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Abstract

Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of
these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the
bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous
study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for
replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric
oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of
macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously
uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which
encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests
that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of
Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA
tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural
characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding
pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the
rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the
results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to
a greater understanding of the role of RipA in this unique virulence pathway.
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Introduction

Yersinia pestis is the causative agent of the bubonic plague, a fatal

disease that has resulted in three major pandemics throughout

history, and was responsible for killing approximately half the

population of Europe in the 14th century. Although outbreaks of

the plague have decreased greatly within the last two centuries,

the disease is still endemic in regions of North and South America,

Africa and Asia, particularly in rural areas where Y. pestis

infection can spread and be lethal if not properly treated with

antibiotics. In more recent times, Y. pestis has emerged as a

biological weapon, especially in light of its propensity to evolve

multidrug resistance [1]. Additionally, within the genus Yersinia,

two enteropathogens, Y. pseudotuberculosis and Y. enterocolitica cause a

broad range of gastrointestinal diseases [2] resulting in at least

30,000 documented cases per year. Thus, understanding the

mechanisms of pathogenesis of Yersinia remains an important goal.

Y. pestis extracellular pathogenicity has been well established [3].

However, Y. pestis is a facultative intracellular pathogen that is

capable of surviving and replicating in macrophages, as such it has

been suggested that Y. pestis is initially phagocytosed by

macrophages before it escapes and replicates in the extracellular

environment. Studies have demonstrated that the pgm locus,

previously associated with a critical iron transport system, is

important for Y. pestis replication in interferon-c (INF-c) treated

(postactivated) macrophages [4]. Interestingly, Y. pestis replication

in postactivated macrophages is coupled with reduced toxic nitric

oxide (NO) levels although INF-g up-regulates macrophage

inducible NO synthase (iNOS) expression. Furthermore, a Y.

pestis Dpgm mutant does not survive in postactivated wild-type
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macrophages, while it can replicate in postactivated iNOS2/2

macrophages, suggesting that killing of the Dpgm mutant is NO-

dependent. Two previously unannotated genes, ripB and ripA,

within the pgm locus were further identified to be essential for

intracellular Y. pestis replication. Deletion of either ripB or ripA

alone resulted in mutants that showed an inability to replicate in

postactivated macrophages, which correlated with their inability to

decrease NO levels within the macrophage, suggesting that ripB

and ripA are directly or indirectly responsible for lowering

macrophage-produced NO levels. Thus, ripA and ripB along with

a third gene ripC, constitute a novel virulence operon designated

rip (required for intracellular proliferation), thought to be

important in intracellular replication of Y. pestis in macrophages.

In order to better understand the mechanism of action of the rip

operon, investigation into the proteins encoded by the rip genes is

essential.

The ripA gene encodes for a protein highly homologous to 4-

hydroxybutyrate-CoA transferase (4-HB-CoAT), which belongs to

a superfamily of CoA transferases responsible for the transfer of

the CoAS2 anion from a donor CoA thioester to an acceptor free

acid. 4-HB-CoAT is further proposed to belong to the Family I

CoA transferases [5], one of the three distinct sub-families defined

by their structure and mechanism [6]. Structurally, Family I CoA

transferases contain two distinct subunits of approximately equal

amino acid length with similar a/b-folds, which assemble as a2b2

or a4b4 oligomers [7,8]; 4-HB-CoAT [5], succinyl-CoA:3-oxoacid

transferase (SCOT) [9] and Escherichia coli YdiF [10] form a

subset of this group, whereby the a and b subunits are connected

by a linker region to form one polypeptide chain. Mechanistically,

Family I CoA transferases share a common ping-pong mechanism

whereby the first half of the reaction involves a conserved catalytic

glutamate in the active site that forms a covalent CoA-thioester

intermediate [11]. Specifically, the glutamate side chain attacks

the CoA-donor carbonyl carbon from the thioester linkage,

breaking the bond and forming a glutamyl anhydride intermedi-

ate. The CoAS2 anion then attacks the carbonyl carbon of the

glutamate, resulting in the covalent glutamyl-CoA thioester

intermediate and the release of the donor carboxylic acid. In the

second half of the reaction, the carboxyl oxygen of a suitable CoA-

acceptor carboxylic acid attacks the carbonyl carbon of the

glutamate, breaking the thioester intermediate and eventually

yields a new CoA-derivative via a second anhydride intermediate

(Figure S1).

To further characterize the rip operon on a genetic level,

analysis of bacterial gene clusters containing all three rip genes

suggest that there are other human pathogenic bacterial genera

that also contain this operon, including Salmonella enterica [4]. Thus,

the rip operon may function in a novel pathway required for

bacterial replication in postactivated macrophages and may be

important for virulence across distally related pathogens. In the

first step to dissect this novel pathway on a molecular level, we

show that Y. pestis RipA can bind a variety of CoA-derivatives.

Further, CoA transferase activity assays suggest that RipA has a

preference for butyryl or propionyl moieties compared to 4-

hydroxybutyryl. Additionally, we report the 1.9 Å crystal structure

of tetrameric RipA and demonstrate that this oligomeric state is

stable in solution suggesting that the physiologically relevant

assembly of RipA is tetrameric. Consistent with this, a molecular

dynamics (MD) simulation shows that the tetramer is stable over

the nanosecond time scale. Further analyses of the MD simulation

reveal a variable active site pocket and provide insights into a

possible gating mechanism for substrate binding. Finally, two

hypotheses are discussed regarding the mechanism of action of

how the rip operon may lower NO levels in macrophages.

Together, our results provide a structural platform that may be

used as a basis for rational inhibitor design against RipA.

Results

The rip operon is conserved in pathogenic bacteria
A protein BLAST search of available prokaryotic genomes

reveals that the rip operon, which protects Y. pestis from NO

macrophage assault [4], is also present in Salmonella and Burkholderia

genera (Table 1). The identification of this novel operon in

disparate pathogens suggests an evolutionarily conserved virulence

pathway.

RipA binding to CoA-derivatives is dictated by acyl chain length, branching

and saturation. To assess the ability of RipA binding to CoA-

derivatives, we used Differential Scanning Fluorimetry (DSF), a

rapid screening method that quantitatively measures thermal

stability of protein-ligand interactions by observing changes in

fluorescence intensity of SYPRO orange dye [12]. An interaction

of a CoA-derivative with RipA should cause an increase in Tm,

which is indirectly measured by the increase of fluorescence as the

dye binds to exposed hydrophobic regions during protein

unfolding. RipA has a Tm of 45.8uC in 0.1 M potassium phosphate

buffer at pH 7.4 in the absence of substrates, as determined by the

inflection point of the fitted sigmoidal curve (Figure 1). The

addition of CoA to RipA did not affect the Tm whereas CoA-

derivatives (i.e., acetyl-, butyryl-, succinyl- and propionyl-CoA)

resulted in an increased Tm between 7 - 7.7uC, indicating that an

acyl moiety is necessary for CoA binding (Figure 1). The 10-

carbon decanoyl-CoA and two branched CoA-derivatives,

methylmalonyl-CoA and 3-hydroxybutyryl-CoA did not alter Tm

values while unsaturated crotonyl-CoA increased the Tm slightly to

47.9uC (Table 2).

CoA transferase activity assays
The CoA transferase activity of RipA with various CoA-

derivatives and acetate was determined using a coupled assay with

citrate synthase assay monitoring the formation of free CoA [5]. In

short, the rate of transfer of CoA from the donor CoA-derivative

to acetate, catalyzed by RipA, to form acetyl-CoA was determined

by observing the coupled release of CoASH from the condensation

of oxaloacetate and acetyl-CoA by citrate synthase. The release of

CoASH was detected by its reaction with 5,59-dithiobis-(2-

nitrobenzoic acid) (DTNB) at 412 nm. RipA CoA transferase

activity was observed for butyryl- and propionyl-CoA and

Table 1. The rip operon is conserved across distantly-related
pathogens.

Genus Species (Serovar) Accession number RipC RipB RipA

Burkholderia mallei NC_006349.2 46.3 74.9 59.9

Burkholderia pseudomallei NC_007435.1 46.3 74.9 60.1

Salmonella enterica (Choleraesuis) NC_006905.1 72.7 76.4 76.6

Salmonella enterica (Typhimurium) NC_003197.1 72.3 76.4 76.6

Yersinia pestis NC_004088.1 100 100 99.5

Yersinia pseudotuberculosis NC_006155.1 100 100 100

Bioinformatics analysis of Rip proteins performed on bacterial genomes
available in the NCBI database. The table represents select pathogens harboring
Rip homologs with a minimum of 45% amino acid identity and putatively
organized in an operon (maximum intergenic distance of 1 kb). Percent identity
between the Y. pestis Rip protein and the bacterial homolog is shown.
doi:10.1371/journal.pone.0025084.t001

Structural Analysis of Y. pestis RipA
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some activity for succinyl-CoA; however, little to no activity

was observed with crotonyl-, decanoyl-, 3-hydroxybutyryl-

(Figure 2A), methylmalonyl- and acetoacetyl-CoA (data not

shown). RipA’s promiscuity is not unprecedented, as other CoA

transferases have been shown to non-specifically bind several CoA

substrates [5,10,13,14].

To test whether other acyl carboxylic acids can compete with

acetate in the RipA catalyzed reaction of transfer of CoA from

butyryl-CoA, a competition experiment was utilized, whereby a

decrease in the rate of reaction suggests that a carboxylic acid is

out competing acetate, thus resulting in a decreased rate of acetyl-

CoA formation. 3-hydroxybutyrate and succinate do not compete

with acetate while an 80% decrease in the rate of acetyl-CoA

formation is observed with butyrate and propionate (Figure 2B).

In contrast, only a 10% decrease in the rate of acetyl-CoA

formation was observed with 4-hydroxybutyrate. These results

reveal that butyryl and propionyl groups bind in favor of the acetyl

moiety, suggesting that RipA may function as a butyryl- or

propionyl-CoA transferase. Further analyses of the kinetics for

RipA activity reveals that butyryl-CoA has a higher affinity than

propionyl-CoA for RipA, although their rates of reaction are

comparable (Table 3). This suggests that RipA has a preference

for butyryl-CoA over propionyl-CoA.

Structural overview of RipA
All details of protein purification, crystallization and structure

determination are in the Methods Section and Table 4. RipA

was crystallized in the presence of CoA in space group P3121,

and acetyl-CoA and succinyl-CoA in space group C2, where

both crystal forms contained two monomers per asymmetric

unit. The RipA structure was solved by single-wavelength

anomalous diffraction (SAD) of SeMet-derivatized RipA crys-

tallized in the presence of acetyl-CoA, and molecular replace-

ment was utilized to solve RipA crystallized in the presence

succinyl-CoA and CoA, respectively. No density for CoA, acetyl-

CoA or succinyl-CoA was observed in their respective models.

We postulate that the low pH of the crystallization solutions may

prevent ordered binding of CoA-derivatives, as no change in Tm

was observed in the presence of CoA-derivatives at pH 5.5, as

determined by DSF (data not shown). The structural models of

the RipA in the presence of CoA (3.0 Å) and RipA in the

presence of acetyl-CoA (2.3 Å) were partially built whereby each

RipA monomer was missing residues 337–345, whereas the

model for RipA in the presence of succinyl-CoA (1.9 Å) was fully

built. The structural model of RipA consists of a homodimer per

asymmetric unit, where the RMSD between monomers is

0.20 Å for all atoms, and thus monomer A will be described

in detail.

The RipA monomer consists of two open a/b domains, an N-

terminal (1–190) and a C-terminal (204–440) domain connected

via a polypeptide linker region (191–203) (Figure 3A). The N-

terminal domain comprises of three layers in which a central six-

stranded parallel b-sheet (b1, b2, b3, b4, b6, b8) is sandwiched

between two additional layers. The outside layer consists of four a-

helices (a2, a3, a4, a5). The inside layer consists of two a-helices

(a6, a7) which interact with the C-terminal domain, and an a-

helix (a1), a small 310-helix and a two-stranded antiparallel b-sheet

(b5, b7), which cap the end of the central layer b-sheet. The C-

terminal domain has a similar three-layer topology, albeit its

middle b-sheet layer is extended by two additional b-strands (b17,

b18) to produce an eight-stranded mixed b-sheet. Furthermore,

there is a short two-stranded parallel b-sheet near the domain

interface, as well as an additional a-helix (a15) and b-turn near the

C-terminus. The proposed catalytic glutamate, Glu249, is located

in the C-terminal domain with the active site pocket extending

from this domain interface toward the C-terminal a-helix (a15)

(Figure 3A). Additional electron density near the active site

glutamate suggests an acetate molecule is located within the active

site (Figure S2). Interestingly, although the RipA monomers are

almost structurally identical, there is variability in a loop region

adjacent to Glu249, where the three residue loop (Gly-Val227-

Gly) has an alternate conformation (Figures 3C and 3D), where

Val 227 protrudes 3.9 Å into the acyl-CoA binding cleft in

monomer B, implications of which are discussed later.

Figure 1. Analysis of RipA and its binding to CoA and CoA-
derivatives. Representative DSF melting curves of 5 mM RipA
incubated in the absence or presence of 20 mM CoA or CoA-derivatives
at pH 7.4. Increased RipA thermostability is indicated by a rightward
curve shift as seen for acetyl-CoA and succinyl-CoA. All experiments
were at least performed in duplicate.
doi:10.1371/journal.pone.0025084.g001

Table 2. DSF-derived Tm values for RipA in the absence or
presence of CoA and CoA-derivatives.

Sample Tm (6C) SD

RipA 45.8 0.07

RipA + CoA 45.6 0.29

RipA + Acetyl-CoA 52.8 0.03

RipA + Butyryl-CoA 53.4 0.05

RipA + Succinyl-CoA 52.8 0.28

RipA + Propionyl-CoA 53.5 0.06

RipA + Crotonyl-CoA 47.9 0.54

RipA + Aceto-acetyl-CoA 48.3 0.01

RipA + Methylmalonyl-CoA 46.8 0.02

RipA + 3-hydroxybutyryl-CoA 46.1 0.17

RipA + Decanoyl-CoA 46.1 0.01

Each melting curve is fit by a nonlinear regression analysis using the Boltzmann
function (GraphPad Prism) and the Tm value is determined by the inflection
point of the transition curve as defined from 35–65uC.
doi:10.1371/journal.pone.0025084.t002
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Two RipA monomers form a dome-like homodimer in which

the surface area of each monomer is ,17700 Å2 and the buried

surface area at the monomer-monomer interface is 1934 Å2

(calculated with AreaiMol [15]), ,11% of the total monomeric

surface area (Figure 3B). Residues forming the monomer-

monomer interface are located in amino acid regions 99–123 of

the N-terminal domain and 307–312, 347–357, 384–393, 411–

406 and 438–439 of the C-terminal domain. The tight interaction

at this interface is facilitated by eight residues from one monomer,

which directly interact with the other monomer, where hydrogen

bonds are less than 3.0 Å. Additionally, a network of water

molecules facilitates various weaker interactions between the two

monomers, as well as a pi-pi stacking interaction between His309

from both polypeptide chains. The homodimer is observed in

crystal structures of 4-HB-CoATs from Clostridium aminobutyricum

(3GK7) [14], Shewanella oneidensis (2OAS) and Porphyromonas

gingivalis (3EH7). In comparison to other reported CoA transfer-

ases, a tetrameric state is observed through two-fold crystallo-

graphic symmetry (Figure 4A), a feature that is unique to Y. pestis

RipA.

RipA dimer-dimer interface
Two homodimers form a doughnut-like tetramer where the

buried surface area between each monomer at the dimer-dimer

interface of the tetramer is 1454 Å2 (calculated with AreaiMol

[15]), which is ,8.2% of the total surface area. The dimer-dimer

interface is facilitated by weak interactions between residues from

both domains. Residues stabilizing the dimer-dimer interface

include those from loop regions 137–141 and 173–175 of the N-

terminal domain and 290–295 of the C-terminal domain,

including Asp137, His139, Tyr141, Arg171, Gln173, Gly174,

Arg275, Tyr290, Asp293 and His294 (Figure 4B), all of which

are conserved across Y. pestis, S. typumphium and B. mallei, suggesting

that the tetramer is specific to RipA homologs (Figure 5). The

diameter of the tetramer is 106 Å678 Å, and the central pore

spans ,8 Å at the minimum diameter. The residues lining the

central pore are mainly polar residues, including Glu127, Arg153,

Arg156, Arg268, Thr270, Arg273, Arg275, His309, Gln313,

Asp315 and Lys359.

RipA functions as a tetramer in solution
Two complementary methods were utilized to further confirm

the oligomeric state of RipA in solution. Analytical gel filtration

revealed that RipA eluted at a retention volume corresponding to

,200 kDa (Figure 4C), consistent with a tetrameric state of RipA

in solution (monomer 49 kDa, tetramer 196 kDa). Small angle X-

ray scattering (SAXS) data further reinforced this result as the

calculated molecular weight using SAXS MoW [16] corresponds

to four molecules of RipA, and the electron density envelope fits

the tetramer model from the structural model of RipA

(Figure 4D). Gel filtration and SAXS data suggest that RipA

forms a tetramer in solution and thus the tetrameric state observed

in the RipA structural model is most likely physiologically relevant.

Molecular dynamics of the RipA tetramer
It is commonly accepted that conformational flexibility and

atomic-level dynamics play essential roles in facilitating protein

function. Consequently, to add insight to the structural and

experimental studies of RipA, we modeled the conformational

Figure 2. CoA transferase activity of RipA. (A) CoA transferase activity of RipA was measured with a variety of CoA-derivatives. Each 100 mL
reaction mixture contained 50 mM CoA-derivative, 100 mM sodium acetate, 100 mM Tris pH 7.0, 1 mM oxaloacetate, 0.5 U citrate synthase and 1 mM
DTNB. The reaction was initiated with the addition of 10 mM RipA and was incubated at room temperature for 30 min monitoring the release of free
coenzyme A at 412 nm, which detects the formation of the nitrothiobenzoate dianion. CoA specificity was tested using different CoA donors with
negative controls for background activity (without RipA) and CoA hydrolase (alternative CoA reaction). (B) Substrate specificity of RipA for the
carboxylic acid. Acetate competed with a second acid in equimolar (10 mM each) in the presence of butyryl-CoA (100 mM). The remaining reaction
mixture is the same as (A). The relative activities are compared to the reaction with no second carboxylic acid (labeled ‘none’).
doi:10.1371/journal.pone.0025084.g002

Table 3. Kinetic constants for CoA-derivative substrates of
RipA.

CoA-ester Km (mM) kcat (min21) kcat/Km (min21mM21)

Butyryl-CoA 188620 2.9760.25 1.586102260.1561022

Propionyl-CoA 281627 3.1160.23 1.106102260.1161022

Succinyl-CoA 11446160 3.5260.50 0.316102260.1061022

CoA transferase activity of RipA was measured with a variety of CoA-derivatives
at varying concentrations. Each 100 mL reaction mixture contained CoA-
derivative, 50 mM sodium acetate, 100 mM Tris pH 7.0, 1 mM oxaloacetate,
0.5 U citrate synthase and 1 mM DTNB. The reaction was initiated with the
addition of 5 mM RipA and was incubated at room temperature for 30 min
monitoring the release of free coenzyme A at 412 nm, which detects the
formation of the nitrothiobenzoate dianion.
doi:10.1371/journal.pone.0025084.t003

Structural Analysis of Y. pestis RipA
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dynamics of the RipA tetramer by performing a 20 ns of explicitly

solvated molecular dynamics (MD) simulation under biologically

relevant conditions. As a geometric measure of conformational

diversity, alpha-carbon RMSD time series analyses were calculat-

ed for the tetramer and each monomer (Figure S3). The

relatively small fluctuations for both the monomer and tetramer

indicate stability. The time series of distances separating monomer

centers of mass was determined as a metric of tetramer stability. In

the crystal structure, each of these distances is identical, measuring

44.4 Å. During the simulation, these distances increase slightly,

both converging to 45.2 Å within 1 ns (Figure S4). Relative to the

rest of the monomer surface, the interface is slightly enriched in

basic and polar residues and depleted of acidic and non-polar

residues (Table S1, Figure S5). For each residue that spent at

least 50% of the simulation within 5 Å of the adjacent monomer at

the dimer-dimer interface, we identified interaction partners and

calculated the fractional contact time spent with each (Table S2).

These contacts, as well as a two-fold symmetry that exists at the

dimer-dimer interface, are illustrated in Figure 4B. An ion pair

between Arg171 and Asp293, not present in the crystal structure,

forms across the dimer interface during the simulation. Addition-

ally, residue His139, which is predicted to be doubly protonated,

forms a charge-dipole interaction across the interface with the C-

terminal of helix (a11). Stabilization of the interface is further

enhanced with pi-pi stacking between His139 – His294 and

hydrophobic interactions between Ala178 – Phe295.

Investigation into the acyl-CoA binding pocket volume
The free volume of the acyl-CoA binding pocket was

measured within 10 Å of the key catalytic residue, Glu249.

The volume distribution revealed that the acyl-CoA binding

pocket samples two distinct states (Figure S6): a ‘‘small-volume’’

state (65 Å3), which constitutes 6.3% of the sampled conforma-

tions, and a ‘‘large-volume’’ state (632 Å3), which makes up the

remaining 93.7%. In all of the conformations from the small-

volume state, a three-residue loop (Gly226, Val227, Gly228)

Table 4. X-ray diffraction data collection and atomic refinement for Y. pestis RipA crystallized in the presence of various CoA-
derivatives.

SeMet-RipA with Acetyl-CoA Native RipA with Succinyl-CoA Native RipA with CoA

Space Group C2 C2 P3121

Unit cell dimensions (Å) 117.56109.3685.3 118.56108.5684.9 197.56197.5661.1

pH of crystallization condition 5.7 5.0 6.3

Data set

Wavelength (Å) 0.97930 1.0 1.0

Resolution range (Å) 50 – 2.3 50 - 1.9 50 - 3.0

Unique reflections (total) 38932 (411142) 71782 (239991) 27624 (404355)

Completeness (%)" 94.7 (92.0) 98.10 (86.20) 100.00 (100.00)

Redundancy" 10.5 (10.0) 3.3 (2.0) 14.6 (14.2)

Rmerge
",a 10 (54.3) 5.3 (15.9) 12 (56.1)

I/s" 9 (1.6) 19.7 (4.8) 28.0 (6.0)

FOM 0.30 - -

# of Se sites 16 - -

NCS copies 2 2 2

Model refinement

Resolution range (Å) 26.7 - 2.3 41.23 - 1.90 49.72-3.0

No. of reflections (working/free) 38671/1947 70864/1974 26715/1922

No. of protein atoms 6660 7233 6660

No. of water molecules 160 419 -

No. of acetate molecules/monomer - 1 -

Missing residues 337–345 - 337–345

Rwork/Rfree
b, % 20.9/25.2 17.2/20.3 18.4/21.7

R.m.s deviations

Bond lengths (Å) 0.011 0.007 0.012

Bond angles (degrees) 1.53 1.07 1.62

Ramachandran Plot

Most favorable region (%) 96 98 97

Additional allowed region (%) 3.77 2 2.88

Disallowed region 0.23 0 0.12

PDB ID Code 3S8D 3QLI 3QLK

"Statistics for the highest resolution shell are given in (brackets).
aRmerge =g|I2,I.|/gI.
bRwork =g|Fobs2Fcalc|/gFobs Rfree was computed identically except where all reflections belong to a test set of 5% randomly selected data.
doi:10.1371/journal.pone.0025084.t004

Structural Analysis of Y. pestis RipA
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connecting a9 to b9 protrudes into the active site. When the loop

is extended, the side chain of Val227 juts into the CoA binding

pocket, diminishing the free volume (Figure 6A, cyan). On the

other hand, in the majority of the conformations from the large-

volume state, the loop retracted, and the Val227 side chain is

folded away from the CoA binding pocket and is sandwiched

between the side chains of Met197, Met282, Asn252, and Val250

(Figure 6A, orange). Further, the Val227-loop extends and

retracts multiple times during the 20 ns simulation. Notably,

within the RipA crystal structure, the three-residue loop

containing Val227 from each chain of the dimer adopt alternate

conformations (Figures 3C and 3D) albeit less drastic than

those of the MD simulation, reinforcing the suggestion of two

volume states for RipA. Moreover, movement of Val227 into the

CoA binding pocket constricts the passageway leading to the

catalytic Glu249, which may hinder or occlude acyl-CoA binding

(Figure 6A, insert).

Correlations between volume and the distance separating the a-

carbon atom of Asn252 and the b-carbon atom of the Val227 side

chain were investigated to determine the dynamic effects of

Val227 loop extension on CoA binding pocket volume (Figure
S7). Asn252 resides at the terminal of a10 and is adjacent to

Val227 when the loop is retracted (Figure 6A). When Val227

extends into the active site, decreasing free pocket volume, it

moves away from Asn252, and the distance increases. Consistent

with this, the average distance in the small-volume state is 9.50+/

20.50 Å, while the distance in the large-volume state is 7.36+/

21.6 Å.

Dynamics of the putative acyl-binding pocket
RipA demonstrates some degree of acyl-CoA promiscuity

(Figures 1 and 2, Table 2), as observed in other Family I

CoA transferase members [10,14]. These observations suggest the

existence of an acyl-binding pocket adjacent to the catalytic

Glu249, which may determine acyl transfer specificity.

The MD trajectory reveals an acyl-binding pocket located on

the N-terminal-domain, opening toward Glu249 (Figure 6B).

Comprised of a triad of phenylalanines (Phe60, Phe85, and

Phe113), the pocket is largely hydrophobic. Met31 and Glu61 are

adjacent to the phenylalanine triad. Using the program PROPKA

[17] during simulation preparation, the pKa of Glu61 was

predicted to be 7.30. This value is consistent with the large

unfavorable free energy change expected upon burying a

negatively charged carboxylate in a hydrophobic pocket. There-

fore, the simulations were carried out with Glu61 protonated,

making it the sole hydrogen bond donor or acceptor. Notably, the

pocket is only partially formed in the crystal structure, where the

Phe85 side chain is pointing back toward Phe113 (Figure 6B),

creating a shallower pocket than that observed during the MD

simulation. During simulation equilibration, the Phe85 side chain

rotates away from its position in the crystal structure, increasing

pocket depth (Figure 6B). After rearranging into the new

conformation, Phe85 is stable over the course of the MD

simulation. The side chain of Glu61 also rotates, mediating the

position of the carboxylic acid relative to the phenylalanine triad

and populating three states (Figure S8). In the most and least

populated states, the carboxylic acid is rotated downward and is

Figure 3. Structure of RipA. (A) Overall structure of Y. pestis RipA, the N-terminal and C-terminal domains are colored blue and red, respectively,
connected via an ordered loop colored in green. The proposed active site glutamate, Glu249, and Val227, the key residue proposed to be involved in
an active site ‘‘gating mechanism’’ are in stick representation with carbon, oxygen and nitrogen atoms are colored, yellow, red and blue, respectively.
(B) Depiction of the tight dimer of RipA where each monomer of the dimer is colored in cyan and orange. The black circles indicate active site Glu249
and the three-residue loop (G-V227-G), which are in stick representation where oxygen and red atoms are colored red and blue, respectively, and
Glu249 carbon atoms are colored yellow. (C) Superposition of the two monomers from the dimer, where the only difference between both subunits
is in the three-residue loop (G-V227-G). (D) Electron density (shown in blue mesh) surrounding the GVG of the three-residue loop from each
monomer of the dimer.
doi:10.1371/journal.pone.0025084.g003

Structural Analysis of Y. pestis RipA

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e25084



positioned directly above the phenylalanine triad, where it may

serve as a hydrogen bond donor or acceptor for charged or polar

acyl groups, such as succinate. In the second most populated state,

the carboxylic group is positioned upward, away from the

phenylalanines, modestly expanding the pocket. Phe85, Phe113

and Met31 are stable and fluctuate little compared to the motion

observed in Glu61.

To further explore the possible functional significance of the

expanded acyl-binding pocket and protonation state of Glu61, we

modeled butyryl-CoA into the crystal structure and an open-

pocket conformation from the MD simulation. The butyryl groups

were added to the CoA conformation taken from the S. oneidensis 4-

HB-CoAT CoA-bound structure and manually positioned to

minimize steric conflict with the protein. Each butyryl-CoA was

then briefly minimized while fixing the position of the protein,

resulting in the final models (Figure 7). In the crystal structure

model, Phe85 prevents the butyryl group from binding in the

predicted acyl-binding pocket (Figure 7A). This forces the butyryl

group to fold back toward the solvent, pushing the thioester

carbonyl group away from the putative Glu249 nucleophile. In the

MD-model, the open acyl-binding pocket clearly accommodates

the butyryl group (Figure 7B), which permits a more extended

butyryl conformation and allows the carbonyl thioester and

Glu249 to move roughly 1 Å closer to one another. In both

models, Glu61 is positioned to donate a hydrogen bond to the

thioester carbonyl oxygen atom.

Ensemble-averaged electrostatics of RipA
Ensemble-averaged electrostatic potentials have been shown to

agree better with experimental data for a number of biologically

relevant systems [18]. To gain further insight into the physical

factors that may influence the structure and function of RipA, we

calculated the enzyme electrostatic potential, averaged over the

four monomers and the ensemble of conformations generated

during the 20 ns MD simulation. A large positive electric

isopotential surface (+70 kT/e) is positioned directly above the

acyl-CoA binding cleft and extends roughly 10 Å beyond the

protein-solvent interface into bulk solvent. Similarly, large negative

Figure 4. RipA is a tetramer. (A) Tetrameric state of RipA formed by the crystallographic symmetry axis at the dimer-dimer interface. Each
monomer of the dimer are colored in cyan and orange, and the crystallographic symmetry axis is marked with a red line, and is at the dimer-dimer
interface of the tetramer. Entrance to each active site of the four monomers is indicated with an arrow. (B) Hydrogen-bonding network at the dimer-
dimer interface, one cyan and one orange monomer. Key interacting residues are in stick representation, where oxygen and nitrogen atoms are
colored in red and blue, respectively. Black dashed lines indicate hydrogen bonds (less than 4 Å). (C) Size exclusion chromatogram of RipA. Bold line
is RipA and dashed line is a protein standard. (D) Top view of SAXS data with the overlay of RipA tetramer with the electron-density envelope using
CHIMERA. The envelope is calculated from an average of 10 GASBOR runs with P2 symmetry and 1756 residues.
doi:10.1371/journal.pone.0025084.g004
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electric isopotential surfaces (270 kT/e) are positioned on either

side of the acyl-CoA binding cleft (Figure 8).

Discussion

The conserved rip operon may constitute a novel
virulence pathway

The rip operon is observed across Yersinia, Salmonella and

Burkholderia species (Table 1). To further support the hypothesis

that RipA, RipB and RipC are important in bacterial survival for

this diverse set of pathogens, studies in Salmonella typhimurium

(serovar of S. enterica) revealed that the ripA and ripB genes are

important virulence factors which are upregulated in S. typhimur-

ium-infected macrophages [19], and are further required for S.

typhimurium mouse systemic infection [20,21]. The conserved rip

operon appears to be required for infection and virulence in

Salomonella, as well as Yersinia virulence, and thus may constitute a

novel virulence pathway.

The gene products from the rip operon are highly homologous

to proteins involved in the production of CoA-derivatives. The

closest amino acid sequence homologs to RipA, RipB and RipC

are 4-HB-CoAT, enoyl-CoA dehydratase/hydratase and citrate

lyase b-subunit, respectively. Significantly, citrate lyase b-subunit

is involved in the reversible conversion of citryl-CoA to acetyl-CoA

[22]. Thus, it is highly plausible that the rip operon is involved in

the production of a CoA-derivative and an acyl carboxylic acid.

RipA is a Family I CoA transferase
RipA belongs to the Family I CoA transferases (Figure 5),

which consists of a wide variety of proteins found both in

eukaryotic and bacterial species and is characterized by two main

features: an active site glutamate, Glu249, essential for the

Figure 5. Sequence comparison of members of the Family I CoA transferases. Amino acid numbering and secondary structure elements
above the sequence correspond to that of Y. pestis RipA, whereby tubes and arrows represent a-helices and b-strands, respectively. The conserved
active site residue, Glu249, and the proposed key residue in the substrate gating-mechanism, Val227, are boxed. Residues donated with an open
circle form the dimer-dimer interface, and those donated with a filled circle represent residues within the binding pocket of the acyl moiety for acyl-
CoA. The sequence alignment of Family I CoA transferase homologs was made with ClustalW [55]. The black line represents the insert in Escherichia
coli YdiF. Abbreviations of the species names for Family I CoA transferases are as follows: YP-RipA, Yersinia pestis RipA; BP-RipA, Burkholderia mallei
RipA; ST-RipA, Salmonella typhimurium RipA; SO-4HB, Shewanella oneidensis 4-HB-CoAT; PG-4HB, Porphyromonas gingivalis 4-HB-CoAT; CA-4HB,
Clostridium aminobutyricum 4-HB-CoAT; EC-YdiF, Escherichia coli YdiF; SS-SCOT, Sus scrofa SCOT; RS-But, Roseburia sp. Butyryl-CoA transferase.
doi:10.1371/journal.pone.0025084.g005
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ping-pong mechanism of CoA transferases and a similar a/b fold

[6]. Sequence alignment of RipA to other Family I CoA

transferases reveal the conserved catalytic glutamate, as well as

high sequence identities to Roseburia sp. butyryl-CoA transferase

(39%) ([13]) and 4-HB-CoATs from Clostridium aminobutyricum

(38%, PDB:3GK7) [14], Porphyromonas gingivalis (40%, PDB:3EH7)

and Shewanella oneidensis (40%, PDB:2OAS) (Figure 5).

As there are no existing butyryl-CoA transferase structures, the

1.9 Å RipA crystal structure, which demonstrates the canonical

Family I CoA transferases a/b fold, is compared against 4-HB-

CoAT structures. The overall fold amongst the RipA and 4-HB-

CoAT structures are highly conserved with RMSDs between

1.57–1.68 Å in pairwise structural alignments. In the S. oneidensis 4-

HB-CoAT structure, helix a1, which is conserved in RipA and the

other 4-HB-CoAT structures, is missing. However, the most

distinct difference between RipA and the other 4-HB-CoATs is

the extension of helix a5 (Figure 3A), the consequence of which

induces a variety of structural differences that are described below.

Firstly, a5 pivots 30u at the N-terminal end away from the surface

of the molecule, preventing steric clashes with a15 from the

adjacent monomer. Concurrently, the N-terminal end residues of

a5 protrudes toward the b15 to a13 loop, which sits along the

proposed CoA binding pocket, causing a 90u rotation of the loop.

This rotated loop, in turn, induces the formation of an extended

kinked helix (a13) at its base, at the expense of a b-turn found in

other 4-HB-CoAT structures [14] and forms unique contacts with

a truncated loop between b16 and b17.

The differences between the 4-HB-CoATs and other Family I

CoA transferases, including SCOT and YdiF, consist of several

insertions as previously described [14]. In addition, unlike in the

other Family I CoA transferases, 4-HB-CoATs have an ordered

linker that crosses adjacent to the CoA active site. Consistent with

the high degree of monomeric structural conservation among the

4-HB-CoATs, the monomer-monomer interfaces are similar with

variations isolated to interactions between non-conserved residues

while more distinct differences are observed between other CoA

transferases.

RipA has a unique tetrameric orientation
The tetrameric structure of RipA is unique compared to the

previously described E. coli YdiF (PDB Code: 2HAU) [10], which

is further validated as the YdiF tetramer assembly does not fit into

the RipA SAXS electron density envelope. The reported YdiF

structure has a dimer-dimer interface with weak N-terminal

Figure 6. MD perturbations in the acyl-CoA binding pocket. (A) Val227 affects acyl-CoA binding pocket volume. In the overview (left), and the
close-up (right) the representative small-volume conformation is shown in cyan, while the representative large-volume conformation is shown in
orange. In the overview, molecular surfaces of residues within 10 Å are shown, while the remainder of the residues are rendered in cartoon. In the
large-volume state, Val227 is stabilized by interactions with a pocket formed by the side chains of Val250, Met197, Met282 and Asn252; in the
overview, these residues are rendered as colored surfaces and labeled (the methionines are colored yellow, asparagine is colored red and the valine is
colored blue); in the close-up, these residues are rendered in van der Waals spheres and colored according to atom type. Glu249 is shown in orange
spheres for reference. (B) Putative acyl binding pocket. Phe85 rotates during MD, increasing the available volume in a largely hydrophobic pocket
adjacent to the putative catalytic Glu249. The position of Phe85 in the crystal structure is shown in cyan; a representative conformation from MD is
shown in orange. Other residues lining the pocket that do not undergo substantial rearrangements during dynamics, along with Glu249, are shown in
white. Pocket expansion likely facilitates acyl binding during the acyl transfer reaction.
doi:10.1371/journal.pone.0025084.g006

Figure 7. Modeling butyryl-CoA into the RipA structure. (A) Butyryl-CoA was modeled into chain A of the crystal structure. Phe85 closes the
predicted acyl-binding pocket, forcing the butyryl to bend back toward the AMP-CoA moiety. The distance between the Glu249 putative nucleophile
and the carbon atom of the carbonyl elecrophile is 4.95 Å. (B) Butyryl-CoA was modeled into a conformation sampled from the MD simulation. Phe85
rotates, opening the predicted acyl-binding pocket and allowing the butyryl to adopt a more extended conformation. In the more extended
conformation, the distance between Glu249 and the carbonyl electrophile closes to 3.74 Å. In both (A) and (B) protein residues are colored by atom
type with green carbon atoms, while butyryl-CoA is colored by atom type with cyan carbon atoms; residues not shown explicitly are rendered in
white cartoon.
doi:10.1371/journal.pone.0025084.g007
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domain interactions, resulting in only ,2% total buried surface

area for each monomer (Figure S9). This interface is stabilized by

two direct protein contacts and a network of ordered waters,

whereby one dimer appears to float on top of the other (Figure
S9). In contrast, the RipA dimer-dimer interface has far more

extensive residue contacts from both domains and each monomer

has a total buried surface area of ,8.2%. Although a network of

ordered dimer-dimer interface waters facilitates tetramer forma-

tion in both RipA and YdiF, the increased buried surface and

direct residue contacts found in RipA likely results in a more stable

tetramer. The difference in tetrameric structures appears to

originate at the dimer level. Compared to the other 4-HB-CoAT

structures found in the PDB, YdiF has a unique insertion between

a6 and b4 (Figure 5). This insert, which consists of five

antiparallel b-strands and one a-helix (Figure 5), leads to the

noted differences at the dimer interface. On the other hand, the

CoA bound S. oneidensis 4-HB-CoAT (PDB:2OAS, unpublished)

tetramer is similar to that of RipA. Like the RipA tetramer, it is

formed through crystallographic symmetry and has a conserved

dimer-dimer interface. Conservation includes residues Asp137,

Tyr141, Arg171, Gly174, and Asp293, all of which are found

in RipA homologs and Roseburia butyryl-CoA transferase

(Figures 4B and 5). This unique RipA tetrameric state appears

stable both experimentally and during molecular dynamics

simulations suggesting a possible role in RipA function.

RipA is a probable butyryl-CoA transferase
The functional annotations of CoA transferases are determined

from the identities of cognate acyl-CoA substrates. However, non-

cognate CoA-derivatives have also been reported to interact with

several CoA transferases at varying specificities, suggesting

substrate promiscuity [7,23,24]. As such, RipA shows similar

reactivity with multiple acyl-CoA substrates as suggested from

DSF and shown by activity assay results (Figures 1 and 2,

Table 2). These results do show a profile corresponding to a role

in short-chain, unbranched and unsaturated CoA-derivatives

binding. Intriguingly, the RipA CoA transfer activity rate is fastest

in the presence of butyryl- and propionyl-CoA (Figure 2A).

Moreover, butyrate and propionate are preferred to acetate in

competition assays (Figure 2B), which is similar to substrate

specificity previously observed in Roseburia butyryl-CoA transferase

[13]. Conversely, in competition assays with 4-HB-CoAT from C.

aminobutyricum, 4-hydroxybutyrate greatly out-competes butyrate

and propionate, both of which are preferred to acetate [5,13].

Furthermore, kinetic analysis confirms that butyryl-CoA is the

preferred substrate over propionyl-CoA (Table 3). Thus, the

previously annotated CoA transferases together with our exper-

imental results suggest that RipA is a butyryl-CoA transferase.

Insights into substrate binding and specificity
As no Family I CoA transferase structures bound to their acyl-

CoA substrates exist, the mechanism for determining specificity is

not explicitly known. We speculate that the fluctuating putative

acyl-binding pocket, as revealed in the MD simulations, may play

a role in substrate specificity.

To facilitate catalysis, the acyl-CoA carbonyl must be proximal

to the putative catalytic Glu249. This requirement likely forces the

acyl backbone into the adjacent N-terminal pocket formed by

Phe85, Phe60, Phe113, Met31 and Glu61 (Figures 6B and 7).

With the exception of Glu61, which is protonated and polar, the

pocket is entirely apolar, resembling those described in C.

aminobutyricum 4-HBCoAT [14] and SCOT [25,26] with Phe85,

Phe60 and Phe113 conserved in all 4-HBCoATs. The pocket size,

which restricts the size of the acyl group that can bind effectively,

appears to be large enough to accommodate acyl groups of three

to four carbon atoms and helps explain the competition and DSF

assays. To illustrate this, we modeled butyryl-CoA into the crystal

structure and an open-pocket conformation from the MD

simulation (Figure 7B). The crystal structure occludes butyryl,

which shifts the carbonyl thioester electrophile away from the

Glu249 nucleophile, to a distance of 4.95 Å (Figures 7A & 7B).

In contrast, the open acyl-binding pocket is able to accommodate

the butyryl group, reducing the distance between electrophile and

nucleophile to 3.74 Å. Thus, our models suggest that the open

pocket may influence the orientation of the thioester and facilitate

reaction. The models also predict that acyl groups longer than four

carbon atoms are too large for even the open pocket (Figure 7A),

in support of the DSF and activity data for decanoyl-CoA

(Figures 1 and 2, Table 2). Furthermore, our models indicate

that the apolar pocket will interact favorably with hydrophobic

molecules, such as propionyl and butyryl. Similarly, we hypoth-

esize that the apolarity of the acyl-binding pocket is insufficient to

orient succinate in a reactive conformation, as suggested by the

low affinity of RipA for succinyl-CoA (Table 3). This is also

consistent with competition assay results for 3-hydroxybutyrate

and 4-hydroxybutyrate.

Notably, the position of the Met31, conserved only within rip

operon RipA homologs (Figure 5), suggests that RipA has a

different acyl-CoA specificity than 4-HBCoATs; the hydrophobic

side chain will sterically clash with the proposed hydrogen bonding

between the corresponding 4-HBCoAT His31 and the 4-hydroxy

group of the 4-hydroxybutyrate-CoA substrate. These observa-

tions suggest a possible unique functional role for RipA, in which

specificity for the acyl-CoA substrate is controlled by the

phenylalanine triad pocket; and together with the functional

analysis, the data suggest that RipA is predominately a butyryl-

CoA transferase.

Figure 8. Ensemble averaged electrostatics. Positive and negative
electric isopotential surfaces, with values +70 kT/e and 270 kT/e,
respectively, are shown in blue and red wire frame mesh. The N-
terminal domain is colored blue, the C-terminal domain red, and linker
green. For reference, Glu249 is shown in yellow van der Waals
representation and labeled, and RipA is oriented as in Figure 3A.
doi:10.1371/journal.pone.0025084.g008
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Potential mechanism of substrate association for Family I
CoA transferases

As Family I CoA transferases have conserved active sites, the

mode of substrate binding that can be gleaned from RipA MD

simulations may describe a generalized mechanism for other

members of the family. To progress through the catalytic cycle,

RipA must first bind an acyl-CoA substrate. The electric field

around RipA may facilitate binding by channeling the acyl-CoA

thioester, which, assuming a neutral acyl group, has an overall 24

charge, toward the active site. The electric isopotential surface is

prominently positioned above the active site, where it can attract

the negatively charged acyl-CoA into the binding cleft (Figure 8).

When comparing the two monomers within the dimer of the

RipA crystal structure, it was found that monomer B has a loop

containing Val227 that moves into the CoA pocket (Figures 3C
and 3D). This movement is similar to that observed in recent

unbound and CoA-enzyme intermediate forms of SCOT that

show that the C-terminal domain moves toward the N-terminal

domain, constricting the acyl-CoA binding pocket in the CoA-

enzyme intermediate state [25,27]. The RipA structure most likely

represents a form similar to the unbound form crystallized with

glycerol [27], as RipA was also crystallized with glycerol. In

particular, the authors note that movement of the Val227

homolog, Ile284, toward the catalytic glutamate may aid in

shielding the thioester from hydrolysis; it is plausible that Val227

plays a similar role in RipA.

In the RipA simulations, the Val227-loop also moves in and out

of the CoA binding cleft, and this motion is correlated with CoA

binding cleft volume changes (Figure 6A, Figures S6 and S7).

This suggests that once the acyl-CoA encounters RipA, Val227-

loop dynamics may ‘‘gate’’ the CoA binding pocket and affect the

rate of acyl-CoA binding. The phenomenon of active site gating

has been described in a number of systems [28]. In order to

determine whether this gating affects the acyl-CoA binding rate,

the average dissociation time of the encounter complex, as well as

the gating period (the average time required for Val227-loop

extension and retraction) need to be compared. The Val227-loop

extends and retracts multiple times during our 20 ns simulation,

indicating a gating period on the order of nanoseconds. A rough

approximation of the average dissociation time of the encounter

complex using diffusion constants estimated with the Stokes-

Einstein equation gives a value of 0.12 ms. This rough analysis

indicates the gate opens and closes ,100 times before the

encounter complex dissociates, and it is unlikely that gating motion

slows the overall acyl-CoA association rate.

In addition, the transient constriction of the acyl-CoA binding

pocket may be indicative of a conformational state that assists

catalysis upon acyl-CoA binding. The idea that enzymes

transiently populate, or ‘‘pre-select’’ conformational states that

assist catalysis, even in the absence of substrate, has been observed

in a number of enzymes [29,30,31]. Although we currently lack a

crystal structure of CoA bound to RipA, the Val227-loop

conformations sampled during MD in context of the recent

SCOT structures [25] suggest that RipA follows a conformational

pre-selection mechanism. Together, conformational pre-selection

and the gating analysis suggest that the Val227-loop structure is

highly evolved to optimize catalytic efficiency, sampling confor-

mations relevant to catalysis without adversely impacting the rate

of acyl-CoA association.

Biological implications
It was previously suggested in S. typhimurium studies that the Rip

proteins play a role in the synthesis of peptidoglycan, which have a

vital role in infection [19]. However, in Y. pestis the rip operon has

been implicated in enhancing intracellular viability by lowering

the level of NO in postactivated macrophages [4], suggesting that

either one or all of the gene products may be involved in direct or

indirect NO detoxification. We propose two possible hypotheses

whereby RipA produces either: (i) acetyl-CoA that may bind to

and detoxify NO, yielding S-nitrosoCoA [32,33], or (ii) butyrate, a

known anti-inflammatory, which has been shown to reduce NO

levels in INF-g activated macrophages [34,35]. Collectively, the

results presented here favor the latter hypothesis, in which RipA is

a butyryl-CoA transferase.

In conclusion, to dissect the role of this novel rip-mediated

pathogenesis pathway, we have focused our efforts on the

biochemical, structural and computational characterization of Y.

pestis RipA. Herein, we suggest that in INF-g activated

macrophages, RipA, a proposed butyryl-CoA transferase, produc-

es butyrate that indirectly lowers the macrophage NO levels,

preventing bacterial cell death. Furthermore, we now have a

structural platform for rational inhibitor discovery to probe this

pathway with small molecules in vitro and to shed light on the

mechanism of action of the encoded rip operon.

Materials and Methods

Overexpresion and purification of RipA
RipA was overexpressed in a pET28 plasmid containing the Y.

pestis ripA gene using E. coli BL21(DE3) Gold cells (Strategene). Cells

were grown at 37uC in LB medium containing 50 mg/ml of

kanamycin. Protein expression was induced by adding 1 mM IPTG

at an OD600,1.0 and grown at 18uC overnight before harvesting.

Cells were pelleted at 5,000 rpm for 10 min and then resuspended

in wash buffer (50 mM Tris pH 7.4, 350 mM NaCl, 10 mM

imidazole and 10% glycerol) containing phenylmethylsulfonyl

fluoride (PMSF) and hen egg lysozyme. Then cells were lysed by

sonication and centrifuged at 13,000 rpm for 40 min followed by

filtration (0.22 mm) of the cell lysate to remove cell debris before

purification. The cell lysate was loaded on to a Ni2+-charged

HiTrap column (5 mL) and washed with wash buffer before protein

was eluted with an imidazole 10–500 mM linear gradient (100 ml)

in which purified protein eluted between 200 and 300 mM

imidazole. The fractions were collected and concentrated in a

centricon (15 mL) to 6 mg/ml. The selenomethionine-derivatized

RipA was grown in M9 minimal medium supplemented with amino

acids supplements (leucine, isoleucine, valine, 50 mg/L; phenylal-

anine, lysine, threonine, 100 mg/L; and selenomethionine 75 mg/

L) adapted from a previously described protocol [36]. The SeMet-

RipA was purified as described for the native RipA above.

Differential scanning fluorimetry (DSF)
The thermal stability of RipA with various CoA-derivatives was

assessed using an Mx3005P QPCR machine (Agilent). Each

50 mL sample contains 5 mM RipA in 100 mM potassium

phosphate buffer pH 7.4, incubated with 20 mM CoA-derivative

in the presence of 40 mM SYPRO orange dye. Fluorescence

readings (Ex/Em wavelengths: 492/610 nm) were recorded from

25–95uC with a temperature ramp of 1uC/min [12]. All samples

were tested in duplicate and the results duplicated in at least two

independent assays. The data were fitted by a nonlinear regression

analysis using the Boltzmann function (GraphPad Prism) and Tm

values were determined by the inflection point of the resulting

transition curves as defined from 35–70uC.

CoA transferase activity assay
RipA enzymatic activity assays was carried out as previously

described [5], whereby transfer of CoA from a CoA-derivative
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(Sigma) to acetate was determined by the coupled release of

CoASH from the condensation of oxaloacetate by citrate synthase

(Sigma) and detected at 412 nm by 5,59-dithiobis-(2-nitrobenzoic

acid) - DTNB. Each 100 ml reaction mixture contained 50 mM

CoA-derivative, 100 mM sodium acetate, 100 mM Tris pH 7.0,

1 mM oxaloacetate, 0.5 U citrate synthase and 1 mM DTNB.

Reactions were initiated with the addition of 10 mM RipA and

monitored for 30 min at 412 nm at room temperature, detecting

the formation of the nitrothiobenzoate dianion. The negative

control was the same reaction mixture without citrate synthase.

Competition assays were performed as above, however equimolar

amounts of sodium acetate (10 mM) and another carboxylic acid

where added to the reaction mixture to observe if RipA favors the

new carboxylic acid as a substrate over acetate by the inhibition of

acetyl-CoA production, whereby RipA favors the new carboxylic

acid as a substrate over acetate. Kinetic experiments were carried

out for RipA (5 mM), in which the concentrations of succinyl-,

butyryl- and propionyl-CoA were varied. All experiments were

performed in at least three independent assays.

Sodium 4-Hydroxybutyrate Synthesis
Sodium 4-hydroxybutyrate was prepared from an adapted

protocol as previously described [37]. Briefly, 16.3 g of 4–

butyrolactone (Sigma) and 7.4 g of sodium hydroxide was initially

dissolved in 30 mL of water and then refluxed for three hours.

Additional water was added to fully dissolve the salt and the

resulting solution was filtered and evaporated to dryness under

reduced pressure. Sodium 4-hydroxybutyrate was recrystallized

from ethanol and its purity was confirmed by nuclear magnetic

resonance.

Crystallization of RipA
RipA crystallized in two different space groups, C2 and P3121.

Protein concentrations for crystallization are given in Table 4.

Native and SeMet-derivatized crystals in space group C2 were

grown over a period of one week at room temperature by hanging

drop-vapor diffusion with a reservoir containing 8% tacsimate

pH 5.0, 8% PEG 3350, 4% v/v 2,5-hexandiol and 1 mM acyl-CoA

(succinyl- or acetyl-CoA, respectively) with crystallization drops on a

1 mL:1 mL protein to reservoir. Crystals in space group P3121 were

grown similarly in 18% PEG 3350, 0.2 M sodium citrate, 0.1 M

Bis-tris propane, pH 6.3 and 1 mM CoA. Crystals were mounted

and collected under cryoconditions with the addition of 25%

glycerol as cryoprotectant to the reservoir condition.

Data collection, structure determination, and refinement
RipA crystallized in two different space groups, C2 and P3121,

where both space groups contain two monomers per asymmetric

unit. A Se-single anomalous dispersion (SAD) dataset at the Se

absorption edge (0.9793 Å) was collected from the C2 form on

beamline 5.0.2 at the Advanced Light Source (ALS). Data

reduction was carried out with the HKL2000 suite [38], resulting

in a 98% complete dataset up to 2.3 Å, with significant anomalous

differences up to 3.6 Å resolution. Phenix.autosol [39] located 16

Se sites and identified a two-fold non-crystallographic symmetry

operator. Subsequent density modification resulted in electron

density maps that were subjected to automated and manual model

building procedures. The final model was built through iterative

building in Coot [40] and refining through Phenix.refine [39]. The

C2 crystal form crystallized in the presence of succinyl-CoA was

collected similarly to 1.9 Å with final Rwork/Rfree (%) 17.2/20.3

with 98% in favorably allowed regions. The P3121 crystal form

crystallized in the presence of CoA was collected similarly to

3.0 Å, and solved by molecular replacement utilizing Phenix [39].

Programs from the CCP4 package [41] as well as Phenix [39],

Pymol [42], and Coot [40] were used to analyze the stereochem-

istry and geometry of the models and were found to be acceptable.

Data collection and refinement statistics are presented in Table 4.

Gel Filtration
Tertiary structure was determined by analytical gel filtration

where 500 ml of protein was run on a Superdex 200 using an

AKTA FPLC and compared to a protein standard (Biorad).

SAXS analysis
SAXS was used for similar results with 3 different measure-

ments at different concentrations with resultant data processed

through PRIMUS and GNOM [43]. Resultant tertiary structure

was determined both from calculated molecular weight from

SAXS MoW [16] and fitting of the RipA tetramer in a SAXS

envelope generated from GASBOR using 10 simulations using P2

symmetry averaged together with DAMAVER [43] and the

envelope generated using CHIMERA [44].

Molecular Dynamics system preparation
Protein parameters were assigned according to the AMBER

99ffSB force field [45]. Protonation states at a pH of 7.4 were

predicted using the program PROPKA, and hydrogen atoms were

assigned according to residue templates in the AMBER 99ff using

the xleap program accompanying the AMBER 10 suite [46]. The

initial CoA-tetramer model was immersed in a TIP3P [47] solvent

box that provided a 10 Å buffer between the protein and the

boundary of the periodic box in each direction. Sodium ions were

added to bring the system to electric neutrality. Additional sodium

and chloride ions were added to bring the sodium chloride

concentration to 20 mM.

Molecular dynamics simulations
Following model construction and parameterization, 10

kcal mol21 Å22 harmonic restraints were applied to the backbone

and 5 kcal mol21 Å22 harmonic restraints were applied to the side

chains. The model was then minimized in 5 stages. A restraint-

scaling factor was applied and reduced linearly from 1 to 0.25 in

0.25 increments over 4, 5000-step minimization stages. During the

final stage, the restraints were removed, and minimization was

performed for 10,000 steps. Following minimization, equilibration

was carried out at 1 atmosphere and 300 Kelvin (NPT ensemble).

The temperature was maintained using Langevin dynamics with a

damping coefficient of 5 ps21, while the pressure was maintained

using a hybrid Nose-Hoover-Langevin piston method [48] with

period and decay times of 200 and 50 fs, respectively. A multi-time

step algorithm was used in which bonded interactions were

computed every time step, short-range nonbonded interactions

were calculated every 2 time steps, and full electrostatics were

computed every 4 time steps. The water hydrogen-hydrogen and

hydrogen-oxygen distances were constrained using the SHAKEH

algorithm [49] to be within 0.0005 Å of the nominal force-field

length. The particle mesh Ewald method [50] was used to treat

long-range electrostatics, using a grid spacing of 1.0 Å. An

integration time step of 1.0 fs was used. During equilibration,

10 kcal mol21 Å22 harmonic restraints were applied to the

backbone, and 5 kcal mol21 Å22 restraints were applied to the

side chains. A restraint-scaling factor was used and reduced

linearly from 1 to 0 in 0.25 increments in 5 stages, each lasting

250 ps. Following equilibration, production MD of the tetramer

model was carried out for 20 ns, sampling conformations every

50 ps, for a total of 40,000 model conformations. Production MD
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parameters were identical to those used during equilibration, but

no restraints were applied. Minimization, equilibration, and

production MD were all carried out using NAMD2.7 [51].

Production MD was performed on the TeraGrid Ranger cluster,

using 560 processors. A typical benchmark on the ,200,000 atom

system was 0.135 days per nanosecond of simulation.

MD analysis
Structural alignments and RMSD measurements were per-

formed using the ptraj program in the AMBER10 program suite.

Volume analysis was carried out using POVME [52]. All other

measurements were performed using custom scripts and the TCL/

TK interface in VMD [53].

Butyryl-CoA model construction
To determine the placement of CoA, chain A of Shewanella

oneidensis (PDB:2OAS) was aligned to a single chain of RipA using

the MultiSeq tool in VMD [54]. For the crystal structure model,

alignment was performed to chain A of the crystal structure. For

the MD model, alignment was performed to a conformation

sampled from chain A, after 6.96 ns of the simulation elapsed. The

butyryl moiety was added to CoA using the Maestro program

from Schrödinger (Maestro, version 9.2, Schrödinger, LLC, New

York, NY, 2011). Effort was taken to minimize steric conflicts

while maintaining the proximity of Glu249, the putative

nucleophile, and the butyryl-CoA thioester electrophile. Con-

straints were then placed on the protein, and butyryl-CoA was

minimized during a 1500 step Polak-Ribiere conjugate gradient

optimization using GBSA implicit solvent and the 2005 OPLS

force field. The minimization was performed in MacroModel v9.8,

from Schrödinger (MacroModel, version 9.8, Schrödinger, LLC,

New York, NY, 2010).

Supporting Information

Figure S1 The reaction mechanism of family I CoA-
transferases.
(TIFF)

Figure S2 RipA, the N-terminal and C-terminal domains
are colored blue and red, respectively. The proposed active

site glutamate, Glu249, Val227 and acetate are in stick represen-

tation with carbon, oxygen and nitrogen atoms are colored, yellow,

red and blue, respectively. The electron density mesh is colored in

blue and acetate and Glu249 fits the density well.

(TIFF)

Figure S3 Tetramer and monomer RMSDs.
(TIFF)

Figure S4 Distance between monomer centers of mass.
A) Distances separating centers of mass of monomers across the

dimer-dimer interface. B) Distances separating centers of mass of

monomers within each dimer.

(TIFF)

Figure S5 Fractional contact times and physico-chemi-
cal character of the dimer-dimer interface. (A) The

fractional contact times of residues that are within 5 Å any

residue that belongs to the monomer across the dimer-dimer

interface are mapped to the surface of the protein and coded by

color. (B) The physico-chemical character of residues with a

fractional contact time greater than 0. Blue is basic, red is acidic,

white is nonpolar, and green is polar.

(TIFF)

Figure S6 Bimodal volume distribution.
(TIFF)

Figure S7 Time series of active site volume and Val227
loop extension. A) Volume time series by monomer. Chains are

colored uniquely and labeled. Chain A is red, chain B is blue,

chain C is green, and chain D is pink. B) Time series of the

distance separating the a-carbon atom of Asn252 from the b-

carbon of Val227. Coloring is as in A. The Pearson coefficient

between these two series is 20.72.

(TIFF)

Figure S8 Distribution about the Glu61 CA-CB bond.
The peaks are described in the ‘‘dynamics of the putative acyl-

binding pocket’’ section.

(TIFF)

Figure S9 Proposed tetrameric assembly for E. coli
YdiF (PDB code:2AHU). Each monomer in the dimer is

colored in yellow and green, and the crystallographic symmetry

axis is marked with a red line and is at the dimer-dimer interface of

the tetramer.

(TIFF)

Table S1 Physico-chemical character at the interface
surface and total monomer surface.
(DOC)

Table S2 Fractional pair-wise contacts spanning the
dimer-dimer interface. Monomer residues numbers and single

letter amino acid codes for monomers from each side of the dimer-

dimer interface run along the horizontal and vertical.

(DOC)
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