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Contactin-2, a synaptic and axonal protein,
is reduced in cerebrospinal fluid and brain
tissue in Alzheimer’s disease
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Abstract

Background: Synaptic and axonal loss are two major mechanisms underlying Alzheimer’s disease (AD)
pathogenesis, and biomarkers reflecting changes in these cellular processes are needed for early diagnosis and
monitoring the progression of AD. Contactin-2 is a synaptic and axonal membrane protein that interacts with
proteins involved in the pathology of AD such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1). We
hypothesized that AD might be characterized by changes in contactin-2 levels in the cerebrospinal fluid (CSF) and
brain tissue. Therefore, we aimed to investigate the levels of contactin-2 in the CSF and evaluate its relationship
with disease pathology.

Methods: Contactin-2 was measured in CSF from two cohorts (selected from the Amsterdam Dementia Cohort),
comprising samples from controls (cohort 1, n = 28; cohort 2, n = 20) and AD (cohort 1, n = 36; cohort 2, n = 70)
using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). The relationship of
contactin-2 with cognitive decline (Mini-Mental State Examination (MMSE)) and other CSF biomarkers reflecting AD
pathology were analyzed. We further characterized the expression of contactin-2 in postmortem AD human brain
(n = 14) versus nondemented controls (n = 9).

Results: CSF contactin-2 was approximately 1.3-fold reduced in AD patients compared with controls (p < 0.0001).
Overall, contactin-2 levels correlated with MMSE scores (r = 0.35, p = 0.004). We observed that CSF contactin-2
correlated with the levels of phosphorylated tau within the control (r = 0.46, p < 0.05) and AD groups (r = 0.31, p < 0.
05). Contactin-2 also correlated strongly with another synaptic biomarker, neurogranin (control: r = 0.62, p < 0.05;
AD: r = 0.60, p < 0.01), and BACE1, a contactin-2 processing enzyme (control: r = 0.64, p < 0.01; AD: r = 0.46, p < 0.05).
Results were further validated in a second cohort (p < 0.01). Immunohistochemical analysis revealed that contactin-2
is expressed in the extracellular matrix. Lower levels of contactin-2 were specifically found in and around amyloid
plaques in AD hippocampus and temporal cortex.

Conclusions: Taken together, these data reveal that the contactin-2 changes observed in tissues are reflected in
CSF, suggesting that decreased contactin-2 CSF levels might be a biomarker reflecting synaptic or axonal loss.
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Background
Alzheimer’s disease (AD) is the major cause of dementia
worldwide [1]. AD patients are characterized by high
levels of cerebrospinal fluid (CSF) tau reflecting tangle
pathology whereas the underlying amyloid beta (Aβ)
plaque pathology is mirrored by decreased levels of
Aβ42 in the CSF [2]. However, about 30% of the cogni-
tively normal elderly also have an AD CSF biomarker
profile, making AD diagnosis complex [3, 4]. Thus, add-
itional biomarkers are needed for a better diagnosis. Fur-
thermore, synaptic dysfunction [5, 6] and axonal loss [7]
are early events in the pathogenesis of AD [6, 8–12].
Synapse loss has been suggested to be related more
strongly with cognitive impairment than plaque or tan-
gle pathology [13–16]. Therefore, biomarkers reflecting
these changes might be useful to support early diagnosis
and prognosis of AD. Several synaptic biomarkers in
CSF have been identified, such as neurogranin [17, 18],
synaptotagmin [19], synaptosomal-associated protein
(SNAP)-25 [20], and Ras-related protein (Rab)-3A [17].
Neurogranin is a promising synaptic biomarker which
has been found to be specifically increased in AD [17,
18, 21]. So far, there are no established biomarkers for
axonal loss specific for AD. Increased tau level has been
related with axonal loss [7], but increased tau is a rather
unspecific finding indicating neurodegeneration [22].
Contactin-2 is a soluble cell-adhesion protein primar-

ily expressed on the axonal and synaptic membranes
[23–29]. It belongs to the immunoglobulin superfamily
and consists of six members (contactin-1 to contactin-6)
[29, 30]. Contactin-2 is expressed in hippocampal pyr-
amidal cells, cerebellar granule cells, the juxtaparanodal
regions of myelinated nerve fibers [24, 30], and frontal
and temporal lobes [23, 31]. Contactin-2 is a multifunc-
tional protein that plays important roles in axonal guid-
ance during development [32, 33], neuronal fasciculation
[34], axonal domain organization [35], and neuron-glia
interaction [36]. Interestingly, a genome-wide associ-
ation study (GWAS) identified single nucleotide poly-
morphisms (SNPs) in the gene encoding contactin-2
(CNTN2) associated with AD [36]. Contactin-2 interacts
with proteins involved in AD pathogenesis, such as
amyloid precursor protein (APP) [37, 38] and
beta-secretase 1 (BACE1) [37, 39, 40]. Lower levels of
contactin-2 correlated with higher BACE1 activity in
postmortem AD tissue [31]. Thus, the interactions be-
tween contactin-2 and BACE1 and APP proteins may in-
fluence the production of Aβ peptide and the
subsequent formation of amyloid plaques. Interestingly,
higher levels of contactin-2 have been reported in AD
CSF pools using proteomics approaches [37].
We hypothesized that AD might be associated with

changes in contactin-2 levels in both CSF and brain. In
this study, we aimed to evaluate the potential for

contactin-2 as a CSF biomarker candidate reflecting synap-
tic and axonal dysfunction in AD and to examine its rela-
tionship with other important players in AD pathogenesis.
Moreover, we further characterized the expression of this
protein in postmortem hippocampus to explore the poten-
tial role of this protein in AD pathogenesis.

Methods
Human CSF sample subjects
For the first study, we included cognitively normal con-
trols with subjective memory complaints (n = 28) and
AD patients (n = 36) (Table 1) from the Amsterdam De-
mentia Cohort [38]. An additional validation cohort was
also included to replicate the findings (controls, n = 20;
AD, n = 70) (Table 1) from the same dementia cohort.
Diagnoses were defined in a multidisciplinary commit-

tee according to the criteria of the National Institute of
Neurological and Communicative Disorders and Stroke–
Alzheimer’s Disease and Related Disorders Association
[39, 40]. AD cases were additionally selected based on a
positive AD biomarker profile (CSF total tau (tTau)/
Aβ42 ratio > 0.52 [41]). When patients presented with
cognitive complaints and the results of clinical assess-
ments were within the normal range they were labeled
as subjective memory complaint, hereinafter referred to
as controls [18]. These nondemented control cases were
selected based on a negative CSF AD biomarker profile
(CSF tTau/Aβ42 ratio < 0.52 [41]). CSF was collected by
standard lumbar puncture and stored according to pre-
viously published JPND-BIOMARKAPD guidelines until
analysis [18, 42]. Samples within each cohort were
matched for age. Demographic and clinical details of all
patients are listed in Table 1.

Postmortem brain tissue
Postmortem hippocampus and temporal cortex from
AD patients (n = 14) and nondemented controls (n = 9)
were obtained from the Netherlands Brain Bank. Con-
sidering that contactin-2 is expressed in the hippocam-
pus [30, 43] and temporal cortex [23, 31], and these
brain areas are primarily affected in AD [44], we used
homogenates of postmortem hippocampus and temporal
cortex tissue. All donors or their next of kin provided
written informed consent for brain autopsy and the use
of medical records for research purposes. Sample pro-
cessing is described in detail in Additional file 1: Section
1.1. Patient details such as clinical and pathological diag-
nosis, Braak stage, age and sex, and postmortem delay
are outlined in Additional file 1: Table S1.

Enzyme-linked immunosorbent assay (ELISA) analysis
Contactin-2 was measured in both CSF and postmortem
brain tissue homogenates with the Contactin-2 duoset
ELISA kit (R&D, Minneapolis, USA; cat. nos. DY1714–
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05 and DY008), which uses antibodies raised against the
secreted part of contactin-2 (Leu29-Asn1012). We vali-
dated this kit both for CSF samples and tissue samples
using previous validation guidelines [45, 46] (Additional
file 1: Table S2). CSF and postmortem brain samples
were diluted 1:16 and 1:100, respectively, in reagent dilu-
ents provided in the kit and the assay was performed ac-
cording to the manufacturer’s protocol. The intra-assay
percentage coefficients of variation (%CVs) for CSF and
brain tissue were 1.9 and 1.3, and the interassay %CVs
were 8.7 (CSF) and 9 (brain tissue), respectively. Spe-
cifics about the procedure can be found in Additional
file 1: Section 1.2. CSF Aβ42, tTau, and phosphorylated
tau (pTau) were measured as a part of routine diagnosis
at the Neurochemistry laboratory at VU University Med-
ical Centre, Amsterdam, the Netherlands, using com-
mercially available ELISA (Fujirebio, Ghent, Belgium) as
previously performed [47] (Table 1). CSF BACE1 and
neurogranin were measured using commercially avail-
able analytically validated ELISA kits from Euroimmun
(Lübeck, Germany). CSF Aβ40 was measured using the
V-PLEX Plus Aβ Peptide Panel 1 (6E10) Kit (MSD,
Maryland, USA). All samples were randomized and were
measured by a single experienced technician blinded to
the clinical groups.

Western blotting
Human hippocampus and temporal cortex tissue homoge-
nates (20 μg per sample) were prepared in sample buffer
(2% SDS, 0.03 M Tris, 5% 2-mercaptoethanol, 10% glycerol,
bromophenol blue) and heated for 5 min at 95 °C. Electro-
phoresis was carried out using 10% SDS-PAGE minigels.
Next, proteins were transferred to polyvinylidene fluoride
(PVDF) membranes (Millipore, Bedford, USA) that were
subsequently blocked for 30 min with blocking buffer (5%
w/v nonfat dried milk in PBS-Tween 0.5% v/v (PBS-T)),
and incubated with the corresponding primary anti-
bodies—affinity-purified polyclonal rabbit anti-Contactin-2
[48] (1:1500, SAB4200299; Sigma Aldrich, St. Louis, USA)

or monoclonal rabbit anti-GAPDH (1:1000, clone 14C10;
Cell Signaling Technology, MA, USA)—overnight at 4 °C.
After washing with wash buffer (0.05% w/v milk in TBS-T),
membranes were incubated for 1 h with polyclonal goat
anti-rabbit IgG/HRP (1:2000, DAKO, Glostrup, Denmark)
or goat anti-mouse IgG/HRP (1:1000, DAKO) in blocking
buffer. Protein bands were detected with the ECL Western
Blotting detection kit (GE Healthcare, Amersham, UK).
Samples were always randomly distributed within the gels
and the researcher was unaware of the diagnosis and spe-
cifics of the samples. Immunoblot films were scanned, and
signal quantification was performed using ImageJ 1.45
(NIH, Bethesda, USA). Contactin-2 band signal was nor-
malized by the GAPDH signal intensity.

Immunohistochemistry and immunofluorescence
Formalin-fixed and paraffin-embedded hippocampus
and temporal cortex sections (5 μm) were mounted on
Superfrost plus tissue slides (Menzel-Glaser, Braun-
schweig, Germany) and dried overnight at 37 °C. Samples
from 12 individuals (7 AD and 6 controls) were immu-
nostained. Two sections from each subject were analyzed
and stainings were found to be consistent. Immunohis-
tochemistry (IHC) and immunofluorescence (IF) proce-
dures are described in detail in Additional file 1: Section
1.3. The primary antibodies used were: affinity-purified
polyclonal rabbit anti-Contactin-2 (IHC: 1:400, IF: 1:25;
HPA001397, Atlas Antibodies, Stockholm, Sweden);
monoclonal mouse anti- pTau Ser202/Thr205 AT-8 (IF:
1:800, MN1020, Thermo Fisher Scientific, Landsmeer,
Netherlands); and monoclonal mouse anti-Aβ IC-16 (IF:
1:200, a kind gift from Dr. Korth, University of Duessel-
dorf, Germany). For IHC, the bound primary antibody
was detected using DAKO anti-rabbit/mouse EnVision+
System-HRP (DAKO, 45007, Glostrup, Denmark). Nu-
clei were visualized by Mayer’s hematoxylin counterstain
(Merck, MHS1, Zwijndrecht, Netherlands). For IF, the
following secondary antibodies were used: anti-rabbit
alexa-647 (1:250, DAKO), anti-mouse alexa-488 (1:250,

Table 1 Demographic details of cohort 1 and cohort 2

Cohort 1 Cohort 2

Controls Patients with AD Controls Patients with AD

n 28 36 20 70

Gender (male:female) 13:15 15:21 14:6 29:41

Age (years) (mean ± SD) 60 ± 7 62 ± 6 62 ± 3 62 ± 5

MMSE (mean ± SD) 27 ± 3 19 ± 5*** 28 ± 2 20 ± 6***

Aβ42 (pg/ml) (median [IQR]) 915 [815–1026] 468 [395–552]*** 1063 [1009–1214] 578 [518–645]***

tTau (pg/ml) (median [IQR]) 216 [161–309] 691 [559–962]*** 274 [239–315] 734 [552–1021]***

pTau (pg/ml) (median [IQR]) 47 [33–54] 92 [77–116]*** 43 [39–50] 90 [69–107]***

Contactin-2 (ng/ml) (median [IQR]) 78 [69–110] 59 [42–74]*** 65 [54–99] 61 [39–78]*

Aβ amyloid beta, AD Alzheimer’s disease, IQR interquartile range, MMSE Mini-Mental State Examination, SD standard deviation
*p < 0.05, **p < 0.01, ***p < 0.001, versus controls
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DAKO), and anti-mouse alexa-594 (1:250, DAKO).
Thioflavin-S (Merck, T1892) was added to brain tissue
sections after incubation with primary anti-pTau and
anti-contactin-2 antibodies and corresponding secondary
antibodies for 1 min with a prior 10-min acetone fixation
at room temperature. The slides were finally incubated
with DAPI for 10 mins and subsequently covered using
80% glycerol in TBS, pH 7.4. Staining and imaging was
performed by two independent researchers who were un-
aware of the diagnosis of the cases. IHC images were cap-
tured with a Zeiss light microscope equipped with a
digital camera and a 10× or 25× objective (12.5× ocular).
IF images were captured with a Nikon Eclipse Ti confocal
microscope equipped with a 60× oil (numerical aperture
(NA) = 1.40) objective and NisElements 4.30 software.

Statistics
Differences in CSF contactin-2 levels between groups
were tested with analysis of covariance (ANCOVA) ad-
justed for age and gender when applicable. Data were
normalized by Templeton’s two-step method [49] if not
normally distributed. Correlation analyses were per-
formed using Pearson or Spearman correlation for para-
metric and nonparametric data, respectively. Group
differences between AD and controls in postmortem
samples were evaluated by Mann-Whitney U test.
The statistical tests were two-tailed and values with

p(two-tailed) < 0.05 were considered significant. Statis-
tical analyses were performed on SPSS version 22 (IBM
SPSS Statistics for Windows, Version 21.0; IBM Corp.,
Armonk, NY, USA). Graphs were plotted using Graph-
Pad Prism version 6.07.

Results
Contactin-2 CSF levels decreased in AD patients
Demographic and biomarker characteristics of all cases
are listed in Table 1. CSF contactin-2 was reduced by
38% in AD patients compared with controls (p < 0.0001;
Fig. 1a). This result was further validated in a second

cohort (p = 0.049; Fig. 1b), where contactin-2 was reduced
by 20%. A positive correlation was observed between CSF
contactin-2 and the Mini-Mental State Examination
(MMSE) in the total group (r = 0.35, p = 0.004; Additional
file 1: Figure S1). The correlation between contactin-2 and
MMSE were not significant when AD and control groups
were analyzed separately. The correlation was not ob-
served in the second cohort (r = 0.11, p = 0.2).

CSF contactin-2 and its relationship with core AD
biomarkers
Correlations were analyzed within each diagnostic group
(controls and AD individually). No correlation between
contactin-2 and Aβ42 was observed within the control
or AD groups (Fig. 2a). Both tTau and pTau strongly
correlated with contactin-2 within controls (tTau: r =
0.48, p = 0.009, Fig. 2b; pTau: r = 0.46, p = 0.01, Fig. 2c).
Within the AD groups only pTau correlated positively
with contactin-2 (r = 0.31, p = 0.05, Fig. 2c). Similar re-
sults were obtained in the second cohort, with the ex-
ception of tTau which now correlated with contactin-2
within both control and AD groups (Additional file 1:
Figure S2). Additionally, contactin-2 also correlated with
CSF Aβ40 within both groups (n = 37; controls: r = 0.64,
p = 0.008; AD: r = 0.46, p = 0.03, Fig. 2d). Since
contactin-2 was associated with age within the AD
group in the second cohort, an age correction was ap-
plied (Additional file 1: Figure S2).

Contactin-2 correlates with neurogranin and BACE-1
To explore the role of contactin-2 in synapse loss, we in-
vestigated the relationship of contactin-2 with an estab-
lished synaptic biomarker, neurogranin. Contactin-2
correlated strongly with CSF neurogranin within controls
and AD (controls: r = 0.62, p = 0.01; AD: r = 0.60, p =
0.004, Fig. 3a). Furthermore, we analyzed the correlation
of contactin-2 with its processing enzyme BACE1. Strong
correlations between contactin-2 and CSF BACE1 were
present within controls and AD (controls: r = 0.64, p =

Fig. 1 Contactin-2 levels in the CSF. a. Scatterplot showing CSF contactin-2 levels in nondemented controls with subjective memory complaints
(controls, n = 28) and patients with Alzheimer’s disease (AD, n = 36). b. Contactin-2 levels in controls (n = 20) and AD patients (n = 70) in a second
validation cohort. The values are presented as medians with interquartile ranges. Data were adjusted for age and gender. *p < 0.05, ***p < 0.0001

Chatterjee et al. Alzheimer's Research & Therapy  (2018) 10:52 Page 4 of 11



0.007; AD: r = 0.46, p = 0.04, Fig. 3b). These results were
validated in the second cohort (Additional file 1: Figure
S3). Since contactin-2 and BACE1 both were associated
with age within the AD group in the second cohort, an
age correction was applied in the corresponding correl-
ation analyses (Additional file 1: Figure S3).

Characterization of contactin-2 in postmortem human
hippocampus and temporal cortex
Immunohistochemistry showed that contactin-2 was
mainly expressed in the extracellular matrix in both con-
trol and AD groups in postmortem hippocampus and
temporal cortex (Fig. 4). Interestingly, within the AD cases
we observed a specific reduction in contactin-2 staining in
areas resembling amyloid plaques (Fig. 4a, c, where

probable plaques are shown by arrowheads). We next ana-
lyzed the potential relationship of contactin-2 expression
with the main hallmarks of AD (Fig. 5). Areas with re-
duced contactin-2 staining contained deposits of Aβ
(Fig. 5a–c), as well as pTau- and Thioflavin S-positive
structures (Fig. 5d–i), which indicates the reduction of
contactin-2 staining in fibrillar neuritic plaques.
Analysis of postmortem tissue homogenates by ELISA

confirmed that contactin-2 tended to be decreased in
AD hippocampus (n = 7) compared with controls (n = 6,
p = 0.07) (Fig. 6a). However, Western blot analysis re-
vealed a significant reduction in contactin-2 levels since
the expected 113-kDa contactin-2 band decreased in AD
(n = 7) compared with controls (n = 5, p = 0.01; Fig. 6b
and Additional file 1: Figure S5).

Fig. 2 Correlations of CSF contactin-2 levels with a. amyloid beta (Aβ)42, b. total tau (tTau), c. phosphorylated tau (pTau), and d. Aβ40. *p < 0.05,
**p < 0.01. AD Alzheimer’s disease

Fig. 3 Correlations of CSF contactin-2 with a. CSF neurogranin and b. CSF beta-secretase 1 (BACE1). *p < 0.05, **p < 0.01. AD Alzheimer’s disease
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Discussion
The main finding of this study is that the levels of the
synaptic/axonal protein contactin-2 in the CSF differs
between AD patients and controls, and is associated
with other biomarkers, particularly tTau, pTau, Aβ40,
BACE1, and neurogranin. Moreover, we also performed
characterization of this protein in postmortem human
brain tissue and found areas with reduced contactin-2
expression in and around fibrillar neuritic plaques.
Synaptic dysfunction and axonal loss are early events in

AD preceding cognitive decline [5, 7]. Detection of
changes related to these mechanisms may therefore con-
tribute to early diagnosis of the disease. Our findings in
the CSF reveal that contactin-2 is reduced in AD cases
compared with controls in two cohorts, which challenges
previous proteomics findings that identified increased
levels of this synaptic protein in three pooled AD CSF
samples [37]. However, the use of specific antibody-based
technologies detecting very specific epitopes of
contactin-2 in the current study may explain the observed
discrepancies. Even though CSF contactin-2 levels were
lower in AD patients compared with controls, there was a
substantial overlap between the groups in both cohorts
which may limit its diagnostic performance. Contactin-2
levels may even be increased in the early stages of AD and
then decrease with disease severity as has been shown in
longitudinal analysis of other neuronal injury markers

[50]. Considering that synaptic/axonal changes occur in
very early stages of the disease, it would be of interest to
explore whether stronger or opposite changes are ob-
served at earlier stages of the disease, and to study its po-
tential as a diagnostic and prognostic marker for early AD.
Interestingly, similar to the changes in CSF, contactin-2
levels were decreased in postmortem brain tissue of AD
cases compared with controls. Our results are supported
by a previous study that found a reduction in contactin-2
in hippocampal brain tissue homogenates of selected AD
patients with high BACE1 activity compared with
age-matched controls [31]. Therefore, these results not
only indicate that contactin-2 is changed in the AD brain
but also that such changes are reflected within the CSF,
highlighting the potential of this protein as a novel bio-
marker for loss of synaptic/axonal integrity.
Synaptic biomarkers such as neurogranin have been

suggested to reflect cognitive decline [18, 51]. In this
study, we observed a correlation of CSF contactin-2 with
MMSE, suggesting a possible relationship between
contactin-2 and cognition. However, this could not be val-
idated in the second cohort. Nonetheless, we found a
strong correlation between contactin-2 and neurogranin,
supporting the role of contactin-2 in synaptic dysfunction.
CSF contactin-2 correlated with tTau and pTau within

the AD/control groups, being stronger within the con-
trol group, which suggests that contactin-2 is a sensitive

Fig. 4 Immunohistochemistry on postmortem human brain sections. Brain sections (a,b hippocampus; c,d temporal cortex) of subjects with
Alzheimer’s disease (AD) (a,c) and control subjects (b,d) were stained with anti-contactin-2 antibody. Areas with reduced contactin-2 staining are
clearly visible in AD brain sections possibly in and around areas with amyloid plaques (shown by arrowheads)
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marker reflecting general axonal loss and changes in tau
homeostasis under normal physiological conditions. Im-
munohistochemical characterization of contactin-2 per-
formed in postmortem brain tissue showed a reduction in
contactin-2 expression in areas with neuritic amyloid pla-
ques, characterized by thioflavin S, pTau, and Aβ staining.
Therefore, similar to the findings in CSF, contactin-2 ex-
pression was also found to be related with tau in brain tis-
sue, supporting the potential role of contactin-2 in axonal
loss and incipient neurodegeneration.
CSF contactin-2 strongly correlated with Aβ40 and

BACE-1, suggesting an association between contactin-2
and Aβ production. This is supported by previous studies
showing that binding of contactin-2 to APP [52, 53] en-
hances the production of the APP intracellular domain
(AICD) in the cytosol with concomitant Aβ peptide gener-
ation [54, 55] (Fig. 7). Interestingly, thioflavin S-positive fi-
brillar plaques that show a stronger presence of Aβ40
than Aβ42 [56] had lower contactin-2, probably as a

protective mechanism to avoid Aβ40 formation in those
areas. We did not observe a strong absence of contactin-2
in areas with diffuse plaques (data not shown) that pri-
marily consist of Aβ42 [56]. Similarly, correlation with
Aβ42 was lacking in the CSF. Taken together, these data
suggest that contactin-2 can influence the homeostasis of
Aβ which may ultimately affect the formation of amyloid
deposits and the pathogenesis of AD. The decrease in
contactin-2 levels in AD might be a cellular protective
mechanism to reduce the binding of contactin-2 with APP
and thus subsequently lowering production of Aβ (Fig. 7).
It should be noted that we observed positive correla-

tions between contactin-2 and tau, BACE1, and neuro-
granin, which is the opposite to what can be expected
on the basis of usually increased CSF levels of the latter
proteins in AD. This indicates that contactin-2 is physio-
logically associated with these proteins strongly, demon-
strated by high positive correlations within controls, and
that a disease pathology such as AD possibly disrupts

Fig. 5 Immunolabeling of contactin-2, Aβ42, and pTau in hippocampal postmortem human AD brain sections. CA subiculum areas of
hippocampal sections stained with anti-contactin-2 (a,d), anti-Aβ42 (b), thioflavin S (e), and anti-phosphorylated tau (f). Merged images are shown
in c. (contactin-2 + IC16), g. (contactin-2 + thioflavin S), h. (contactin-2 + AT8), and i. (contactin-2 + thioflavin S + AT8). Areas with reduced
contactin-2 expression (shown by white arrows) can be seen in AD brain sections in and around areas with neuritic amyloid plaques. Areas
marked with blue arrows have been magnified in the inserts
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these associations making the correlations weaker in the
CSF of AD patients. In addition, these discrepancies may
occur because the correlations were analyzed within the
AD and control groups separately rather than as a whole
cohort. In the whole cohort, there is indeed a tendency

towards negative correlation with Tau as expected (co-
hort 1, r = − 0.23, p = 0.09; Additional file 1: Figure S7).
CSF BACE was not significantly changed in AD versus
controls. Thus, a pattern in correlation may not be
evident.

Fig. 6 Contactin-2 levels in postmortem hippocampus of Alzheimer’s disease (AD) patients versus controls. a. Contactin-2 concentration
measured by ELISA and corrected for total protein concentration. The values are presented as medians with interquartile ranges. b. Western blot
showing contactin-2 levels normalized with GAPDH in AD versus controls. Full image of the Western blot is shown in Additional file 1: Figure S5.
Unpaired t test was used for group comparisons

Fig. 7 Schematic summary of the hypothesis. Contactin-2 interacts with beta-secretase 1 (BACE1) and amyloid precursor protein (APP). Binding of
contactin-2 with APP leads to APP processing and amyloid beta (Aβ) peptide release. Based on our data, we hypothesize that a decrease in
contactin-2 levels (shown by a thick dark blue arrow) in AD might be a cellular protective mechanism to reduce the binding of contactin-2 with
APP and thus subsequently lowering production of Aβ. Correlations of contactin-2 with total tau (tTau)/phosphorylated tau (pTau) and
neurogranin suggest possible interactions among these molecules or their involvement in common pathogenic mechanisms. Solid single/double
headed arrows indicate correlations/interactions between two proteins and dashed arrow indicates no correlation. CSF cerebrospinal fluid

Chatterjee et al. Alzheimer's Research & Therapy  (2018) 10:52 Page 8 of 11



One limitation of this case-control study was the rela-
tively small sample size, even though we eventually in-
cluded 106 AD patients and 50 controls in the total
group. Controls with subjective memory complaints, AD
patients, or patients with other neurodegenerative disor-
ders often present similar clinical symptoms [57] which
might obscure the differences between the different clin-
ical groups. However, AD patients were selected by clini-
cians from a specialized memory center based on the
cut-off value for CSF tau to Aβ42 ratio [41] ensuring a
more reliable diagnosis based on fluid biomarkers [58].
Another limitation of the study was that no cohort was
used from another memory clinic. It would be interest-
ing to investigate the levels of contactin-2 in larger inde-
pendent cohorts and in AD patients in different stages
of the disease.

Conclusions
In summary, this study reveals a reduction in the axonal
and synaptic protein contactin-2 in two CSF cohorts and
postmortem tissue, and indicates the potential of this
protein as a novel AD CSF biomarker reflecting synap-
tic/axonal dysfunction. Future studies should investigate
how contactin-2 is changed during the course of AD in
a longitudinal study design with larger patient cohorts.
In addition, studies revealing a mechanistic relation be-
tween contactin-2, Aβ, and tau are required to under-
stand the bigger picture of the cell signaling pathway
underlying AD pathogenesis and to open new leads for
therapy development.

Additional file:

Additional file 1: Supplementary methods and results. (DOCX 645 kb)
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