphosphate 

via the “contact” pathway [93]; and invasion into endothelium 

by bacteria and, as a result, platelet activation (via FcγRIIa, 

αIIbβ3, and platelet factor-4) [94]. During infection, thrombin 

generation can be stimulated by many other pathways as well 

[95,96]. 

Thus, the mechanism of bacteria-killing in the bloodstream 

by oxygen released from oxyhemoglobin (oxycytosis) demon-

strates one of the risks of using oxygen in the treatment of 

sepsis. Excessive release of oxygen from erythrocytes, together 

with the use of OTS, can significantly increase the amount of 

oxygen dissolved in blood plasma. Dissolved oxygen causes 

many harmful effects, and one of the most serious complica-

tions is platelet activation, which can initiate DIC. Although 

oxycytosis and OTS alone can cause DIC. Together, they do 

so more quickly and easily. HBOT for sepsis dissolves more 

oxygen in the blood than normobaric OTS. Therefore, the use 

of HBOT in sepsis is more dangerous than that of normobaric 

OTS. 

HENRY’S LAW AND OXYGEN THERAPY IN 
SEPSIS 

HBOT can have unexpected effects on oxygen transport. It is 

known that blood carries oxygen in two forms: dissolved in 

plasma and bound to Hb. Dissolved oxygen is not involved in 

oxygen transfer due to its low solubility. Arterial blood with 

100 mm Hg PO2 dissolves only 0.3 ml of O2 per 100 ml of blood, 

while 100 ml of Hb contains 20 ml of oxygen [97]. Dissolved 

oxygen takes part in oxygen transport when 100% oxygen is 

inhaled, which typically raises alveolar PO2 to over 600 mm Hg 

and increases the concentration of dissolved oxygen from 0.3 

to 2 ml in 100 ml of blood. This amount of dissolved oxygen is 

40% of the difference in arterial-venous oxygen concentrations 

of 5 ml O2/100 ml of blood [98]. Oxygen dissolves in blood 

according to Henry’s law [99,100]. The law says that the quan-

tity of O2 dissolved in blood is proportional to PO2:[O2]=k PO2, 

where k = (0.003 ml O2/100 ml of blood)–1 mm Hg–1 (Figure 2). 

The oxygen concentration in arterial blood correlates with the 

partial pressure of inhaled O2, the intensity of ventilation and 

gas exchange, the level of Hb, and the affinity of Hb for O2 [101]. 

At a high partial pressure of inhaled O2, the role of dissolved 

oxygen in O2 transfer increases, and the role of Hb decreases 

[102]. At a PaO2 of more than 2.2 atmospheres, Hb ceases to 

Figure 1. Oxidation of plasma components, platelet activation and depletion of the antioxidant capacity of blood plasma by oxycytosis. ROS: 
reactive oxygen species; DIC: disseminated intravascular coagulation.
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transport oxygen to the tissues, and as a result, tissue respi-

ration is provided by oxygen dissolved in the blood plasma 

[103]. If the PaO2 for breathing is three atmospheres, the blood 

dissolves about 6 vol% oxygen (6 ml of O2 in 100 ml of plasma), 

and this amount of oxygen corresponds to the normal oxygen 

consumption of the human body (arteriovenous oxygen differ-

ence) when erythrocytes pass through the capillaries without 

emitting oxygen and not binding carbon dioxide [102-104]. As 

a result, a paradoxical situation may develop: the more oxygen 

the patient breathes under pressure, the less oxygen is deliv-

ered to the tissues and the less carbon dioxide is removed from 

the tissues (Figure 3). 

Many publications show that hyperoxia increases sepsis 

mortality [52-67]. It is difficult to recommend a specific oxygen 

therapy policy covering all clinical situations, so OTS should 

be used with caution. In patients with sepsis, along with clini-

cal, instrumental, and laboratory parameters, plasma oxidative 

stress and blood clotting should also be monitored.  

MARKERS OF OXIDATIVE STRESS AND 
PLATELET ACTIVATION 

In sepsis, the markers of oxidative stress indirectly show the 

intensity of oxygen release by erythrocytes during oxycytosis 

and the amount of dissolved oxygen in the blood plasma. 

Oxidative stress can be detected by finding oxidants, such as 

free radicals; testing the level of antioxidants; measuring oxi-

dation products, including protein carbonyl, F2-isoprostanes, 

malondialdehyde, and 8-oxo-20-deoxyguanosine (8-OHdG); 

and measuring the redox balance check (ratio of reduced 

GSH/oxidized GSH). It is reasonable to test different oxidative 

markers simultaneously [105]. 

In clinical practice, oxidative stress is often detected by sep-

arate testing of human serum albumin, plasma proteins, vita-

min C, etc. Serum albumin is the main antioxidant against ROS 

[106]. It contains a cysteine residue (Cys34) that is oxidized 

by the formation of a disulfide bond with free cysteine amino 

acids [107]. Oxidative damage to proteins increases the level 

of carbonylation [108]. This biomarker is formed early and is 

stable [109]. Carbonyl groups are formed in various ways, for 

example, by cleavage of the main protein chain, in particular at 

proline, lysine, and arginine side chains, , and by lysine deam-

ination [110]. The most commonly used methods for testing 

carbonyl groups are enzyme-linked immunosorbent assay 

and high-performance liquid chromatography HPLC. They 

are popular due to their high throughput and standardization 

[111]. 

The antioxidant system includes superoxide dismutase, 

GSH peroxidase, catalase, and non-enzymatic antioxidants 

(ascorbic acid, tocopherols, bilirubin, GSH, etc.). Ascorbic acid 

(vitamin C) is useful for the evaluation of oxidative stress. It 

scavenges free radicals, hydroxyl radicals, hydrogen peroxide 

(H2O2), singlet oxygen, and others [112,113]. For the assess-

ment of oxidative stress in vivo, new reliable and simple tests 

have been proposed and adapted for automatic analyzers. 

These tests allow for fast processing of many samples and 

avoid manual handling of samples and reagents. 

Given that oxidative stress activates platelets and, thus, can 

Figure 2. Henry’s law and the dissolution of oxygen in blood plasma.

Figure 3. Gas transport by erythrocytes in normal physiology (A) and 
hyperbaric oxygen therapy (B).

A

B
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trigger DIC [56,76], antiplatelet therapy for sepsis is imperative. 

It is necessary to constantly check the condition of blood coag-

ulation, with particular attention to tests for platelet function, 

for adequate antiplatelet therapy. Numerous tests show plate-

let function. Monitoring of antiplatelet therapy and diagnosis 

of platelet dysfunction are necessary to assess the risk of DIC 

and bleeding [114]. Moreover, markers of platelet activation 

can help predict sepsis [115]. 

Born’s test, developed in the 1960s, was the first test to diag-

nose platelet function. Aggregometry of light transmission in 

platelet-rich plasma reveals platelet aggregation in response to 

various agents causing aggregation in vitro [116]. In the 1980s, 

other tests of platelet function entered clinical practice, such 

as ex vivo flow cytometry, measurement of nucleotides and 

platelet-specific compounds, aggregometry of whole blood 

platelets, etc. [117]. Platelets are also easily activated during 

blood sampling and blood manipulation [118]. New, simpler, 

and more reliable platelet function tests are currently being 

developed. They provide testing of platelet function directly 

at the point of care or at the patient’s bedside and are also 

becoming available in general laboratories, hospitals, and in 

everyday practice [119]. Currently, various assays are used to 

monitor antiplatelet therapy, including the VerifyNow P2Y12 

assay, Multiplate analyzer, VASP-P (vasodilator-stimulated 

phosphoprotein-phosphorylation), PFA-100/200 (platelet 

function analyzer), and others. They overcame the problems 

of previous tests, such as Born’s aggregometry. Monitoring an-

tiplatelet therapy in OST is necessary to make adequate thera-

peutic decisions and control the treatment of sepsis [119]. 

It is important to be aware of the risks of OTS and to predict 

possible complications before they begin. Some preventive 

measures to reduce the risk of DIC may be prudent. Before and 

during oxygen therapy, certain medications may be required 

to increase the antioxidant potential of blood plasma and to 

prevent platelet activation and aggregation. 

NEUTRALIZATION OF ROS IN PLASMA AND 
INCREASING THE ANTIOXIDANT POTENTIAL 
OF PLASMA 

Innate immune mechanisms for clearing the bloodstream of 

bacterial infection include oxycytosis - the destruction of bac-

teria by oxygen released from erythrocytes [75-77]. The bac-

teria that cause sepsis are resistant to oxygen, and red blood 

cells release the maximum amount of oxygen. Excess oxygen 

depletes the antioxidant capacity of plasma and causes redox 

imbalances, in particular, a decrease in GSH levels. GSH pro-

vides protection against oxidative stress. It is synthesized from 

cysteine, glycine, and glutamate [105]. A decrease in plasma 

GSH activity increases sepsis mortality [106,107]. In plasma, 

GSH not only traps ROS but also removes toxins and drugs 

[108]. GSH is also depleted as sepsis progresses to septic shock 

[109]. To prevent DIC, septic shock, and multiple organ failure 

(MOF), GSH should be included in sepsis therapy as soon as 

infection enters the bloodstream and oxycytosis begins. There 

are currently no tests to detect the early stages of bacteremia 

and oxycytosis, and GSH therapy should be started in conjunc-

tion with antibiotic therapy as soon as sepsis is suspected [105-

107]. The chemical structure of synthetic GSH is similar to that 

of natural GSH produced in the human body, so overdose is 

rare. GSH is non-toxic; it has very few side effects and interacts 

weakly with some drugs, such as tetracycline, sulfanilamide, 

and vitamin B12. Intramuscular injections of GSH (600 mg in 

4 ml of 0.9% NaCl) are possible, but intravenous infusions of 

GSH are preferred. The total dose of GSH depends on the de-

gree of plasma redox potential depletion [106-108]. GSH can 

be used with several antioxidant vitamins, such as vitamins C, 

E, and A. 

Vitamin C (ascorbic acid) can be used to increase the redox 

potential of plasma alone or together with GSH and vitamins 

A and E. As an antioxidant vitamin, ascorbic acid is preferred 

over vitamin E and vitamin A due to its water solubility and 

low toxicity. Humans cannot synthesize vitamin C, while other 

animals rapidly increase their production during oxidative 

stress [120]. Vitamin C is a neuroprotector, immunomodulator, 

and cofactor for the synthesis of vasopressors [121]. High doses 

of vitamin C have been used for many years in complementa-

ry and alternative medicine [122]. Vitamin C has a protective 

effect against oxidative stress in sepsis and septic shock [123]. 

High doses of vitamin C reduce the degree of multiple organ 

failure [124]. In a double-blind, randomized clinical trial, 28-

day mortality was decreased following vitamin C administra-

tion [125,126]. Vitamin C in combination with thiamine and 

hydrocortisone also significantly reduces sepsis mortality [122]. 

Some clinicians began using ascorbic acid in their daily prac-

tice for the treatment of sepsis before testing for ascorbic acid 

in clinical trials [127]. Early studies used 1 to 2 g intravenous 

doses of ascorbic acid every 8 hours. The high dose of ascor-

bic acid (1,584 mg/kg/day) was also well tolerated [126]. The 

antioxidant effect of ascorbic acid is dose-dependent and is 

maximal at plasma concentrations >175 mg/L [128]. Optimal 

doses for intravenous infusion are approximately 10 g per day 
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but may be higher [126-128]. High plasma concentrations of 

ascorbic acid can only be achieved by intravenous infusion, 

not oral administration [127]. 

High doses of vitamin C can cause mild renal impairment 

and glucose-6-phosphate dehydrogenase deficiency. Calcium 

oxalate nephropathy is a rare, potentially toxic effect of vitamin 

C. Side effects are dose-dependent, but no adverse clinical 

reactions have been reported in most patients and healthy 

volunteers [121-123]. It is possible for ascorbic acid to become 

a standard component of sepsis therapy as more data are un-

covered [128]. 

There are conflicting publications regarding the use of ret-

inol (vitamin A), tocopherols (vitamin E), and vitamin D in 

the treatment of sepsis and septic shock [129-138]. The use 

of these vitamins for sepsis requires further study. Again, it 

should be noted that antioxidant therapy for the prevention of 

DIC should be carried out before platelet activation by oxygen 

and ROS; otherwise, therapy may be less effective or even inef-

fective. 

PREVENTION OF PLATELET AGGREGATION 

Neutralizing oxygen and ROS in plasma and increasing plasma 

redox potential can prevent platelet activation that causes DIC. 

However, if antioxidant therapy fails and platelet activation 

occurs, early anticoagulant therapy is indispensable [139]. The 

state of coagulation must be quickly and repeatedly assessed to 

identify the initiation of DIC syndrome [140]. Particular atten-

tion should be paid to platelets [141,142]. Intensive anticoag-

ulant therapy reduces in-hospital mortality [143]. Antiplatelet 

medications prevent DIC and reduce mortality or complica-

tions in critically ill patients [144-146]. Antiplatelet therapy 

before hospitalization and early targeted therapy reduces the 

risk of DIC [147]. In experimental models of sepsis, aspirin or 

P2Y12 inhibitors prevent organ failure and mortality without 

increasing bleeding [148]. Platelet formation can be inhibit-

ed either by aspirin (acetylsalicylic acid), which suppresses 

COX-1activity and blocks the synthesis of thromboxane A2, 

or by clopidogrel and ticagrelor, which stop platelet activation 

induced by adenosine diphosphate [149]. Aspirin is a cheap 

and relatively safe drug at low doses for platelet inhibition that 

can effectively reduce mortality from sepsis [150,151]. Aspirin 

can also be used in low-grade DIC treatment [152]. Low-dose 

aspirin decreases the need for intensive care [153,154]. A large 

study of 7,945 intensive care unit (ICU) patients showed the 

effectiveness of aspirin for increasing sepsis patient survival 

[155]. Another study analyzed 886 patients with sepsis and 

found that aspirin significantly reduced mortality in ICUs and 

hospitals [156]. On the other hand, a recent study has shown 

that daily low-dose aspirin treatment did not reduce deaths as-

sociated with sepsis in community-dwelling older adults [157]. 

Clopidogrel and ticagrelor may be alternatives to aspirin 

to prevent DIC. These antiplatelet drugs may become a new 

approach to the prevention of DIC and multiple organ failure 

[158,159]. Ticagrelor inhibits platelet aggregation faster and 

more efficiently than clopidogrel [160]. The mortality risk is 

lower with ticagrelor therapy compared with clopidogrel ther-

apy [161]. Ticagrelor also inhibits the reuptake of adenosine. 

Clopidogrel and other thienopyridines do not affect adenosine 

metabolism [162]. 

Heparin can also be used to prevent DIC; it is not an anti-

platelet agent. The anticoagulant effect of heparin is deter-

mined by the activation of antithrombin III, which inactivates 

thrombin, activated factor X (factor Xa), and other proteases 

[163]. Heparin can reduce DIC and MOF [164]. It decreases 

mortality in sepsis [165]. Improvement of the state of hyper-

coagulability in sepsis with heparin reduces the incidence of 

DIC or multiple organ failure and also reduces overall ICU stay 

[166]. Heparin decreases mortality in sepsis without causing 

bleeding [167]. 

DISCUSSION 

The results of oxygen therapy in the experimental treatment of 

sepsis in animal models contradict the results of the use of oxy-

gen in clinical practice. HBOT in experimental sepsis increases 

survival, reduces oxidative stress, decreases the concentration 

of TNF-α and IL-1β, prevents lung damage, and has other pos-

itive effects by suppressing the expression of TNF-α, IL-6, and 

IL-10 [20-27]. In contrast to experimental data, clinical data on 

the use of oxygen in patients with sepsis are not exactly defini-

tive both regarding hyperbaric and normobaric oxygen. When 

using normobaric oxygen as part of sepsis treatment, both an 

increase and a decrease in the mortality rate were recorded 

[30,40,42,46]. Data on the use of hyperbaric oxygen in sepsis 

are also inconsistent. Early HBOT may have a positive effect 

on anti-inflammatory parameters and mortality [47,48], while 

delayed HBOT can prevent organ damage from sepsis [49]. 

However, the majority of clinical studies [51-64] demon-

strate that HBOT can increase mortality by causing decreased 

oxygen delivery to tissues; alveolar damage, pulmonary ede-

ma, and atelectasis; vasoconstriction, decreased coronary 
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blood flow, cardiac output, and microvascular perfusion; and 

DIC. Perhaps the negative effects of hyperbaric oxygenation 

in sepsis treatment can be partially explained by Henry’s law, 

the presence of additional oxidative stress in sepsis, and a de-

crease in the redox potential of plasma due to oxycytosis. Thus, 

neutralizing ROS in plasma and increasing the antioxidant 

potential of plasma to mitigate some of the negative effects of 

HBOT through the use of GSH, ascorbic acid, and other anti-

oxidants may be reasonable. As for DIC syndrome, which can 

be triggered by sepsis and HBOT, early anticoagulant therapy 

and platelet inactivation seem to be indispensable. 

The results of the studies carried out to date on the use of 

oxygen in the complex therapy of sepsis are contradictory and 

do not assist the development of effective and safe protocols 

for the use of oxygen in sepsis treatment; on the other hand, 

the continuation of research and the further accumulation of 

statistical data in the form in which it happened before will 

hardly help the development of adequate protocols for oxygen 

therapy with respect to sepsis treatment. The only thing that 

can be more or less confidently asserted from the data accu-

mulated to date is that normobaric OTS is safer than HBOT. An 

individualized approach to OTS has many nuances, requires a 

physician’s personal experience, and can be difficult to imple-

ment in modern conditions of treating patients by a group of 

doctors. Perhaps new innovative basic theoretical and clinical 

research is needed to provide a breakthrough in the optimi-

zation of OTS and to ensure the development of appropriate 

optimal protocols. 

CONCLUSION 

Sepsis causes a wide range of respiratory disorders that require 

oxygen therapy. The use of oxygen therapy in animal models of 

sepsis is effective and improves animal survival in the majority 

of experiments. The use of different protocols for oxygen ther-

apy in patients with sepsis gives less unequivocal results. Oxy-

gen therapy, especially HBOT, increases the concentration of 

dissolved oxygen in plasma, depletes plasma antioxidant po-

tential, suppresses oxygen transport by erythrocytes, decreases 

carbon dioxide removal from the tissues, activates platelets, 

and increases the risk of thrombosis and DIC. Oxygen therapy 

should be performed under the control of plasma oxidative 

stress tests. Oxidative stress should be corrected by changing 

the parameters of oxygen therapy and the use of antioxidants 

(GSH, vitamins C, A, and E). During oxygen therapy, the blood 

coagulation state should be constantly tested, paying special 

attention to platelet function tests. If necessary, anticoagulants, 

such as aspirin, clopidogrel, ticagrelor, and heparin, should be 

used after sepsis diagnostics and during oxygen therapy. 
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