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Graph theory provides a useful framework to study functional brain networks fromneuroimaging data. In epilep-
sy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain
dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about
functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides,
it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we
recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects
from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and
15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then,
we estimated the total and relative spectral power of the largest principal component of the gradiometers, and
the degree of phase synchronization between each sensor site in the frequency range [0.5–40Hz].We further cal-
culated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering al-
gorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results
show that differences in spectral power between the control and the other two groups have a distinctive pattern:
generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set
of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central
sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global net-
work efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the
brain network of the generalized epilepsy patients presented greater efficiency and lower eccentricity than the
control subjects for the high frequency bands, without a clear topography. Besides, the frontal focal epileptic pa-
tients showed only reduced eccentricity for the theta band over fronto-temporal and central sensors. These out-
comes indicate that functional epileptic brain networks are different to those of healthy subjects during interictal
stage at rest, with a unique pattern of dissimilarities for each type of epilepsy. Further, when properly selected,
three network indices suffice to provide a comprehensive description of these differences. Yet, since such unique-
ness in the pattern of differences is also evident in the power spectrum, we conclude that the added value of the
graph theory approach in this context should not be overestimated.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epilepsy is one of the most common neurological disorders, which
affects more than 50 million people worldwide, according to the
World Health Organization. It is characterized by a predisposition to
generate seizures of highly synchronous neuronal activity. The gradual
process by which a normal neural network changes into a hyper-
excitable one leading to epilepsy is known as epileptogenesis (Viteri-
Torres, 2003). This hyper-excitability depends on the functional
features of the cortical neurons and the organization of the neural net-
works. In focal epilepsy it is assumed that the hiper-synchronous
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discharges are originated in a specific region of the cortex, known as the
ictal onset zone. Discharges can then propagate from this zone to other
adjacent or deeper areas. Up to date, most of the work in focal epilepsy
has centered on the study of the interictal epileptogenic abnormal
activity to localize the onset zone, since it would be the main target
for surgical treatment in refractory focal epilepsy. Understanding the
mechanisms underlying epileptic brains is one of the greatest chal-
lenges of our days, as nowadays, around 1 out of 3 epileptic patients
do not have seizure control even with the best available medications
or surgery. The interest on the study of the dynamic and the intrinsic
properties of the epileptic networks has recently increased, questioning
the classical approach to both the focal and the generalized epilepsies.

According to the classification of epilepsy proposed by the ILAE in
1989, in this study we evaluated two big syndromes: first, we studied
patients with frontal focal epilepsy; second, we also analyzed, one of
the most frequent epilepsies in infancy and adolescence, the idiopathic
generalized epilepsy (specifically the Juvenile Myoclonic Epilepsy)
(ILAE, 1989).

Frontal focal epileptic seizures are originated within networks limit-
ed to one hemisphere/brain region, which in our case aremainly frontal
areas. Generalized epileptic seizures, on the other hand, are originated
at some point within, and rapidly engaging, bilaterally distributed net-
works (but see also (Pati and Cole, 2014)).

The reason to compare these two epileptic syndromes arises from
the controversy of the very definition of Idiopathic Generalized Epilepsy
(IGE), since an increasing number of authors consider it another form of
frontal epilepsy given their similarities. Different neuroimaging studies
have identified structural and functional alterations on the lobes
of patients with IGE (Savic et al., 2000; Simister et al., 2003;
O3Muircheartaigh et al., 2011; O3Muircheartaigh and Richardson,
2012; Vollmar et al., 2012; de Araujo Filho et al., 2013). Besides,
recent neuropsychological studies have also demonstrated the existence
of personality disorders and cognitive deficits similar to those observed
in patients with lesional frontal lobe epilepsy (Devinsky et al., 1997;
Sonmez et al., 2004; Trinka et al., 2006; de Araújo Filho et al., 2007;
Plattner et al., 2007; Pascalicchio et al., 2007; Piazzini et al., 2008;
Karachristianou et al., 2008; Roebling et al., 2009; de Araujo Filho and
Yacubian, 2013).

Research in epilepsy has historically focused on the molecular,
anatomical and cellular physiological changes involved in its develop-
ment (epileptogenesis) and in the initiation of seizures (ictogenesis)
(Kramer and Cash, 2012). Yet, seizures are an extreme form of synchro-
nous brain activity, a perfect example of pathological connectivity
(hiper-synchronization) (Penfield and Jasper, 1954). Thus, epilepsy
has been studied from the viewpoint of functional brain connectivity
from the earliest stages of the field (see, e.g., (Le van Quyen et al.,
1998)). More recently, interest has been drawn to analyze the way in
which different brain regions communicate using complex network
analysis. First indications that this approach might be useful to under-
stand epilepsy came from model studies (Netoff et al., 2004). Since
then, there is mounting empirical evidence for the hypothesis that
changes in brain network topology might play a crucial role in epilepsy.
Recently, Ponten et al. (2009) andGupta et al. (2011) have proved, with
surface EEG and MEG during absence seizures, that a more regular net-
work topology could be related to seizure generation.Moreover, several
studies have shown that interictal functional networks in epilepsy pa-
tients may be characterized by increased connectivity, a shift to a
more regular topology, changes in modular structure and prominent
hub-like regions (Chavez et al., 2010; Douw et al., 2010; Horstmann
et al., 2010; Bartolomei et al., 2013; Clemens et al., 2013).

Most studies hitherto have used network characteristics such as
clustering coefficient and average path length. However, this may be
not enough to fully understand the relation between network organiza-
tion and brain functioning in epilepsy (Haneef and Chiang, 2014). Thus,
new studies are increasingly focusing on other network characteristics.
For example, Wilke et al. (2011) used betweenness centrality, and
found that it correlates with the location of the resected cortical regions
in patients who were seizure-free following surgical intervention. Also
vanDellen et al. (2012) have found that a lessmodular organization, de-
creased clustering coefficient, and a lower synchronizability (i.e., amea-
sure for the stability of the synchronous state in a network) were
associatedwith increased seizure occurrence andwith cognitive decline
in patients with brain tumor who had clinical seizures.

Several recent studies (see, e.g., (Burgess, 2011; Foley et al., 2014;
Haneef and Chiang, 2014)) have also reported on the clinical relevance
of the evaluating brain connectivity withM/EEG, and how this informa-
tion can be combined with that of static structural connectivity to im-
prove whole brain models in epilepsy (Taylor et al., 2014). Besides,
van Diessen et al. (2013b) have for the first time developed a multivar-
iable diagnostic prediction model based on functional network charac-
teristics. However, despite extensive research on the characterization
of epileptic functional brain networks from M/EEG (Otte et al., 2012;
van Dellen et al., 2012; Bartolomei et al., 2013; Quraan et al., 2013;
Ramon and Holmes, 2013; van Diessen et al., 2013a; Burns et al.,
2014; Chiang and Haneef, 2014) or functional magnetic resonance
data (e.g., (Zhang et al., 2011; Centeno and Carmichael, 2014)), there
is no consensus on which measure (or set of them) is most suitable
for the purpose, with different studies using difference measures. Be-
sides, there is theoretic and empirical evidence (Lynall et al., 2010; Li
et al., 2011; Hahn et al., 2015) thatmany of them are strongly correlated
with each other. Therefore, we analyze here, using a battery of graph
theoretic indices, the structure of the functional brain network during
resting state interictal magnetoencephalography (MEG) from two dif-
ferent groups of epileptic patients (frontal focal and idiopathic general-
ized) and one of healthy subjects. We also compared these results with
those from the more traditional power spectral analysis. Our aim is
twofold: firstly, we seek to elucidate whether epileptic brain networks
behave differently to normal ones even in the absence of spikes, to
gain further insight into brain dynamics of epilepsy during the interictal
stage. Secondly, we want to determine the minimal subset of measures
that provide a comprehensive description of the structure of functional
brain networks3 structure from these data andwhat additional informa-
tion, if any, they offer on interictal brain activity.

2. Material & methods

2.1. Subjects

60 subjects volunteered for the study, however, after data quality ex-
clusion criteria, only 45were finally analized: 15 patients (8male, 32 ±
16 years) suffering from frontal focal epilepsy (FE), 15 patients (6male,
27 ± 7 years) suffering from idiopathic generalized epilepsy (they all
meet the criteria Juvenile Myoclonic Epilepsy or presumed genetic, as
the new terminology stands) (GE) and 15 (7 males, 24 ± 6 years)
healthy subjects (HS). All patients were classified independently by
two neurologists. For the diagnosis and classification of seizures and ep-
ileptic syndromes, the clinical and electroencephalographic classifica-
tions of the ILAE (1989) were applied (ILAE, 1989). Patients were seen
consecutively during the period between May 2009 and December
2011 in the outpatient clinics of neurology at the University General
Hospital of Ciudad Real, with average evolution track of 10 years, and
were free from epileptic crisis during the last 6 months prior to the re-
cording. Theywere all free frommental retardation, connate anoxia his-
tory, history of head trauma or meningitis in early childhood. Each
clinical history gathered epidemiological data (sex, age of onset of the
first seizure, personal history, pregnancy and delivery…), clinical data
(type of seizures and neurological findings) and treatments used.
These data were combined with additional examinations (EEG, neuro-
imaging studies,magnetic resonance imaging (MRI) of 1.5 or 3 Tesla fol-
lowing the protocol for epilepsy that includes 3D-T1 isotropic voxel
sequences of 1 mm and 2–3 mm axial and coronal slices with T2,
FLAIR and T2* sequences), to establish if the etiology was idiopathic,
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symptomatic or cryptogenic. The entire cohort of patientswas also eval-
uated using a comprehensive neuropsychological test battery. Table S1
in Supplementarymaterial provides a detailed account of each individual
epileptic patient. In total 57% epileptic patients were on monto-therapy
and 43% on bi-therapy (in FE group 7 patients were on monotherapy
and 8 in bitherapy; in GE group 10 onmonotherapy and 5 on biotherapy).
43% patients were taking valproic acid alone or in combination (8 in FE
and 5 in GE). All data were analyzed anonymously and ethical approval
was granted by the Local Ethics Committee of the Hospital.

2.2. MEG acquisition

MEG recordings were obtained using a 306-channel whole head
Elekta Neuromag®MEG system (Elekta Oy, Helsinki, Finland), compris-
ing 102 magnetometers and 204 planar gradiometers in a helmet-
shaped array covering the entire scalp, while subjects were seated in-
side a magnetically shielded room (Vacuumschmelze GmbH, Hanau,
Germany). Eye movements were monitored by simultaneously record-
ing the electrooculogram (EOG) with three Ag/Cl electrodes, two above
and below the right eye and one at the right earlobe (ground reference).
Four head position indicator (HPI) coils, whose data were used to
correct head movement during the session, were placed on the scalp,
appropriately spaced in the region covered by the MEG helmet. The lo-
cations of the nasion, two pre-auricular points, and the 4 HPI coils were
digitized prior to each MEG study using a 3D-digitizer (FASTRACK;
Polhemus, Colchester, VT) to define the subject-specific Cartesian head
coordinate system. 100–200 additional anatomical points were digi-
tized on the head surface to provide a more accurate shape of the
subject3s head. Once a subject was comfortably positioned in the MEG
machine, short electrical signals were sent to the HPI coils to localize
them with respect to the MEG sensor array.

2.3. Task and parameters

MEGdatawere acquired (sampling rate 1kHz, on-line band-passfilter
0.10–330 Hz) during a single 20min session of resting state; 10minwith
eyes open fixating vision on a cross on the screen, followed by 10 min
with eyes closed (EC). Only the EC data were used here, to ensure they
were free from blinking artifacts and that epileptic behavior (especially
the interictal epileptiform discharges) could be easily identified.

External noise was removed, as recently suggested in MEG literature
(Gross et al., 2013), by using the temporal extension of Signal-Space
Separation (tSSS) (Taulu and Kajola, 2005) as implemented with the
MaxFilter® software (version 2.0 ElektaNeuromag®; sliding window of
10 s, subspace correlation limit of 0.98 (Hillebrand et al., 2013)), config-
ured with an inner expansion order of 8, which leads to a maximum of
80 spherical harmonics, as recommended by Elekta (Taulu and Kajola,
2005; Taulu and Simola, 2006), which avoids the problems associated to
a low truncation order. The optimal number of harmonics to be used in
the tSSS expansion remains, to the best of our knowledge, an unsolved
issue. It is beyond the scope of the present work to try to solve it here.
We did try, however, a higher number of the inner expansion order
(10) in a subsample of the subjects, and did not find any significant
change in the results. Finally, we applied movement compensation to
our data, to correct for subject3s head movement during the recording.

2.4. Data selection

From the 10 min of closed eyes resting state, non-overlapping
quasistationary segments of 5000ms, free from eye ormuscular artifact,
and epileptic activities and far (at least 20 s) fromany inter epileptic dis-
charge, were extracted (max–min number of segment per subject:
127–85). To ensure the same number of segments per subject, we fur-
ther selected the 40 most stationary segments from each participant
byusing theKPSS test for stationarity (Kipiński et al., 2011) (see Supple-
mentary material for details). This number of 40 segments represents a
good trade-off between the quality of the data selected and the quantity
of available data segments.

2.5. Selection of the sensor type

Our MEG system has two orthogonally oriented planar gradiom-
eters (gx and gy). These types of sensors present maximum sensitiv-
ity to sources directly below them, i.e., superficial cortical sources
(Hämäläinen, 1995; Hansen et al., 2010), which makes them less
sensitive to artifacts, distant disturbances and deeper brain sources.
This is important in FC analysis at the sensor level, because gradiom-
eters offer certain degree of protection against the well-known issue
of volume conduction effect (Nolte et al., 2004). There is no consen-
sus in the literature, however, as to how the information of the two
orthogonal gradiometers should be combined in FC analysis: some
authors (Deuker et al., 2009; Hsiao et al., 2009) use the whole
204 × 204 matrix of interdependencies between the four possible
combinations of sensors; others take the gradiometer pair with the
largest connectivity value (Palva et al., 2005) or combine the two
planar gradiometers into an overall amplitude (Kitzbichler et al.,
2011). Here, we estimated from the two planar gradiometers the
first principal component (gPC) of the duplet (gx, gy), to reduce to one sin-
gle variable the information contained in the gradiometers, in a data-
driven, adaptive way (see Section 2 in Supplementary material for de-
tails). On average, gPC explained about 60–65% of the variance of (gx, gy),
and therewere no statistical between-groupdifferences in thepercentage
of explained variance in the gPC (Wilcoxon test).

2.6. Power spectral density

2.6.1. Total and relative band power
We analyze total and relative power spectral density (PSD) of the

data by computing them for a range of frequencies of interest between
0.1 and 40 Hz, which contains practically all the power in the EC condi-
tion (i.e., P0–40 Hz≈ PTotal (Mormann et al., 2007)), in steps of 2 Hz, using
the multitaper method based on Discrete Prolate Spheroidal (Slepian)
Sequences, as implemented in Fieldtrip toolbox (Oostenveld et al.,
2011). The spectral smoothing factor was set to 2 Hz. Both total and rel-
ative powerwere computed for every segment and sensor, and then av-
eraged across segments to estimate their topographical distribution.
Finally, we also estimate the grand average of both powers across the
entire scalp in each group.

2.7. Functional connectivity

We analyzed functional brain connectivity from the MEG data by
computing a phase synchronization (PS) measure: the phase-locking
value (PLV) (Lachaux et al., 1999;Mormann, 2000), usingHERMES tool-
box, available at http://hermes.ctb.upm.es/ (Niso et al., 2013). PLV was
selected as the FC measure because it is able to detect weaker synchro-
nization regimes, where the phases of the oscillatory component are
coupled whereas the amplitude may not be (Rosenblum et al., 1996;
Hramov et al., 2005). Instead, amplitude-basedmeasures such as mutu-
al information or measures of generalized synchronization are unsuit-
able to analyze such synchronization regimes. We computed the index
on bands centered in the frequencies going from2 to 40Hzwith a band-
width of 4 Hz, which we believe represent a reasonable tradeoff be-
tween two mutually opposed requirements. First, the frequency bands
should be narrow enough to allow a proper phase reconstruction (see,
e.g., (Thiel et al., 2006)). Second, selecting extremely narrow bands
would require a very high order filter, which may distort part of the
data segments due to border effects (see Supplementary material for
details on PLV calculation). Finally, we focused on the 6 frequency
bands commonly used in the literature: delta [0.1–4] Hz, theta [4–8]
Hz, alpha [8–12] Hz, beta1 [12–20] Hz, beta2 [20–28] Hz and low
gamma [28–40] Hz.

http://www.hermes.ctb.upm.es/
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2.8. Functional brain networks

The FCmatrix obtained in the previous section can be interpreted as
the adjacencymatrix of an undirectedweighted network (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). In this approach, MEG sen-
sors are considered as vertices (nodes) of the network, and the PLV be-
tween sensors as edges, which represent the strength of the connection
between the vertices. We used the weighted version of the matrix be-
cause it potentially contains more information (i.e., the strength of the
connection between the nodes) than its unweighted (binary) counter-
part, although some studies showed that the results from both kind of
networks do not differ (Li et al., 2009; Ponten et al., 2009), (but see
also (Kim et al., 2013)). With either type of reconstruction strategy,
however, the problem of setting an appropriate threshold below
which the value of a connectivity index between two sensors should
not be considered significant, remains unsolved (see, e.g., (Fornito
et al., 2013; Kim et al., 2013; Quraan et al., 2013; Wilenius et al., 2013;
Lehnertz et al., 2014)). We address this issue here, following recent re-
sults (Kim et al., 2013), by using the so-called fixed density approach,
whereby the weights are rank sorted and a fixed proportion of the
highest links (0 b k b 1; in our case, k = 0.35) is used to construct the
network. In this way, we also avoid the problems associated to the com-
parison of networks of different densities (van Wijk et al., 2010) (see
Section 5 in Supplementary material for details).

Network analysis methods derived from graph theory (Rubinov and
Sporns, 2010) can then be applied to assess the features of this brain
connectivity network (see (Chavez et al., 2010; van Dellen et al., 2012;
Quraan et al., 2013) for recent examples and (Richardson, 2012; Engel
et al., 2013; van Diessen et al., 2013a; Haneef and Chiang, 2014;
Lehnertz et al., 2014) for recent reviews in epilepsy research). To char-
acterize it, a long list of measures are currently in use (Rubinov and
Sporns, 2010; Kaiser, 2011; Fornito et al., 2013). Thus, in this work we
calculated many of the indices most commonly used for this purpose.
Namely, the average degree (D) the strength (S), the clustering coeffi-
cient (C), transitivity (T), local efficiency (El), modularity (Q), the char-
acteristic path length (L), global efficiency (Eg), eccentricity (ecc),
network radius (rad) and diameter (diam), betweenness (B), eigenvec-
tor spectral density (v) and SmallWorldness (SW), algebraic connectiv-
ity (ac) and synchronizability (sync) (see Supplementary material for
details). Then, we use Pearson3s correlation coefficient1 to estimate the
similarity between any two of these network measures and apply the
affinity propagation (AP) clustering algorithm (Frey and Dueck, 2007;
Givoni and Frey, 2009), (see Supplementary material) to the resulting
15 × 15 correlation matrix to evaluate howmany truly different groups
of measures are actually there, and which of these measures should be
taken as a representative exemplar of each group. To compare global
measures, local measures at the sensor level (D, S, C, El, ecc, B and v)
were averaged for each segment, so that the whole network is finally
characterized by a reduced set of measures.
2.9. Statistical tests

Before carrying out any statistical test, for each of the calculated in-
dices (whether spectral power, connectivity and graph measures), we
estimated amean value per subject by averaging across the 40most sta-
tionary segments selected, to avoid the artificial increase of the sample
size and the inflation of the alpha level (i.e., a higher probability of a type
I error (Meyers et al., 2012)) that would have resulted if we have taken
all the segments as individual samples.2
1 The results obtained applying the non-parametric version, the Spearman3s rank corre-
lation coefficient, were equivalent.

2 Interestingly, this approach has been recently used in the analysis of interictal brain
MEG networks of epileptic patients in a study appearing in a high impact factor journal
(Chavez et al., 2010)
2.9.1. Brain connectivity networks and spectral power
Brain connectivity networks and spectral power can be compared at

two levels (Meskaldji et al., 2013): global (averaged over all sensors)
and local, which is further divided in two: sensors (nodes, for both the
power spectral density analysis and brain connectivity networks), and
edges (connectivity values, which is specific of the network indices).

2.9.2. Global level comparison
We tested for statistical differences at the global level between the

two epileptic groups and the control one (GE vs. HS and FE vs. HS), by
performing a Wilcoxon rank sum test, with p b 0.05/2 = 0.025 as the
critical value (i.e., the “traditional” p b 0.05 Bonferroni adjusted for
two test). These p-values were further corrected for multiple compari-
sons for all the frequency ranges by using the type I false discovery
rate (FDR) method at the q b 0.1 level, as described in Benjamini and
Yekutieli (2001) (see also Supplementary material).

2.9.3. Local level comparison
Here, we compare the values of the local network indices/power on

each node to test for frequency-specific differences in their topograph-
ical distributions. Pairwise differences between the two epileptic groups
with respect to control (GE vs. HS and FE vs. HS) as well as between the
two epileptic groups (GE vs. FE) were analyzed by means of the two-
sided non-parametric Wilcoxon test. Differences were considered sig-
nificant if p b 0.05, corrected with FDR type I (Benjamini and Yekutieli,
2001). Finally, to study between-group differences for the links, a non-
parametric permutation test was performed at the edge level, whereby
the matrix from each subject was randomly ascribed to one of the
groups and a t-test was performed between the control group and
each of the other two groups. The number of permutations was set to
1000 and differences were considered significant at the p b 0.01 level
if the value of the Student3s t-function for the actual grouping was
higher than those from at least 990 of the permutations.

Fig. 1 and Table S2 from the Supplementary material summarize the
information regarding analysis methods.

3. Results

All figures presented henceforth follow as close as possible the latest
recommendations for data visualization in the neurosciences (Allen
et al., 2012).

3.1. Results of spectral power density

We only found global differences in the total power between the HS
group and the GE group (Fig. 2, panel A), with the epileptic subjects
showing higher values in the whole frequency range except for the
[8–12 Hz] interval. As for the relative power (Fig. 3, panel A), significant
global differences with the HS were only found for the FE group, in the
[16–18 Hz]. We found no difference between the two epileptic groups
either in the total or in the relative power.

The topographical distribution of the differences in both the total and
the relative power (panel B of Figs. 2 and 3, respectively) presents a dis-
tinct pattern for the two epileptic groups: whereas IGE showed increased
total power in thewhole frequency range all over the scalp (mainly in the
“periphery” consisting on the fronto-temporal and occipital zones), the FE
group showed differences in the relative power in the 15–20 Hz range,
which were mostly concentrated in the frontal sensors.

3.2. Comparison of brain functional connectivity networks

3.2.1. Differences between functional connectivity measures
Fig. 4 shows differences in the PLV for the different frequency bands.

The GE group showed a clear pattern of higher connectivity values as
compared to HS and FE scattered all over the scalp and across all frequen-
cy bands (specially alpha and beta1 for HS and delta and theta for FE).
Only a few links, mainly for frequencies above 8 Hz, and centered in the
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fronto-central region, showed the opposite trend (HS N GE and FE N GE).
As for the FE subjects, the number of links significantly greater for themas
compared to the healthy ones was not as large as for the GE group, and
there was even a balance between increased and decreased PLV in
some of the bands (alpha, beta2 and gamma), without a clear spatial
pattern.

3.2.2. Comparison between global network measures
Prior to test for between-group differences in networkmeasures, we

studied the pattern of correlation between all these measures as ex-
plained in the Material & methods section, to determine the degree of
Fig. 2. Total spectral power density for GE vs. HS as a function of the frequency. A: Global avera
shades represent the group3s standard deviation. B: Topological distribution of the significant
(B) figure, asterisks (bullets) denote statistical significance Wilcoxon test, FDR type I corrected
redundant information provided by them, and which subset should be
further analyzed.

There are two types of network measures according to their level:

• Global, with one value for the whole network: Q, T, L, eg, rad, diam, ac,
sync.

• Local, with one value for each node: C, S, D, k, El, v, ecc, B.

Thus, to study the correlation pattern, the local measures, were aver-
aged across sensors. The results are presented in Fig. 5.
ge in logarithmic units, where the colors represent the groups (blue: HS; green: GE), and
differences in total power expressed as a percentage of the power of the HS group. In A
at q-value b 0.05.



Fig. 3. Relative spectral power density for GE vs. HS as a function of the frequency. A: Relative PSD average in logarithmic units, where the colors represent the groups (blue: HS; red FE),
and shades represent the group3s standard deviation. B: Topological distribution of the significant differences in total power expressed as a percentage of the power of the HS group. In A
(B) figure, asterisks (bullets) denote statistical significance Wilcoxon test, FDR type I corrected at q-value b 0.05.
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The AP algorithm detected the following three clusters of network
indices, with their corresponding exemplars:

• Group 1 (exemplar (Eg)): C, T, S, El, Eg, B, Q, SW [relationship]
• Group 2 (exemplar (ecc)): ecc, L, rad, diam [lengths]
• Group 3 (exemplar (v)): v, syn, ac [synchronizability].

These results were consistent with those obtained with the hierar-
chical clustering, as shown in the dendrogram of Fig. 5, when the
Fig. 4. Phase synchronization: PLV indices.The colored lines denote the PLV values that changed
ness of each line indicates the percentage of change for this link, whereas its color represents t
number of clusters was fixed to three. Thus, henceforth we will work
only with the exemplars of each of the three clusters (Eg, ecc, and v).

3.2.3. Differences of FC global and local network measures
Figs. 6–8 show the between-group differences for all frequency

bands for the three network indices selected by the AP algorithm.
Boxplots represent the distribution of each measure across sensors,
whereas the heads display the topographical distribution of the differ-
ences at the local level. The brain network of the GE patients presented
higher global efficiency than theHS for the beta1 and gammabands, and
significantly (see text for details) between each pair of groups (HS, GE and FE). The thick-
he group with the higher value. Namely, blue for HS, green for GE and red for FE.



Fig. 5. Results from Affinity Propagation clustering. Matrix of correlations between all the network measures. The three colored squares (red, turquoise and yellow) within thematrix are
the 3 clusters detected by the AP algorithm. The dendrogram at the left/bottom of thematrix shows the result of applying the traditional hierarchical clustering algorithmwith 3 clusters,
which coincide with those obtained with the AP algorithm.
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a lower eccentricity for the beta1, beta2 and gamma bands. Also, it
showed a lower synchronizability in the delta band. Topographically,
differences in both indices were scattered over many sensors, mainly
in the temporal, parietal and occipital regions.

As for the FE group, its reconstructed functional brain network only
differed from that of the HS group in the theta band, where the former
one presented higher eccentricity at the global level, mainly for the
centro-parietal sensors.

Note that El and v have to be selected for the topographical results as
substitutes for Eg and sync belonging to each of the respective AP clus-
ters, as these latter two indices are global measures.

4. Discussion

Complex network theory, as applied to the analysis of functional
connectivity patterns derived from multivariate neurophysiological
data, has greatly improved our understanding of normal and patholog-
ical brain dynamics (Bullmore and Sporns, 2009; Stam, 2014), because it
characterizes salient properties of brain function beyond the pairwise
correlations between every two brain areas. However, many questions
remain open in this framework, such as the optimal combination of
functional connectivity index/network measure(s) that best character-
ize the brain network in each particular context, or the possible relation-
ship between differences in the properties of brain networks and
changes in spectral power (Quraan et al., 2013). Besides, in the case of
epilepsy research, not much attention has been paid to interictal brain
activity and/or generalized epileptic patients, where the few studies so
far are inconclusive (Stam, 2014). Here, we characterized in detail
interictal epileptic brain activity from MEG data in both FE and GE pa-
tients by combining the traditional approach of power spectral analysis
with the that of complex network theory, with the aim of elucidating
what and how this modern approach can add to our understanding of
seizure-free epileptic brain dynamics.

The spectral analysis shows that total power increases in GE patients
as compared to HS in the whole frequency range, except for the alpha
band, with a peripheral topographical distribution of the sensors across
the whole head. The FE group, in turn, presents higher relative power
density than the control group in the beta1 band, located mainly in
the frontal sensors. There are few works analyzing power spectral
density with MEG in epilepsy. Among them, Guggisberg et al. (2008)
and Heers et al. (2014) have reported increased beta band activity dur-
ing epileptic discharges with both MEG and intracranial EEG. Also,
Hamandi et al. (2011), have used MEG to show the important role of
beta band in epilepsy, in line with our findings. Clemens et al.
(2000), using EEG, have found also during resting with closed eyes
a trend for diffuse delta–theta–alpha (absolute and relative) power
increase in IGE as compared to controls, while relative beta power
decreased. These authors also found regional spectral alterations in
IGE, especially in bilateral frontal areas, in accordance with our
findings.

Another recent study (Quraan et al., 2013) reports similar results, al-
though there signals were band-pass filtered in the 2–20 Hz range, and
thus only differences in total power up to alpha bandwere found for left
temporal lobe epilepsy as compared to controls. The discrepancies
noted may exist for many reasons, including differences in the tech-
nique used (EEG versus MEG), and the types of patients analyzed.

Our main finding with regard to MEG power can be summarized by
saying that the GE and the FE groups present a characteristic pattern of
changes as compared to control: whereas the former group increases its
total powerwhilemaintaining the distribution over frequencies as com-
pared to controls; the FE group has regional-specific higher values for
the relative power for the beta band, which entails a band-specific
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increase. Since an increase of total power can be interpreted as en-
hanced local synchronization in different neuronal populations
(Nunez, 1995), these findings are consistent with the intimate relation-
ship of enhanced local neuronal synchronization with epilepsy, particu-
larly in the case of IGE (Engel and Pedley, 2008), and a redistribution of
the power from the rest of the frequency range to the beta band for the
case of the frontal focal epilepsy.

A potential confound that deserves further consideration is the pos-
sibility that differences between patients and theHS are due to the anti-
epileptic drug (AED), as the subject from the GE and the FE groups are
medicated. There have been studies were IGE patients without medica-
tion showed an increase power in delta, theta and alpha band as com-
pared to controls, which reversed to a decrease in delta and theta
bands when treated with valproate (Clemens, 2008). A decrease in
delta and theta power for IGE patients treated with lamotrigine
(Clemens et al., 2007) and in beta power in patients administered
acute doses of benzodiazepine have been also reported (Jensen et al.,
2005; Hansen et al., 2010). However, these patients took a range of
medications with different mechanisms of action, not all of them
GABAergic. In our study, patients were chosen in such a way that the
medication was similar and controlled between both groups (see the
Subjects section in the Material & methods section). Besides, they
were stabilized on long term medication and none of the AEDs they
take is based on benzodiazepines (see Table S1 from the Supplementary
material). Furthermore, the absence of differences in beta band on fron-
tal regions of GE when compared to HS (with very similar medication
than FE) (see Figs. 2 and 3), argues against a systematic drug
related-bias. Moreover, if the bias were due to medication, most
likely it would have been the same in both groups GE and FE. How-
ever, both types of epilepsy differ with respect to the controls and
between them.

The study of dynamic networks is a noninvasive method that can
help to locate the epileptogenic area or ictal onset, ahead to raise a
resective surgery in epilepsy. We can speculate that epileptic patients
are successfully operated very probably due to the change in the topol-
ogy of the pathological cortical network in which the resected area was
involved.

As for our connectivity results, a methodological comment is in
order. Indeed, we have combined PLV with gradiometers to analyze
functionalMEG connectivity at the sensor level. PLV is known to be sen-
sitive to volume conduction effects. Thus some authors (see, e.g., (Stam
et al., 2007)) advocate the use of PS indices insensitive to zero lag corre-
lations. Yet on the onehand, not all zero-lag correlation is due to volume
conduction (Vicente et al., 2008); and on the other hand, recent results
on real and simulated neurophysiological data (Christodoulakis et al.,
2013; Porz et al., 2014) demonstrated that these modified indices are
also not free from caveats. Instead, we took advantage of the property
of planar gradiometers to be mostly unaffected to deep sources, and
dealt with this problem at the hardware rather than at the software
level. With this consideration in mind, our connectivity results show
that the GE group presents higher connectivity than HS across the
whole frequency spectrum and widespread over all sensors, whereas
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Fig. 7. Functional network results: Eccentricity. The same as in Fig. 6 but for the eccentricity (ecc) index.

3 Although we have only presented here the results corresponding to the exemplar of
each group, these resultswere checked for each of the networkmeasures, to ascertain that
the main significant differences were robust across all the indices in the same cluster.
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the inverse is truemainly for the frontal sensors in the higher frequency
bands (beta1 to gamma). A similar, although less specific, pattern of dif-
ferences is foundbetween theHS and the FE group,where themain con-
nectivity increase for the epileptic group is found in beta1, whereas the
increase ismore pronounced for theHS group,widespread across sensor
pairs, in the gamma band. Finally, changes in connectivity between the
GE and the FE group mostly mirrored those between HS and GE.

Differences between control and epileptic subjects go in line with
pre-ictal changes in EEG functional connectivity occurring predominantly
in the beta band (Chávez et al., 2003; Mormann et al., 2007). Clemens
et al. (2011) analyzed current source densities from EEG recordings, and
found decreased FC in the 5–25 Hz range mainly in the anterior parts of
the cortex, and increased FC in the posterior ones. In the low frequency
bands, the strongest effects for both groups are in the theta band. Douw
et al. (2010) have suggested that increased theta band connectivity, as
the one we have found here for both GE and FE, is also a hallmark of
tumor-related epilepsy. Kitchigina et al. (2013) have also reported “TLE-
induced disturbance of theta oscillations in the septohippocampal system
(…) and damage of septal and hippocampal GABAergic cells in theta ac-
tivity abnormalities”, which seems to translate, according to our results,
in increased functional connectivity in epilepsy. A recent study using
PLV on scalp EEG in a large sample of GE patients (Chowdhury et al.,
2014) also agrees in pinpointing theta band as the one showing the
greatest differences between GE and HS, which our results suggest are
strikingly similar to those between the two types of epilepsy.

Regarding the network indices, the results from the AP algorithm
(Frey and Dueck, 2007) are robust in clustering the whole set into
three groups, whose members in many cases (but not always) coincide
on having related definitions (i.e., they are based on similar concepts).
This outcome agrees with previous evidence that has demonstrated
the strong correlation between many of these networks indices in
MEG (Li et al., 2011), and fMRI (Lynall et al., 2010; Hahn et al., 2015).
Thus, by focusing only on a reduced set of network measures, (namely,
the representative exemplars of each group) it is possible to fully de-
scribe networks3 properties.

As for the concrete results, the GE was the only epileptic group
showing differences with the HS, mainly on the high frequency bands
(beta1 and gamma, with GE N HS, Fig. 6). This result was robust for
the rest of the members of the same AP cluster (not shown3), namely,
clustering, transitivity, local efficiency and strength. This same increase
was found for GE as compared to FE in the highest frequency band. It
may reflect the facility the GE brains have to easily “transmit informa-
tion” or in the case of seizures straightforwardly propagate overall the
cortex. Note that this index (Eg) should not be confusedwith “metabolic
efficiency” nor in the sense of how good a brain is, invoking to the collo-
quial use of the term (themore efficient the better), but just attain to its
formal definition (see Supplementary material).

Finally, for the eccentricity (Fig. 7) (and characteristic path length, ra-
dius and diameter) the HS presented higher values than the GE group
for the three highest frequency bands (beta1, beta2 and gamma). Be-
sides, this is the only index that presented significant differences be-
tween the FE and the HS group, which were restricted to the theta
band, where the FE group showed lower eccentricity. In both cases
(GE and FE), the topographical distribution of these differences at the
sensor level was widespread, with frontal, temporal and parietal sen-
sors showing most of the effects. Again, as for the Eg, the pattern of dif-
ferences in eccentricity between the epileptic groups mimics those
between HS and GE in the gamma band. Eccentricity belongs to the
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same cluster of measures as the popular characteristic path length, L.
Thus, these results may be interpreted by saying that interictal epileptic
networks are more tightly connected than healthy ones. The literature
on interictal network topology of epileptic patients is inconclusive
(Stam, 2014). For instance, a recent EEG study (Quraan et al.,
2013) indicates that the interictal network of temporal lobe epilep-
tic (TLE) patients becomesmore regular in the theta band, whereas a
previous one using electrocorticogram records (van Dellen et al.,
2009) in the same type of epileptic patients suggests that this regu-
larization may turn to increased randomness in the long term. Yet
there seems to be a consensus across neurophysiological modalities
that, in general, interictal brain networks in frontal focal epileptic pa-
tients are abnormally regular as compared to HS (Chavez et al., 2010;
Horstmann et al., 2010; Bartolomei et al., 2013). This is in agreement
with our finding for the FE group, which showed a lower eccentricity
(more regularity in the theta band), and even more markedly for the
generalized epilepsy, which has been much less studied in the EEG/
MEG literature, but for which our results show not only a decrease in
ecc but a concomitant increase in Eg. Beside, this increase in regularity
has a distinctive frequency pattern depending on the type of epilepsy,
from high frequency bands in the case of generalized epilepsy to the
low frequency theta band in the case of FE patients.

Finally, the GE group showed a lower synchronizability (Fig. 8) than
the HS in the lowest frequency band. The interpretation of spectral
Laplacian indices in terms of the synchronizability of the network,
despite its growing popularity in brain connectivity analysis (Li et al.,
2011; de Haan et al., 2012; Lehnertz et al., 2014), is based on the
hypothesis that all the nodes of the networks are identical (van
Mieghem, 2012), which is scarcely the case for the recorded MEG
data. Indeed, a recent result (Duan and Chen, 2012) suggests that the in-
terpretation is not completely clear. Yet, Li et al. (2011) have shown that
spectral indices derived from the Laplacian matrix do add valuable in-
formation about brain networks3 dynamics, which is not provided by
any of the other network indices. In our case, the result on the syn
index clearly suggests that epileptic brain networks of GE subjects at
low frequencies are more easily synchronized, and its synchronized
state is more robust (i.e., harder to break) as compared to healthy con-
trols, in agreement with former results on low grade glioma-induced
epileptic patients (van Dellen et al., 2012). This fact, which makes
perfect sense given our current understanding of epilepsy as a
hypersynchronization syndrome, may be also intrinsically related
to the occurrence of seizures (Lehnertz et al., 2014). These results
also suggest that patients with IGE show a cortical network more
prone to enter a state of global synchronization, that is, prone to seizures.
While patients with frontal epilepsy showmore selective networks with
higher spatial concentration (restricted to frontal areas). Thus, the dy-
namics of brain networks differed significantly when frontal focal and
idiopathic generalized epilepsy are compared, which supports the fact
that both types of epilepsy (GE and FE) could be considered to have
their own clinical entity with a different functional neurophysiological
expressions.

The complex network approach allows us to summarize the content
of the functional connectivity information (as presented by the FC
matrix) attending to different features as described before. Thus,
compacting the information into one single value for each sensor or
even more globally having one single value for each subject, which
could be a convenient approach from the clinical point of view, due to
its manageability. This fact also makes it very attractive for many
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other purposes (e.g., dimensionality reduction for machine learning
techniqueswith diagnosis purposes, or correlationwith different instru-
ments such as results from behavior or neuropsychological tests).

One last issue of practical interest that we are currently studying, and
that was very briefly introduced above, is the possible usefulness of net-
work connectivity patterns to assist in the classification (diagnosis) of re-
corded subjects using machine learning algorithms, an area of research
that is also growing very fast (see, e.g., (van Diessen et al., 2013a) for an
application of scalp EEG FC patterns in epilepsy, and (Richiardi et al.,
2013) for a recent review). This latter application is potentially very im-
portant from the clinical perspective, but it also circumvents the problem
of determiningwhether the patterns of FC index (or any other connectiv-
ity index for that matter) are due to true connectivity or are the result of
volume conduction of deep brain sources, which is reflected inmany sen-
sors at the same time. As long as these patterns are different in each
group, they would be useful to detect deviations from the healthy condi-
tion. More research should be done in this respect, namely, compare rest-
ing state functional network patterns from epileptic groups with respect
to healthy controls in larger cohorts for clinical purposes. Since MEG re-
cordings of epilepsy patients are scarce in comparison to other imaging
techniques, some open initiatives are emerging (see, e.g., the Open MEG
Archiv, (Niso et al., 2015)), that could facilitate this endeavor.

To summarize, we conclude that, taken together, our results indicate
that interictal MEG activity of epileptic patients at rest differs signifi-
cantly from that of HS in the level of activation of individual sensors
(power spectrum), the degree functional connectivity and the pattern
of graph measures as assessed by PS analysis. The first and the last ap-
proach (power spectral analysis and graph theory) offer the clearest
patterns of differences between each epileptic group and the HS: for
the power spectra, changes are either in the total power across almost
the whole frequency range and widespread over sensors (GE) or in
the distribution of the power, confined to the alpha band and in sensors
above and around the epileptic focus (FE). Results on the graph mea-
sures, in turn, indicate that three indices are enough to provide all the
information on brain network dynamics, where differences are mainly
between the GE and the HS group especially in the high frequency
bands, whereas differences for the FE group are again confined to a sin-
gle low frequency band (theta). In the case of networkmeasures, the to-
pography of the differences is, however, not as clear-cut as for the
power spectra for either of the groups, but it does reveal one fact that
remained undisclosedwith the spectral power, namely that the features
of the brain FC network in the gammabandpresent clear differences be-
tween the two epileptic groups. Thus, although graph theory provides
additional insight into the dynamics of brain epileptic networks, it is
also clear that the pattern of local activation/deactivations provided by
power spectral analysis also highlights important aspects of brain activ-
ity in epilepsy. We conclude that the added value of the graph theory
approach in this context should not be overestimated, but rather it
seemsadvisable to combine itwith the information frompower spectral
analysis to have a comprehensive picture of the changes in interictal
brain in different types of epilepsies.
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