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Abstract 

Background: Sensitive and specific non-invasive biomarkers are urgently needed in order to improve 
the survival of patients with pancreatic ductal adenocarcinoma (PDAC), which is the fourth leading cause 
of cancer-related death. We aim to identify serum hub miRNAs as potential diagnostic and prognostic 
biomarkers for PDAC. 
Methods: A total of 2578 serum miRNA expression data from 88 PDAC patients and 19 healthy 
subjects were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression 
network analysis (WGCNA) was constructed and significant modules were extracted from the network 
by WGCNA R package. Network modules and hub miRNAs closely related to PDAC were identified. 
The prognostic value of hub miRNAs was assessed by Kaplan-Meier overall survival analysis. 
Results: Two modules strongly associated with PDAC were identified by WGCNA, which were labeled 
as turquoise and brown respectively. Within each module, twenty hub miRNAs were found. At the 
functional level, turquoise module was mainly associated with tumorigenesis pathways such as P53 and 
WNT signaling pathway, while the brown module was mostly related to the pathways of cancer such as 
RNA transport and MAPK signaling pathway. Utilizing overall survival analyses, five “real” miRNAs were 
able to stratify PDAC patients into low-risk and high-risk groups. 
Conclusions: The association of specific Hub miRNAs with the development of pancreatic cancer was 
established by WGCNA analysis. Five miRNAs (mir-16-2-3p, mir-890, mir-3201, mir-602, and mir-877) 
were identified as potential diagnostic and prognostic biomarkers for PDAC. 
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Introduction 
Pancreatic ductal adenocarcinoma (PDAC) 

contributes to nearly 80% pancreatic cancer PDAC 
which is the fourth leading cause of cancer-related 
death. Compared with the steady improvement in 
survival for most other cancer types, little 
advancement have been made in PDAC, which 

remains a 3% 5-year survival rate [1]. By 2030, PDAC 
will likely surpass colorectal and breast cancers to 
become the second leading cause of tumor-related 
death in both men and women [2]. Due to the deep 
anatomical location of the human pancreas, 
tumor-specific symptoms such as abdominal mass, 
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jaundice, and weight loss typically emerge only after 
the tumor has reached an advanced stage, and is 
either unresectable or has already metastasized to the 
liver or other organs [3]. Up to now, CA19-9 is the 
only clinically available FDA approved serum 
biomarker for PDAC. However, due to its low 
sensitivity and specificity, CA19-9 is primarily used 
for monitoring tumor recurrence after surgery rather 
than being used as a primary diagnostic and 
prognostic biomarker [4-7]. In order to improve the 
survival of patients with pancreatic cancer, sensitive 
and specific non-invasive diagnostic and prognostic 
biomarkers are urgently needed.   

MiRNAs are small (20-24 nucleotides) 
non-encoding RNAs that regulate gene expression at 
the transcriptional or post-transcriptional levels [8]. 
The circulating miRNAs bind to targeted messenger 
RNA (mRNAs) and generally inhibit translation or 
reduce the stability of those mRNAs [9]. MiRNAs 
could regulate a broad range of biological processes, 
like cell-cycle, stress response, cell differentiation, 
apoptosis and invasion. Aberration of expression and 
functions of miRNAs has been reported to be greatly 
involved in tumorigenesis and progression [10-12]. 
Recent studies showed that miRNA-143 can promote 
cell apoptosis and regulate the process of pancreatic 
cancer by inhibiting the migration and invasion of 
pancreatic cancer cells. Eight miRNAs (miR-1301, 
miR-598, miR-1180, miR-155, miR-496, miR-203, 
miR-193b, miR-135b) were reported as independent 
predictors for the survival of patients with PDAC 
[13,14]. Therefore, miRNAs are considered to hold the 
potential as novel diagnostic biomarkers and 
therapeutic targets of cancers including PDAC. 

Weighted gene co-expression network analysis 
(WGCNA) is an effective modular biological analysis 
methodology that could help us to identify and screen 
co-expressed modules and key biomarkers, such as 
miRNAs and lncRNAs (long non-coding RNAs) 
[15-18]. WGCNA can group miRNAs into a module or 
network due to their similar expression in association 
with a given cancer type. In this study, we applied 
WGCNA methodology to build co-expressed 
modules and to identify hub miRNAs potentially 
involved in the pathogenesis and malignant behavior 
of pancreatic cancer. We attempted to stratify PDAC 
patients into low-risk and high-risk groups using a 
specific group of miRNAs identified from this 
analysis. Data derived from this analysis is supposed 
to provide statistically convincing evidence that 
certain hub miRNAs have the potential to become 
clinically applicable diagnostic and prognostic 
biomarkers for PDAC.  

2 Materials and methods     
2.1 MiRNA expression data collection 

Microarray dataset of the serum samples of 
pancreatic cancer patients was downloaded from 
Gene Expression Omnibus (GEO) database (http:// 
www.ncbi.nlm.nih.gov/geo/). Dataset GSE85589 was 
used to construct co-expression networks and identify 
hub genes in this study. It contained miRNA 
expression data of serum samples obtained from 19 
healthy subjects and 88 PDAC patients. The platform 
was GPL19117, Affymetrix Multispecies miRNA-4 Array.  

The expression data GSE85589 which had been 
normalized using Robust Multi-Array Average 
(RMA)[19] was downloaded. Then, probe sets were 
mapped to gene symbols according to the probe 
annotation files of the GPL10558 platform. 
Afterwards, the gene expression values were log2 
transformed. Reshape2 and ggplot2 were R-based 
open-source software packages, which conducted a 
box plot and correlation plot of normalized samples 
data for pancreatic cancers (PC) and normal subjects 
(N) (Supplementary Fig 1). Then, miRNA probe sets 
were mapped to gene-symbols according to the probe 
annotation file of the GPL19117 platform. If multiple 
probes mapped to a same gene-symbol, the biggest 
value of all probes that mapped to the same gene 
symbol was chosen to represent this particular gene. 

2.2 Weighted gene co-expression networks 
and their modules 

WGCNA package was a freely accessible R 
software (R 3.4.3), for the construction of weighted 
gene co-expression networks [11]. Under “WGCNA” 
environment of R software, by means of goodSamples 
Genes function, miRNA data matrix was checked 
whether they were the good samples and good genes. 
Then, we applied the pickSoftThreshold function to 
assess whether the topology of the networks was 
scale-free, as is required for WGCNA analysis. β was a 
softthresholding-power parameter that could 
strengthen strong correlations and penalize weak 
correlations between genes. Here, the power of β = 1 
(scale free R2 =0.89), which was selected to ensure a 
scale free network (Fig 1). Then, a hierarchical 
clustering tree was constructed with different 
branches of the tree representing different gene 
modules [20]. Three different ways can be selected to 
construct the network and identify modules 
according to different needs. In this study, the 
one-step function was used for network construction 
and detection of consensus modules. (Fig 1) 
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2.3 Identification of clinical significant modules 
and hub miRNAs and functional annotation 

To identify clinically significant modules, the 
module eigengene (ME) was calculated for 
representing and summarizing each module. This 
measure can be considered to be representative of 
gene expression profiles and can be used to capture 
the maximal amount of variation in the module. To 
quantify module–trait associations, given that we had 
a summary profile (ME) for each module, we 
correlated ME with external traits and searched for 
the most significant associations. This calculation was 
referred to as the Module-Trait Relationships [21]. For 
inter-modular analysis, we evaluated the Gene 
Significance (GS) and Module Membership (MM), the 
latter is also known as eigengene-based connectivity 
(kME). GS is the absolute value of the correlation 
between a specific gene and a clinical trait. Using the 
GS and ME, we can identify key modules that have a 
high significance for a clinical trait and important 
module membership [21]. 

To identify hub miRNAs, the functions of R 
software module Eigengenes and signedKME were used 
to identify highly connected intra-modular miRNAs, 
also called hub miRNAs. In particular, the 
moduleEigengenes function calculates the eigengene 
of a module, which is a virtual gene representing the 
gene expression profile of the entire module. The 

signedKME function measures the distance of the 
expression profile of a gene to that of the module 
eigengene and, thus, quantifies how close a gene is to 
a module, i.e., it measures the module membership of 
a gene. Within a module, the genes with the highest 
module membership scores are considered as hub 
genes of that module. 

2.4 Functional annotation of hub miRNAs 
In analogy to previous studies [18, 22], we 

selected the 20 most connected hub miRNAs for each 
key module. The miRNet web tool [23] was used to 
identify the biological pathways, processes, molecular 
functions and cellular components statistically 
enriched for the corresponding miRNA target genes. 
In particular, this tool identifies the enriched KEGG 
and REACTOME pathways and Gene Ontology (GO) 
terms based on experimentally confirmed miRNA 
targets. Since this tool exploits validated miRNA 
targets, it ensures a higher reliability than tools based 
on predicted miRNA targets. 

2.5 Kaplan-Meier Survival analyses and efficacy 
evaluation 

In order to evaluate the identified hub miRNAs 
as prognostic PDAC biomarkers, we conducted 
survival analyses using the SurvMicro web method 
[24] Survival analyses were performed on an 

independent PDAC dataset present in The 
Cancer Genome Atlas (TCGA) 
(http://cancergenome.nih.gov/) containing 
miRNA expression and survival data derived 
from 54 PDAC patients (Supplementary Table 1). 
The SurvMicro tool divides samples into 
high-risk and low-risk groups through the 
median of the prognostic index obtained via a 
Cox Regression model. After this, it generates the 
hazard ratios (HR) with relative confidence 
intervals (CI) and p-values. We aim to find the 
“real” hub miRNAs associated with the 
prognosis of PDAC. 

3. Results 
3.1 Screening the miRNA modules. 

A total of 2578 miRNAs were collected after 
data preprocessing. The selected miRNAs in each 
category were plotted in their corresponding 
expression heat-maps (Supplementary Fig 2). 
WGCNA analysis of the sequencing data from 
serum miRNA of PDAC patients and healthy 
subjects revealed a total of five functional 
modules (i.e., turquoise, brown, blue, yellow and 
grey module) (Fig 1). In line with previous 
reported approach, the grey module belongs to 
the special WGCNA category that has no 

 
 
 

 
Figure 1: Checking scale free topology (up) and Clustering dendrograms and modules 
identified by WGCNA (down) 
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association with the disease being analyzed [12]. As 
shown in the Matrix of Module-Trait Relationships 
(Fig 2), the module represented by a turquoise color 
showed a positive association (r = 0.59; p = 1e−22) 
with PDAC, whereas, the brown module had a 
negative association with PDAC (r = -0.51; p = 
3e−08).Using the GS and MM measures, compared 
with blue and yellow modules, the turquoise and 
brown modules showed a significantly higher 
difference between PDAC group and normal group 
(Turquoise: r = 0.64; p = 4.8e−20; Brown: r = 0.64; p = 
1.9e−09). These data justified the selection of the 
turquoise and brown modules as key miRNA 
modules for PDAC. (Fig 2) 

3.2 Detection of hub miRNAs and their 
functional annotations 

The signedKME and module Eigengenes 
functions in “WGCNA” package were applied to 
determine the highly-connected intramodular 
miRNAs, i.e hub miRNAs. In particular, the 

moduleEigengene function calculates the eigengene 
of one module, which was as a virtual miRNA 
representing the expression profile of the entire 
module. 

The signedKME function measured the module 
membership of each miRNA in a special module. The 
miRNAs with the highest module membership scores 
are considered as hub miRNAs of that module. Since 
the turquoise and brown modules were found to be 
highly associated with the PDAC serum miRNA 
network, we set out to determine the hub miRNAs 
that are represented by selecting miRNAs with the 
highest module membership scores. It is conceivable 
that these miRNAs may play important roles in the 
pathogenesis of pancreatic cancer. The top 20 hub 
miRNAs identified for each module in the PDAC 
network are listed in Table 1, and their network of 
with their experimentally validated target genes are 
shown in Figure 3. 

 

 
Figure 2: Matrix of Module-Trait Relationships (MTRs) and p-values for pancreatic cancer (up). Scatter plot of Gene Significance (GS) for the cancer condition versus 
Module Membership (kME) for the tumor-related module (down). PC stands for pancreatic cancer. Each row corresponds to a module eigengene, and each column 
corresponds to PC. Each cell contains a corresponding correlation and p-value in brackets. 
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Table 1: 20 Hub miRNAs identified in the PDAC network and Functional annotation of hub miRNAs and enriched KEGG pathways 

Module Top 20 microRNAs KEGG Reactame GO:BP GO:MF GO:CC 
Turquoise miR-3201 miR-8084 miR-3128 

miR-3910 miR-548x-3p 
miR-1298-3p 
miR-32-5p miR-4445-3p 
miR-5681a 
miR-890 miR-335-5p miR-603 
miR-3152-3p miR-16-2-3p 
miR-3613-3p miR-155-3p 
miR-548u miR-628-5p 
miR-130a-3p miR-570-3p 

Pancreatic 
cancer,Pathways in 
cancer,MAPK signaling 
pathway,ErbB signaling 
pathway,Wnt signaling 
pathway,Prostate 
cancer,colorectal 
cancer,Cytokine-cytokin
e receptor interaction,T 
cell receptor signaling 
pathway 

Cytokine Signaling in Immune 
system,Transmembrane transport of 
small molecules,Axon guidance, 
Signalling by NGF,Signaling by 
PDGF,Downstream signal 
transduction,NGF signalling via 
TRKA from the plasma 
membrane,(Signalling by 
NGF,FGFR1-4,and 
ERBB2,ERBB4),Developmental 
Biology,Generic Transcription 
Pathway 

regulation of 
anatomical 
structure 
morphogenesis,re
gulation of cell 
proliferation 

 regulation of 
transcription 
DNA-dependen
t,enzyme 
binding,zinc ion 
binding 

nucleoplas
m 

Brown miR-7b-5p miR-93-5p 
miR-181b-5p 
miR-182-5p miR-106b-5p 
miR-595 
miR-602 miR-610 miR-623 
miR-297 miR-877-5p 
miR-1225-5p 
miR-1469 miR-1470 
miR-1914-5p 
miR-762 miR-3171 miR-3188 
miR-4293 miR-4270 

Pathways in 
cancer,Prostate 
cancer,Insulin signaling 
pathway,RNA 
transport,Non-small cell 
lung cancer,Pancreatic 
cancer,MAPK signaling 
pathway,Regulation of 
actin cytoskeleton 

Gene Expression,Cell Cycle,Immune 
System,Signalling by NGF,Signaling 
by FGFR1-4,Generic Transcription 
Pathway,Signaling by the B Cell 
Receptor (BCR) 

cellular 
macromolecule 
catabolic 
process,cell 
division 

nucleotide 
binding,transiti
on metal ion 
binding,purine 
nucleotide 
binding 

cytosol,nucl
ear lumen 

 
In order to functionally annotate the hub 

miRNAs, we conducted a functional enrichment 
analysis limited to experimentally confirmed miRNA 
target genes. By means of the miRNet web tool, the 
hub miRNAs in each module was analyzed to identify 
enriched KEGG and REACTOME pathways and Gene 
Ontology (GO) terms (Table 1). According to KEGG 
and REACTOME and GO function analyses, the 
turquoise module was mainly enriched in 
cancer-related terms such as MAPK and WNT 
signaling, etc, while the brown module was mainly 
related to the functions including cancer-associated 
pathways, such as RNA transport. 

3.3 Hub miRNAs validation and further 
distinction 

To determine whether the serum candidate 
miRNAs identified in this study could be used as 
prognostic biomarkers, we assessed if hub miRNAs in 
the turquoise and brown modules were connected 
with the overall survival (OS) of pancreatic cancer 
patients [18]. We performed both multi-miRNA (top 
20 hub miRNAs) survival analyses of PDAC patients 
in each module by using the SurvMicro tool. By 
applying the top 20 hub miRNAs as input for the 
SurvMicro tool, we found that the miRNA profiles in 
all modules and single miRNA successfully stratified 
PDAC patients into high-risk and low-risk groups as 
revealed by Kaplan-Meier survival plots (table 2). 
Specifically, the OS time in the high-risk group 
patients was found at least two-fold shorter compared 
with those of patients in the low-risk group (HR 6.93 
[95% CI 3.03–15.89] p = 4.687e-06 for the turquoise 
module, HR 3.80 [95% CI 1.94–7.46] p = 9.923e-05 for 
the brown module) (supplementary Fig 3). In addition, 
we set out to identify “real” miRNAs that were most 

significantly associated with PDAC survival 
outcomes by judging whether the P value of each 
miRNA was less than 0.05. An increased expression of 
three miRNAs in turquoise module (mir-16-2-3p (HR 
2.05 [95% CI 1.08–3.89], p=0.032), mir-890 (HR 2.48 
[95% CI 1.30–4.71], p=0.006), and mir-3201 (HR 2.68 
[95% CI 1.41–5.09], p=0.003) and two miRNAs in 
brown module ( mir-602 (HR 2.68 [95% CI 1.41–5.09], 
p=0.003), and mir-877 (HR 5.58 [95% CI 1.31–23.84], 
p=0.020) were found to be associated with a 
significantly better survival (Fig 4 and Table 2). 

Discussion 
Since its introduction in 2005, WGCNA 

methodology has been proven to be an effective tool 
for describing the correlation patterns among genes 
across microarray samples [25]. WGCNA is 
particularly useful in finding modules of highly 
correlated genes and summarizing many 
intramodular hub genes that can be extrapolated for 
the diagnosis and prognosis of cancers. WGCNA 
involves several sequential steps. Firstly, the absolute 
values of the connection of paired miRNAs were 
calculated for the co-expression network. Secondly, an 
adjacency matrix was built to define the miRNAs 
strength with each other. A soft threshold parameter 
was under the weighted network. Topological overlap 
(TOM) was used to cluster miRNAs into different 
network modules that combined the adjacency of two 
direct miRNAs and the connection strengths with 
other indirect miRNAs. The miRNAs in one module 
could be characterized with the module eigengene 
(ME). To find the key modules related to clinical traits, 
the correlations were calculated between MEs and 
those clinical traits. The correlation between miRNAs 
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and MEs was applied to distinguish hub miRNAs 
[21]. In this study, we applied this methodology to 
build co-expressed modules and identify hub 
miRNAs potentially involved in the tumorigenesis of 

pancreatic cancer. Among those identified hub 
miRNAs, we further determined “real” miRNAs that 
could predict the behavior of PDAC.   

 
 
 
 

 
Figure 3: The network of hub miRNAs of the turquoise (up) and brown (down) modules with their experimentally validated target genes. 
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Figure 4: The survival analysis plot of miR-16-2-3p, miR-602, miR-877-5p, miR-890, and miR-3201 

 

Table 2: Single hub miRNA survival analysis tested by TCGA 
PDAC miRNAs data 

Module Hub miRNA HR 95%CI P value 
Turquoise miR-16-2-3p 2.06 1.06-3.98 0.032 
 miR-3201 2.68 1.41-5.09 0.003 
 miR-890 2.48 1.30-4.71 0.006 
Brown miR-877-5p 5.58 1.31-23.84 0.02 
  miR-602 2.68 1.41-5.09 0.003 

 
 
Similar work by Siân Jones [26], et al has 

identified 12 partially overlapping signaling 
pathways that are genetically altered in the great 
majority of pancreatic cancer. By means of WGCNA, 
we found that 20 hub miRNAs were closely associated 
with, MAPK, P53 and WNT signaling pathways, 
which are included (WNT and MAPK signaling) or 
greatly involved (p53 in cell cycle, invasion, DNA 
damage and cell apoptosis signaling) in the pathways 
mentioned above. More concretely, target genes of 
those miRNAs includes TP53BP2 (tumor protein p53 
binding protein 2), dkk3 (WNT signaling pathway 
inhibitor dickkopf-3), and WISP2 (WNT1 inducible 
signaling pathway protein 2) [27]. We also identified 
another set of 20 hub miRNAs that were closely 
associated with the functions of PDAC and RNA 
transport, whose targeted genes include TP53INP2 
(tumor protein p53 inducible nuclear protein). Our 
data suggest miRNAs are key regulators of these core 
tumorigenic and functional pathways in PDAC.   

High serum levels of certain miRNAs might 
indicate the presence of an underlying malignancy. 
Mahito Miyamae reported that high level of six 

circulating oncogenic miRNAs (miR-615-5p, -744, -575, 
-557, -675, and -550a) could be useful biomarkers for 
PDAC screening, monitoring recurrence after surgery, 
and predicting the prognosis of patients with PDAC 
[28]. Schultz et al reported that the area under the 
curve (AUC) was 0.91 (95% CI, 0.87-0.94) when using 
whole blood level of 10 miRNAs (miR-26b, miR-34a, 
miR-122, miR-126, miR-145, miR-150, miR-223, miR-505, 
miR-636, miR-885-5p) to diagnose PDAC [29]. 
Moreover, the increased miR-16 and miR-196a 
combined with CA19-9 have been shown to be more 
effective to distinguish pancreatic cancer from normal 
individuals [30]. Brand et al found that the 
combination of CA19-9, ICAM-1 and OPG could 
discriminate PDAC patients from health controls with 
the 78% sensitivity and 94% specificity [31]. In the 
present study, we identified a list of specific Hub 
miRNAs that are associated with PDAC 
tumorigenesis and a list of hub miRNAs that are 
associated with the development of pancreatic cancer. 
The association of circulating miRNAs with PDAC 
tumorigenesis and progression indicates that 
circulating hub miRNAs could not only be a 
diagnostic biomarker, but also predict the malignant 
behavior of the tumor.   

To further study the prognostic value of 
circulating hub miRNAs, we identified 5 “real” 
miRNAs (mir-16-2-3p, mir-890, mir-3201, mir-602, 
and has-mir-877) that could stratify PDAC patients 
into high and low risk groups. miR-15b/16-2 cluster 
could modulate the expression of cell cycle-regulating 
genes, CCND2, CyclinD2 and IGF1R, and was deeply 
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involved in proliferation and anti-apoptotic pathways 
of different kind of malignancies such as leukemia 
and colorectal cancer [32]. Mir-15b was also suggested 
to promote epithelial-mesenchymal transition (EMT) 
and metastasis in pancreatic cancers by targeting 
smurf2 [33]. MiR-16-2-3p has been reported in several 
studies as a diagnostic biomarker for hepatocellular 
carcinoma with a high sensitivity and specificity [34, 
35]. Mir-890 belongs to a mir-888 genomic cluster 
located on human X chromosome Xq27.3 that 
specifically targets RBL1, KLF5, SMAD4, and TIMP2 
and functions as pro-oncogenic factors that increased 
prostate tumor growth in vivo [36], whose function, 
however, has not been stratified in other cancer types 
[37]. The function of miR-3201 has been still 
controversial. MiR-3201 expression was significantly 
reduced in recurrent epithelial ovarian cancer (EOC) 
[38], indicative of a suppressive role during cancer 
recurrence. Other study showed high expression of 
mir-3201 in melanoma patients [39]. However, in the 
current study, serum level of mir-3201, which was 
suggested to be involved in several of 
cancer-promoting pathways (table 1), predicts a poor 
prognosis of PDAC patients. The discrepancies 
between these studies might arise from the cancer 
types of different tissue origin, or the sample type, 
with the former being cancerous tissues and the latter 
being serum. Mir-602 plays a pro-carcinogenic role in 
HBV-related hepatocarcinoma by inhibiting RASSF1A 
[40], and with other three miRNAs, was selected to 
identify the overall survival of glioblastoma 
multiforme [41]. It can also regulates the expression of 
sonic hedghog pathway in chondrocytes [42], which 
was also one of the core signalings during the 
tumorigenesis of PDAC [26]; miR-877 has been shown 
to suppress the proliferation and migration of (RCC) 
cells by modulating the eEF2K/eEF2 signaling 
pathway [43]. The binding site of miR-877-3p was on 
the promoter site of cancer suppressor gene p16 
which alters frequently in tumors. MiR-877-3p targets 
the p16 promoter and are related to increased risk of a 
wide range of cancers such as bladder cancer, renal 
cell carcinoma cells as well as pancreatic ductal 
adenocarcinoma [44-46]. It is conceivable that these 5 
miRNAs involved in the tumorigeneis and mailgnant 
function of PDAC via completely different 
mechanisms. The conbination of these 5 miRNAs can 
be a reliable biomarker for predicting the behavior of 
PDAC. 

In summary, using WGCNA technology we 
identified 20 hub miRNAs that are associated with 
tumorigenesis pathways and 20 hub miRNAs that are 
associated with functional pathways in tumors. 
Among the 40 hub miRNAs, 5 “real” miRNAs were 
able to stratify the PDAC patients into high and low 

risk groups. Our data indicate certain hub miRNAs 
can function as diagnostic and prognostic biomarkers 
for PDAC.  
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