
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



 www.thelancet.com/digital-health   Vol 4   July 2022 e532

Articles

Lancet Digit Health 2022; 
4: e532–41

Published Online 
May 16, 2022 
https://doi.org/10.1016/ 
S2589-7500(22)00048-6

*Co-first authors

†Members are listed at the end 
of the Article

Department of Medicine, UNC 
Chapel Hill School of Medicine, 
Chapel Hill, NC, USA 
(E R Pfaff PhD); Palantir 
Technologies, Denver, CO, USA 
(A T Girvin PhD); Section of 
Informatics and Data Science, 
Department of Pediatrics 
(T D Bennett MD, M G Khan MD) 
and Section of Critical Care 
Medicine, Department of 
Pediatrics (T D Bennett), 
Colorado Center for 
Personalised Medicine, Division 
of Biomedical Informatics & 
Personalized Medicine, 
Department of Medicine 
(I M Brooks PhD), Department 
of Biostatistics and 
Informatics, Colorado School of 
Public Health 
(J P Dekermanjian MS), Division 
of Pulmonary and Critical Care 
Medicine, Department of 
Medicine (S E Jolley MD), and 
Center for Health AI 
(J A McMurry MPH, A Walden MS, 
Prof M A Haendel PhD), 
University of Colorado 
Anschutz Medical Campus, 
Aurora, CO, USA; Carolina 
Health Informatics Program, 
University of North Carolina at 
Chapel Hill, Chapel Hill, NC, 
USA (A Bhatia MS); Department 
of Nutrition, Metabolism, and 
Rehabilitation Sciences, 
University of Texas Medical 
Branch, Galveston, TX, USA 
(R R Deer PhD); The OHDSI 
Center at the Roux Institute, 
Northeastern University, 
Portland, ME, USA 
(K Kostka MPH); Department of 
Biomedical Informatics, Stony 
Brook Cancer Center, Stony 
Brook University, Stony Brook, 
NY, USA (R Moffitt PhD); 
Section of Biomedical 

Identifying who has long COVID in the USA: a machine 
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Summary
Background Post-acute sequelae of SARS-CoV-2 infection, known as long COVID, have severely affected recovery 
from the COVID-19 pandemic for patients and society alike. Long COVID is characterised by evolving, heterogeneous 
symptoms, making it challenging to derive an unambiguous definition. Studies of electronic health records are a 
crucial element of the US National Institutes of Health’s RECOVER Initiative, which is addressing the urgent need to 
understand long COVID, identify treatments, and accurately identify who has it—the latter is the aim of this study.

Methods Using the National COVID Cohort Collaborative’s (N3C) electronic health record repository, we developed 
XGBoost machine learning models to identify potential patients with long COVID. We defined our base population 
(n=1 793 604) as any non-deceased adult patient (age ≥18 years) with either an International Classification of Diseases-10-
Clinical Modification COVID-19 diagnosis code (U07.1) from an inpatient or emergency visit, or a positive SARS-CoV-2 
PCR or antigen test, and for whom at least 90 days have passed since COVID-19 index date. We examined demographics, 
health-care utilisation, diagnoses, and medications for 97 995 adults with COVID-19. We used data on these features 
and 597 patients from a long COVID clinic to train three machine learning models to identify potential long COVID 
among all patients with COVID-19, patients hospitalised with COVID-19, and patients who had COVID-19 but were 
not hospitalised. Feature importance was determined via Shapley values. We further validated the models on data 
from a fourth site.

Findings Our models identified, with high accuracy, patients who potentially have long COVID, achieving areas under 
the receiver operator characteristic curve of 0·92 (all patients), 0·90 (hospitalised), and 0·85 (non-hospitalised). 
Important features, as defined by Shapley values, include rate of health-care utilisation, patient age, dyspnoea, and 
other diagnosis and medication information available within the electronic health record.

Interpretation Patients identified by our models as potentially having long COVID can be interpreted as patients 
warranting care at a specialty clinic for long COVID, which is an essential proxy for long COVID diagnosis as its 
definition continues to evolve. We also achieve the urgent goal of identifying potential long COVID in patients for 
clinical trials. As more data sources are identified, our models can be retrained and tuned based on the needs of 
individual studies.

Funding US National Institutes of Health and National Center for Advancing Translational Sciences through the 
RECOVER Initiative.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Acute COVID-19 affects multiple organ systems, 
including the lungs, digestive tract, kidneys, heart, and 
brain.1,2 The long-term clinical consequences of 
COVID-19 are still poorly understood and are collectively 
termed post-acute sequelae of SARS-CoV-2 infection, 
known as long COVID.3 At this time, this disease is 
referred to by a number of terms that may or may not 
represent the same constellation of signs and symptoms; 
here, we consider post-acute sequelae of SARS-CoV-2 
infection synonymous with long COVID. Long COVID 
can be broadly defined as persistent or new symptoms 
more than 4 weeks after severe, mild, or asymptomatic 
SARS-CoV-2 infection.4,5 Characterising, diagnosing, 

treating, and caring for patients with long COVID has 
been challenging due to heterogeneous signs and 
symptoms that evolve over long trajectories.6 The effect 
of long COVID on patients’ quality of life and ability to 
work can be profound.

The wide range of symptoms attributed to long COVID 
was highlighted in an extensive patient-led survey,7 which 
conducted deep longitudinal characterisation of long 
COVID symptoms and trajectories in patients with 
suspected and confirmed COVID-19 who reported illness 
lasting more than 28 days.8 Evaluation and harmonisation 
of patient-reported and clinically reported long COVID 
features using the Human Phenotype Ontology also 
revealed heterogeneous signs and symptoms, supporting 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00048-6&domain=pdf
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the hypothesis that a complex collection of patient-
reported and clinically reported features is necessary to 
correctly classify and manage patients with long COVID.9 
WHO recently published its own case definition of post 
COVID-19 condition (WHO’s term) that includes 
12 criteria, which similarly require a wide variety of 
patient-declared and clinical information.10

To gain an understanding of the complexities of long 
COVID, it will be necessary to recruit a large and diverse 
cohort of research participants. The US National 
Institutes of Health (NIH)’s RECOVER initiative11 aims 
to recruit thousands of participants in the USA to answer 
critical research questions about long COVID, such as 
understanding pregnancy risk factors, cognitive 
impairment and mental health, and outcome disparities 
and comorbidities. Efficient recruitment of cohorts of 
this size and scope often entails leveraging computable 
phenotypes12–14 (ie, electronic cohort definitions) to find 
sufficient numbers of patients meeting a study’s 
inclusion criteria. Poor cohort definition can result in 
poor study outcomes.15,16 For long COVID, as with other 
novel conditions, the absence of an unambiguous 
consensus definition and the heterogeneity of the 
condition’s presentation poses a substantial challenge to 
cohort identification. Machine learning can help to 
address this challenge by using the rich longitudinal data 
available in electronic health records to algorithmically 
identify patients similar to those in a long COVID gold 
standard.

The National COVID Cohort Collaborative (N3C)17 
offers a data-driven solution to quantifying the features 

of long COVID and an appropriate hypothesis-testing 
scenario for a machine learning approach.18 N3C is an 
NIH National Center for Advancing Translational 
Sciences (NCATS)-sponsored data and analytic environ-
ment which compiles and harmonises longitudinal 
electronic health record data from 65 sites in the USA 
and over 8 million patients who have tested positive for 
SARS-CoV-2 infection; have symptoms that are 
consistent with a COVID-19 diagnosis; or are 
demographically matched controls who have tested 
negative for SARS-CoV-2 infection (and have never 
tested positive) to support comparative studies.19 We 
aimed to build a foundation for a robust clinical 
definition of long COVID by linking curated lists of 
patients who have attended a long COVID clinic from 
three N3C sites with data in the N3C repository. We used 
the linked dataset to train and test three machine 
learning models and applied those models to define a 
nationwide US cohort of potential patients with long 
COVID, and to derive a list of prominent clinical features 
shared among that cohort to help to identify patients for 
research studies and target features for further 
investigation.

Methods
Study design and base population
To model long COVID, we used electronic health record 
data integrated and harmonised in Palantir Foundry 
inside the secure N3C Data Enclave to identify unique 
health-care utilisation patterns and clinical features 
among patients with COVID-19.

Research in context

Evidence before this study
Initial characterisation of patients with long COVID has 
contributed to an emerging clinical understanding, but the 
substantial heterogeneity of disease features makes 
diagnosing and treating this new disease challenging. This 
challenge is urgent to address, as many patients report that 
long COVID symptoms are debilitating and severely affecting 
their ability to engage in activities of daily life. No formal 
literature review was done. Few studies have used large-scale 
databases to understand concordance of clinical patterns and 
generate data-driven definitions of long COVID. The US 
National Institutes of Health’s RECOVER programme has 
invested in electronic health record studies to understand the 
risk factors for, and mechanisms behind, long COVID, 
accurately identify individuals with long COVID, and prevent 
and treat long COVID.

Added value of this study
The National COVID Cohort Collaborative (N3C) harmonises 
patient-level electronic health record data from over 8 million 
demographically diverse and geographically distributed 
patients. Here, we describe highly accurate XGBoost machine 

learning models that use N3C to identify patients with 
potential long COVID, trained using electronic health record 
data from patients who attended a long COVID specialty clinic 
at least once. The most powerful predictors in these models 
are outpatient clinic utilisation after acute COVID-19, patient 
age, dyspnoea, and other diagnosis and medication features 
that are readily available in the electronic health record. The 
model is transparent and reproducible, and can be widely 
deployed in individual health-care systems to enable local 
research recruitment or secondary data analysis.

Implications of all the available evidence
N3C’s longitudinal data for patients with COVID-19 provides a 
comprehensive foundation for the development of machine 
learning models to identify patients with potential long 
COVID. Such models enable efficient study recruitment that, 
in turn, deepen our understanding of long COVID and offer 
opportunities for hypothesis generation. Moreover, as more 
patients are diagnosed with long COVID and more data are 
available, our models can be refined and retrained to evolve 
the algorithm as more evidence emerges.

For the N3C Data Enclave see 
https://covid.cd2h.org/enclave

See Online for appendix

https://covid.cd2h.org/enclave
https://covid.cd2h.org/enclave
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We defined our base population (n=1 793 604) as any 
non-deceased adult patient (age ≥18 years) with either an 
International Classification of Diseases-10-Clinical 
Modification COVID-19 diagnosis code (U07.1) from an 
inpatient or emergency health-care visit, or a positive 
SARS-CoV-2 PCR or antigen test, and for whom at least 
90 days have passed since COVID-19 index date. 
COVID-19 index date was defined as the earliest date of 
positive indicator for a patient. For patients with multiple 
positive tests, we selected the date of the first positive test 
as the index. Before this analysis, patients from six N3C 
sites were removed from the cohort due to their sites’ use 
of randomly shifted dates of service, which would have 
restricted our ability to use temporal logic during 
analysis.

Because the definition, clinical guidelines, and docu-
mentation practices for long COVID are still evolving, 
there is no gold standard to validate computable 
phenotypes and to train machine learning models. 
However, three N3C sites provided lists of locally 
identified patients who had visited that site’s long COVID 
specialty clinic at least once. These patients represent a 
silver standard within our base population (n=597, once 
our base population criteria were applied). Hereafter, we 
will refer to this group of patients as long COVID clinic 
patients; patients identified by our trained model as 
patients with long COVID will be referred to as patients 
with potential long COVID. This silver standard enabled 
us to develop a model to identify patients warranting care 
at a long COVID clinic—a valuable proxy for long COVID 
until a true gold standard is available.

To train and test the machine learning models, we 
created a subset of our overall cohort containing only 
patients originating from the three N3C sites with lists of 
patients who had visited a long COVID clinic (n=97 995), 
including the long COVID clinic patients. This subset 
was stratified further into patients who had been 
hospitalised with acute COVID-19 (n=19 368) and 
patients who were not hospitalised (n=78 627). We 
narrowed the subset further to include only patients who 
had at least (1) one health-care visit of any type and at 
least one diagnosis or (2) one medication in their post-
COVID-19 window (n=15 621 hospitalised, n=58 351 not 
hospitalised). The full cohort selection and subsetting 
process is shown in the appendix (p 2), along with 
training and test set patient counts (p 6).

Feature selection
Within the three-site subset, we examined demographics, 
health-care visit details, medical conditions, and 
prescription drug orders for each patient before and after 
their period of acute COVID-19. Although its use was 
considered, laboratory result data proved too sparse 
among the cohort for use in the models, especially for 
non-hospitalised patients. Features were selected for 
inclusion in the model by gathering datapoints in these 
domains associated with the long COVID clinic patients 

Figure 1: Temporal windows for machine learning model inclusion
We searched for health-care visits, medical conditions, and prescription medication orders before and after each 
patient’s COVID-19 index date, up to a maximum of 365 days post-index. We ignored all data occurring in a buffer 
period of 45 days before and after the COVID-19 index date to differentiate pre-COVID-19 and post-COVID-19 
from acute COVID-19. For patients who attended a long COVID clinic, we ignored all data occurring on or after their 
first visit to such a clinic to avoid influencing the model with clinical observations occurring as a result of the 
patient’s long COVID assessment.

At least 90 days, maximum 365 days

Look-ahead periodLook-back period Acute COVID-19
period

No data are used from this 90-day period

(T–365) T–45 COVID-19 index date
(T0)

T+45 (T+x)

For long COVID clinic patients
Date of first visit to long-COVID
clinic

For all other patients
Contributing sites’ most recent
update date

Attended a long COVID clinic Did not attend a long COVID clinic

Hospitalised 
(n=428)

Not hospitalised 
(n=169)

Hospitalised 
(n=15 193)

Not hospitalised 
(n=58 182)

Sex

Female 237 (55·4%) 127 (75·1%) 8465* (55·7%) 34 771 (59·8%)

Male 191 (44·6%) 42 (24·9%) 6716* (44·2%) 23 258 (40·0%)

Unknown 0 0 <20 153 (0·3%)

Race

Asian <20 <20 571 (3·8%) 1361 (2·3%)

Black 190 (44·4%) 31 (18·3%) 3207 (21·1%) 6370 (10·9%)

Native Hawaiian or 
Pacific Islander

<20 <20 43 (0·3%) 138 (0·2%)

Other <20 <20 85 (0·6%) 254 (0·4%)

Unknown 81 (18·9%) 27 (16·0%) 2695 (17·7%) 9842 (16·9%)

White 142 (33·2%) 107 (63·3%) 8592 (56·6%) 40 217 (69·1%)

Ethnicity

Hispanic or Latino 69* (16·1%) 26* (15·4%) 3064 (20·2%) 11 416 (19·6%)

Not Hispanic or Latino 354* (82·7%) 128* (75·7%) 11 869 (78·1%) 45 119 (77·5%)

Unknown <20 <20 260 (1·7%) 1647 (2·8%)

Age, years

18–25 <20 <20 790 (5·2%) 7573 (13·0%)

26–45 86* (20·1%) 75 (44·4%) 3824 (25·2%) 22 732 (39·1%)

46–65 188* (43·9%) 69 (40·8%) 5249 (34·5%) 19 015 (32·7%)

≥66 147* (34·3%) <20 5330 (35·1%) 8862 (15·2%)

Mean age (SD) 58·29 (15·03) 48·14 (14·02) 56·50 (18·60) 45·92 (17·32)

Pre-COVID-19 comorbidities

Diabetes 86 (20·1%) <20 2412 (15·9%) 4842 (8·3%)

Chronic kidney disease 70 (16·4%) <20 1721 (11·3%) 2272 (3·9%)

Congestive heart failure 48 (11·2%) <20 960 (6·3%) 1133 (1·9%)

Chronic pulmonary 
disease

45 (10·5%) 29 (17·2%) 1415 (9·3%) 3698 (6·4%)

Data are n (%) unless otherwise stated. All patients shown had acute COVID-19. Diabetes was not separated by type. 
*In accordance with the N3C download policy,21 for demographics where small cell sizes (<20 patients) could be derived 
from context, we have shifted the counts by a random number between 1 and 5. The accompanying percentages 
reflect the shifted number.

Table: Characteristics of the three-site cohort used for model training and testing
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in the time period of interest (figure 1). For each patient, 
we only counted diagnoses that newly occurred or 
occurred in greater frequency in the post-COVID-19 
period compared with the pre-COVID-19 period, and 
only counted medications that were newly prescribed in 
the post-COVID-19 period, with no order records in the 
pre-COVID-19 period. Detailed feature engineering 
methods are described in the appendix (pp 3–5).

Modelling and statistical analysis
To reflect that long COVID might look different depend-
ing on the severity of the patient’s acute COVID-19 
symptoms, we built three different machine learning 
models using the three-site subset: (1) all patients, 
(2) patients who had been hospitalised with acute 
COVID-19, and (3) patients who were not hospitalised. 
Each model aimed to identify the patients who were most 
likely to have long COVID, using attendance at a long 
COVID specialty clinic as a proxy for long COVID 
diagnosis. To train and test each model, patients were 
randomly sampled to yield similar patient counts in both 
classes (long COVID clinic patients and patients who did 
not attend the long COVID clinic). For the all-patients 
model, data were also sampled to yield similar numbers 
of hospitalised and non-hospitalised patients. Counts of 
patients in each group used for training and testing are 
shown in the appendix (p 6).

The Python package XGBoost was used to construct 
the models, using 924 features in total. Categorical 
features were one-hot encoded. Age and health-care visit 
rates were treated as continuous variables, and medical 
conditions and prescription drugs were modelled as 
binary features. Feature engineering details are given in 
the appendix (pp 3–5). Model hyperparameters were 

tuned using GridSearchCV (scikit-learn), with ten-fold 
cross-validation, set to optimise the area under the 
receiver operating characteristic curve (AUROC). We 
trained each model using ten-fold cross-validation, 
repeated five times. To assess performance, we 
calculated the AUROC, precision, recall, and F-score 
for each model, with a predictive probability threshold 
of 0·45. To aid with interpretability, we calculated 
Shapley values20 for all features to quantify each 
feature’s importance to the classifications made by each 
model. These features were reviewed by clinical experts 
to aid in interpretation.

Once trained, to flag patients with potential long 
COVID in the N3C Data Enclave, we ran the all-patients 
model over the full base population of patients who had 
at least one health-care visit and at least one diagnosis 
or one medication in their post-COVID-19 window 
(n=846 981). We also validated our models’ performance 
on long COVID clinic patient data submitted by a fourth 
N3C site (n=32 411) after our initial analysis was 
complete. Data from this fourth site were not included 

For scikit-learn see https://
scikit-learn.org/stable/modules/

generated/sklearn.model_
selection.GridSearchCV.html

Figure 2: Machine learning model performance in identifying potential long COVID in patients
ROC curves, with 5-fold cross-validation and five repeats, identifying the ability of each of the three models (non-hospitalised, hospitalised, and all patients) to 
classify patients with long COVID as the discrimination threshold is varied. To emphasise recall of patients with potential long COVID, all models use a predicted 
probability threshold of 0·45 to generate the precision, recall, and F-score. The threshold can be adjusted to emphasise precision or recall, depending on the use case. 
AUROC=area under the receiver operating characteristic curve. ROC=receiver operating characteristic. 

0 0·2 0·4 0·6 0·8 1·0 0 0·2 0·4 0·6 0·8 1·0

AUROC
Precision

Recall
F-score

Not long COVID Long COVID
0·85 (SD 0·05) 0·85 (SD 0·05)
0·84 0·73
0·69 0·86
0·76 0·79

Not long COVID Long COVID
0·90 (SD 0·02) 0·90 (SD 0·02)
0·85 0·85
0·79 0·89
0·82 0·87

Not long COVID Long COVID
0·92 (SD 0·02) 0·92 (SD 0·02)
0·83 0·85
0·82 0·86
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False positive rateFalse positive rate
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Figure 3: Most important model features associated with visits to a long 
COVID clinic

The top 20 features for each model are shown. Each point on the plot is a 
Shapley (importance) value for a single patient. The color of each point 

represents the magnitude and direction of the value of that feature for that 
patient. The point’s position on the horizontal axis represents the importance 
and direction of that feature for the prediction for that patient. Some features 

are important predictors in all models (eg, outpatient utilisation, dyspnoea, and 
COVID-19 vaccine), whereas others are specific to one or two of the models 

(eg, dyssomnia or dexamethasone). Conditions labelled as chronic were 
diagnosed in patients before their COVID-19 index. Diabetes was not separated 

by type. dx=diagnosis. med=medication.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Albuterol (med)
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Chronic kidney disease

Melatonin (med)
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Hyperlipidaemia (dx)

Naloxone (med)

Polyethylene glycol 3350 (med)

Backache (dx)

Chronic pulmonary disease (dx)
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Triamcinolone (med)

Heart failure (dx)

Ibuprofen (med)

Mixed hyperlipidaemia (dx)

–2–3 –1 0
Shapley value

All qualifying patients
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in our initial modelling work, and thus were used to 
examine our models’ generalisability using new data 
from different sites.

Role of the funding source
This study was funded by NCATS, which contributed to 
the design, maintenance, and security of the N3C Data 
Enclave, and the NIH RECOVER Initiative, which is 
coordinating the participant recruitment protocol to 
which this work contributes. The funder of the study had 
no role in study design, data analysis, data interpretation, 
or writing of the report. No authors have been paid by a 
pharmaceutical company or other agency to write this 
Article.

Results
The combined demographics of patients who attended 
long COVID clinics at the three N3C sites substantially 
differ from those of COVID-19 patients at these sites who 
did not attend a long COVID clinic (table). In this cohort, 
non-hospitalised long COVID clinic patients were 
disproportionately female. Long COVID clinic patients 
who were hospitalised with acute COVID-19 were dispro-
portionately Black, when compared with all patients 
hospitalised with acute COVID-19, and were more likely 
to have a pre-COVID-19 comorbidity (diabetes, kidney 
disease, congestive heart failure, or pulmonary disease).

Each model was run against this three-site population, 
resulting in AUROCs of 0·92 for the all-patients model, 

Figure 4: Univariate odds ratios for important model features
Shown are the relative feature importance and univariate odds ratios for the top features (union of the 20 most important features) in each model. Regardless of importance, some features are 
significantly more prominent in the long COVID clinic population, while others are more prominent in the non-long COVID clinic population. ·· denotes that the feature was not in the top 20 features 
for the model in that column. Conditions labelled chronic were associated with patients before their COVID-19 index. Diabetes was not separated by type. dx=diagnosis. med=medication. *Odds ratios 
exclude age, which has a non-linear relationship with long COVID.

Qualifying non-hospitalised patients Qualifying hospitalised patients All qualifying patients

Importance Odds ratio (95% CI) Importance Odds ratio (95% CI)

Post-COVID outpatient utilisation 4·88 (4·2–5·68) 1250·9 5·59 (4·98–6·28)

Difficulty breathing (dx) 3·73 (2·82–4·93) 113·86 6·73 (5·38–8·42)

Age * * 353·85 *
Dyspnoea (dx) 3·73 (2·82–4·93) 139·28 6·73 (5·38–8·42)

Male sex 1·12 (0·86–1·46) 115·59 1·08 (0·87–1·34)

COVID vaccine (med) 0·44 (0·26–0·75) 144·05 0·37 (0·25–0·54)

Post-COVID inpatient utilisation 1·56 (1·17–1·99) 254·54 2·59 (2·02–3·28)

Oxycodone (med) ··

Cough (dx) ··

Prednisone (med) ··

Arthralgia of pelvis or thigh (dx) ··

Deficiency of micronutrients (dx) ··

Polyethylene glycol 3350 (med) 1·71 (1·22–2·41) 42·22 2·30 (1·68–3·13)

Albuterol (med) 1·63 (1·16–2·29) 79·19 2·72 (2·07–3·57)

Dyssomnia (dx) ··

Chronic pulmonary disease 39·64 1·55 (1·14–2·11)

Ketorolac (med) ··

Flumazenil (med) ··

Vitamin D deficiency (dx) ··

Metabolic disease (dx)

Odds ratio (95% CI)

4·58 (3·75–5·57)

10·65 (7·23–15·7)

10·65 (7·23–15·7)

0·59 (0·38–0·91)

0·49 (0·27–0·89)

3·18 (1·14–6·11)

0·38 (0·14–1·03)

3·87 (2·33–6·45)

1·42 (0·66–3·06)

0·58 (0·21–1·57)

0·67 (0·24–1·81)

0·91 (0·37–2·25)

3·75 (2·35–5·96)

2·76 (1·43–5·30)

2·59 (1·60–4·18)

0·67 (0·29–1·53)

0·16 (0·02–1·18)

0·81 (0·30–2·21)

5·66 (3·02–10·61) ··

Dexamethasone (med) 0·34 (0·19–0·63) 75·89 0·60 (0·38–0·95)

Hyperlipidaemia (dx) 0·40 (0·24–0·67) 49·16 0·48 (0·31–0·75)

Pain of truncal structure (dx) 0·62 (0·41–0·92) ··

Pre-existing diabetes 1·16 (0·84–1·58) 89·02 1·49 (1·13–1·96)

Metoprolol (med) 2·10 (1·43–3·09) 66·24 2·95 (2·06–4·22)

Chronic kidney disease 1·23 (0·87–1·74) 62·61 1·83 (1·33–2·52)

Pain (dx) 0·41 (0·24–0·73) ··

Naloxone (med) 0·22 (0·10–0·47) 43·07 0·34 (0·18–0·61)

Backache (dx) 0·36 (0·17–0·78) 42·01 0·48 (0·28–0·81)

Guaifenesin (med) 3·99 (2·70–5·91) ··

Ondansetron (med) 0·59 (0·41–0·86) ··

Melatonin (med) 53·18 3·24 (2·36–4·45)

Hospitalised for COVID 50·27 7·53 (5·98–9·5)

Propofol (med)

77·58

25·95

18·26

14·01

11·26

9·72

2·27

2·02

1·72

1·41

1·36

1·18

1·18

1·12

1·02

1·02

0·83

0·76

0·67

0·57

··

··

··

··

··

··

··

··

··

··

··

··

··

··

Importance

744·99

41·49

159·54

51·04

18·78

54·84

161·05

··

··

··

··

··

24·06

27·71

··

··

··

··

··

··

48·34

42·22

41·66

29·49

28·42

28·32

24·53

21·45

20·98

20·86

19·62

··

··

·· 38·14 0·73 (0·48–1·11)
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0·90 for the hospitalised model, and 0·85 for the non-
hospitalised model (figure 2). All three models demon-
strate robust performance. For the purpose of calculating 
these performance metrics, patients who attended a long 
COVID clinic are considered true positives; patients 
from the three sites who have not visited the specialty 
clinic are considered true negatives. Patients labelled by 
the model as patients with potential long COVID should, 
therefore, be interpreted as patients warranting care at a 
specialty clinic for long COVID—a proxy for long 
COVID diagnosis in the absence of a consensus 
definition. Our models can be used with a high score 
threshold for increased precision, or a lower score 
threshold for increased recall. In figure 2, we selected a 
score threshold of 0·45 to slightly favour recall, which 
yielded a precision of 0·85 and recall of 0·86 for the all-
patients model. Notably, because long COVID appears to 
occur in a minority of patients with COVID-19, our 
model—when applied to large datasets of electronic 
health records—will always produce a non-trivial 
number of false positives, especially when tuned for 
high recall. As more data are available about patients 
with long COVID over time, we will be better able to 
characterise false positives and false negatives in future 
iterations.

The three models were validated against an independ-
ent dataset from a fourth site. When tested against the 
patient population of this site qualifying for our base 
criteria (n=32 411, 125 of whom were long COVID clinic 
patients, without sampling to address the class 
imbalance), the AUROCs were 0·82 for the all-patients 
model, 0·79 for the hospitalised model, and 0·78 for the 
non-hospitalised model.

Figure 3 shows the top 20 most important features (as 
determined using Shapley values) for each model. The 
top 50 most important features for each model are 
available in the appendix (pp 7–9). Alhough not every 
feature can be easily categorised, four themes emerged 
across the features and models: (1) post-COVID-19 
respiratory symptoms and associated treatments, (2) non-
respiratory symptoms widely reported as part of long 
COVID and associated treatments, (3) pre-existing risk 
factors for greater acute COVID severity, and (4) proxies 
for hospitalisation.

Figure 4 shows the aggregate feature importance and 
univariate odds ratios for each model. These results 
illustrate that several of our most important model 
features are significantly different among patients with 
potential long COVID and patients without evidence of 
long COVID.

Figure 5 shows the path taken by three hypothetical 
patients through each of our three models, respectively. 

Discussion
To avoid influencing the model with previous assump-
tions about the features of long COVID, we took a light-
touch approach to feature selection, performing as little 
manual curation of features as possible before training 
and testing our models. Because of this approach, the 
reasons that a given feature might be important to one or 
more of the models is not always obvious. However, 
review by clinical experts of the features shown in 
figures 3 and 4 and in the appendix (pp 7–9) revealed a 
number of possible themes.

First, post-COVID-19 respiratory symptoms and 
associated treatments. These features are commonly 

Figure 5: Example paths taken by the machine learning models to classify patients with potential long COVID
Force plots showing the contribution of individual features to the final predicted probability of long COVID, as generated for individual patients by the all-patients 
model (A), hospitalised model (B), and non-hospitalised model (C). Features in red increase the predicted probability of long COVID classification by the model, 
whereas features in blue decrease that probability. The length of the bar for a given feature is proportional to the effect that feature has on the prediction for that 
patient. The final predicted probability is shown in bold. GERD=gastroesophageal reflux disease.

Theoretical patient A Theoretical patient B Theoretical patient C

Post-COVID outpatient
utilisation score=0·33

Hyperlipidaemia=true

Aspirin=true

Cough=true

Magnesium sulfite=true
Post-COVID inpatient
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High predicted
probability (94%) 

Factors that
lower predicted

probability

Factors that
raise predicted

probability

Post-COVID outpatient
utilisation score=0·04

GERD=true
Pain=true
Iopamidol=true

Hypoxaemia=true
Sennosides=true
Post-COVID inpatient
utilisation score=0
Sleep disorder=true
Sodium chloride=true

Age=45 years
Moderate predicted
probability (42%) 

Factors that
lower predicted

probability

Factors that
raise predicted

probability
Male sex=false

Post-COVID outpatient
utilisation score=0·01

COVID vaccine=true
Difficulty breathing=false
Dyspnoea=false

Low predicted
probability (33%)

Factors that
lower predicted

probability

Factors that
raise predicted

probability
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reported for patients with long COVID.7,9,22 A confounding 
factor that prioritises these features might be that the 
long COVID clinics at two of the three sites that 
contributed long COVID clinic patients are based in the 
pulmonary department. However, given that SARS-CoV-2 
is primarily a respiratory virus, it is not surprising that 
long-term respiratory symptoms were observed. Similar 
long-term respiratory symptomatology is well described 
with respiratory viral syndromes, including those from 
severe acute respiratory syndrome, respiratory syncytial 
virus, influenza, and COVID-19.23,24 The high proportion 
of albuterol use and use of inhaled steroids is consistent 
with the expected high prevalence of post-viral reactive 
airways disease. Examples of the most important features 
include dyspnoea or difficulty breathing, cough, 
albuterol, guaifenesin, and hypoxaemia.

Second, non-respiratory symptoms widely reported as 
part of long COVID and associated treatments. Sleep 
disorders, anxiety, malaise, chest pain, and constipation 
have all been reported as symptoms of long COVID, and 
are included in WHO’s case definition.10 The example 
features in this group include symptoms and mitigating 
treatments. Example features include dyssomnia, chest 
pain, and malaise, and treatments with lorazepam, 
melatonin, and polyethylene glycol 3350.

Third, pre-existing risk factors for greater acute COVID 
severity. Some known risk factors for acute COVID-19 
and severity are associated with long COVID—including 
chronic conditions (such as diabetes, chronic kidney 
disease, and chronic pulmonary disease), which pre-
dispose patients at increased risk for worsened COVID-19 
symptoms.25

Fourth, proxies for hospitalisation. Features that are 
representative of standard hospital admission orders 
probably contributed to the model as proxies for 
hospitalisation in general, rather than being individually 
meaningful. These features were most prominent in 
patients without long COVID (true negatives), suggesting 
that the model is correctly differentiating between acute 
illness requiring hospitalisation and long COVID. 
Example features include the use of glucose, ketorolac, 
propofol, and naloxone.

Although there is considerable overlap between the 
most important features across the three models, there 
are also distinct differences (figures 3, 4; appendix pp 7–9). 
Notable differences include the high importance of 
dexamethasone in the hospitalised model, which 
decreased the likelihood of an individual patient being 
labelled as a potential long COVID patient. Dexamethasone 
is not present in the top 50 features of the non-hospitalised 
model. Similarly, cough and dyssomnia, which increased 
the likelihood of an individual beinglabelled as a potential 
long COVID patient, are important features in the non-
hospitalised model, but do not appear in the hospitalised 
model. COVID-19 vaccination after acute disease, which is 
consistently an important feature in all three models, 
decreased the likelihood of patients being labelled as 

potentially having long COVID. This result is noteworthy 
and indicates that not only does vaccination against 
SARS-CoV-2 protect against hospitalisation and death, but 
that it might also protect against long COVID.

Rates of outpatient and inpatient utilisation are 
important features in all three models. This finding can 
be interpreted in a number of ways—patients who 
continue to feel unwell long after acute COVID-19 
might be more likely to visit their providers repeatedly 
than those patients who fully recover. Because diag-
nosing and treating the heterogenous symptoms of long 
COVID is a challenge, these patients could be referred 
to one or more specialists, further increasing their 
utilisation.

Machine learning models do not consider each feature 
individually; rather, complex relationships between 
features can greatly influence classification. Each patient 
has their own path through the model, based on their 
available data, as shown in figure 5. Information of this 
type is useful to make the outcomes of the machine 
learning models interpretable.

Electronic health records were the source of all features 
used by our model. Although electronic health records 
contain rich clinical features, these data are also a proxy 
for health-care utilisation and can be interpreted through 
that lens. Diagnoses coded in the electronic health record 
are not representative of the whole patient, but rather are 
focused on the specific reasons the patient has visited a 
health-care site on that day. Moreover, the absence of 
electronic health record data about a patient does not 
equate to the absence of a disease; it merely represents 
the absence of a patient seeking care for that disease.

Even as a proxy for health-care utilisation, electronic 
health record data is well suited to the task of cohort 
definition by way of computable phenotyping, especially 
when the end goal is study recruitment. Although there 
are other methods of identifying potential study 
participants, a computable phenotype allows us to 
efficiently narrow the recruitment pool down from 
everyone available to patients who are likely to qualify— 
easily eliminating large numbers of patients that do not 
qualify, and ascertaining patients that might elude 
human curation.

There are additional advantages to using electronic 
health record data to identify patients with long COVID. 
With an evolving definition and no gold standard to 
compare with, the electronic health record allows us to 
define proxies for a condition and select on those—in this 
case, a patient’s visit to a long COVID specialty clinic. 
However, rather than settling for a restrictive criterion of 
at least one visit to a long COVID specialty clinic, our 
machine learning models allow us to decouple patients’ 
utilisation patterns from the clinic visit, meaning that we 
can use the models to identify similar patients who might 
not have access to a long COVID clinic.

This study has several limitations. Electronic health 
record data is skewed towards patients who make more 
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use of health-care systems, and is further skewed towards 
high utilisers, patients with more severe symptoms, and 
hospital inpatients. When researchers train models on 
N3C’s electronic health record data, it is essential to 
acknowledge whose data is less likely to be represented; 
for example, uninsured patients, patients with restricted 
access to or ability to pay for care, or patients seeking 
care at small practices or community hospitals with 
scarce data exchange capabilities. Moreover, for patients 
included in our models, clinic visits and hospitalisations 
that occur outside of the health-care system (ie, N3C site) 
for that patient are generally absent from our data. 
Finally, because our models require an index date for the 
execution of temporal logic, we cannot make use of cases 
without a positive indicator (test or diagnosis code) 
recorded in the electronic health record. This approach 
excludes the analysis of patients who had COVID-19 
early in the pandemic and were not able to be tested.

We did not include race and ethnicity as model features, 
because we did not believe our three-site sample of long 
COVID clinic patients to be appropriately representative. 
As more data on patients with long COVID are available 
over time, we will be able to balance the cohort based on 
demographics and, critically, carefully account for race 
and ethnicity in future iterations of the model.

Because two of the three clinics that provided us with 
long COVID patient data are based in a pulmonary 
department, we acknowledge that our lists of important 
features prominently feature pulmonary conditions and 
treatments. Feature importance should not necessarily be 
interpreted as important to the diagnosis and 
characterisation of long COVID itself, but rather as 
important as inputs for an accurate electronic health 
record-based model. As we collect more training data 
from additional clinics over time, we suspect this set of 
features might change to provide a fuller picture of the 
condition. We recommend that readers wishing to utilise 
the model presented here consult our GitHub repository, 
where future iterations of the model will be made 
available. 

Beyond identifying cohorts for research studies, the 
models presented here can be used in various applications 
and could be enhanced in several ways. Specifically, in 
future studies, it will be necessary to use a large sample 
size of patients with long COVID to validate hypotheses 
relating to social determinants of health and demo-
graphics, comorbidities, and treatment impli cations, and 
to understand the relationship between acute COVID-19 
severity and specific long COVID signs and symptoms 
and their longitudinal progression. The influence of 
vaccination in such trajectories will also need to be 
explored.

It is plausible that long COVID will not have a single 
definition, and it might be better described as a set of 
related conditions with their own symptoms, trajectories, 
and treatments. Thus, as larger cohorts of patients with 
long COVID are established, future research should 

For the GitHub repository see 
https://github.com/
NCTraCSIDSci/n3c-longcovid

identify sub-phenotypes of long COVID by clustering 
patients with long COVID with similar electronic health 
record data fingerprints. Such fingerprints might be 
enhanced by natural language processing of clinical 
notes, which often include descriptions of signs and 
symptoms not recorded in structured diagnosis data. 
Future iterations of our models could discern among 
these clusters given N3C’s large sample size and 
recurring data feeds.
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