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ABSTRACT
Fishery pressure on nursery areas of smooth hammerhead in northern Peruvian coast
have become a serious threat to sustainability of this resource. Even though, some
management actions focused on conservation of the smooth hammerhead populations
were proposed in recent years, their scientific foundations are often limited, and
biomass of smooth hammerhead in Peruvian waters continues to decrease. To inform
management and conservation, this study aims to evaluate the trophic niche of smooth
hammerhead juveniles from three nursery areas in the northern Peruvian coast using
stable isotope and fatty acid analyses. First, we compared the environmental characteris-
tics of each nursery area (i.e., sea surface temperature and chlorophyll-a concentration)
and concluded that nursery areas differed significantly and consistently in sea surface
temperature. Subsequently, we evaluated isotopic composition of carbon and nitrogen
and fatty acid profiles of muscle and liver tissues collected from juvenile smooth
hammerhead from each nursery area. We found that juvenile smooth hammerhead
captured in San José were enriched in heavier 13C and 15N isotopes compared to those
captured in Máncora and Salaverry. Furthermore, the broadest isotopic niches were
observed in juveniles fromMáncora, whereas isotopic niches of juveniles fromSalaverry
and San José were narrower. This difference is primarily driven by the Humboldt
Current System and associated upwelling of cold and nutrient rich water that drives
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increased primary production in San José and, to a less extent, in Salaverry. Compared
to smooth hammerhead juveniles from Máncora, those from San José and Salaverry
were characterised by higher essential fatty acid concentrations related to pelagic and
migratory prey. We conclude that smooth hammerhead juveniles from three nursery
areas in the northern Peruvian coast differ significantly in their trophic niches. Thus,
management and conservation efforts should consider each nursery area as a unique
juvenile stock associated with a unique ecosystem and recognize the dependence of
smooth hammerhead recruitment in San José and Salaverry on the productivity driven
by the Humboldt Current System.

Subjects Conservation Biology, Ecology, Marine Biology, Population Biology
Keywords Humboldt Current System, Sharks nursery areas, Denitrification, Feeding dynamics,
Isotopic niche

INTRODUCTION
Many shark species are globally threatened by fisheries due to a significant demand for
shark fins in some Asian countries (e.g., China, Korea, Vietnam) (Jacquet et al., 2008;
Frisch et al., 2016). Furthermore, due to some life history characteristics such as late sexual
maturity, low fecundity and growth rates, high longevity and long gestation periods many
shark populations are highly vulnerable (Cortés, 2000). Humboldt Current System (HCS)
makes northern Peru fisheries of a variety of species among the most productive on Earth
(Kämpf & Chapman, 2016). As a result, Peru ranks among 20 most important shark fin
exporters in the world (Dent & Clarke, 2015).

The smooth hammerhead Sphyrna zygaena (Linnaeus, 1758) is a species of international
concern, categorised as vulnerable by the International Union for Conservation of Nature
(IUCN) and added to Appendix II of the Convention on International Trade in Endangered
Species of Wild Fauna and Flora CITES (Rigby et al., 2019). Nevertheless, the smooth
hammerhead is among the most appreciated shark species on the Asian market and has
become the third most frequently captured shark species in Peru summing up to 15% of
the total shark landings (Clarke et al., 2006; González-Pestana, Kouri & Velez-zuazo, 2016).
Furthermore, more than half of these landings correspond to artisanal fishers from the
central and northern coast of Peru that operate in three smooth hammerhead nursery areas
(González-Pestana, Kouri & Velez-zuazo, 2016).

In the context of nature conservation, a nursery area is a zone where neonates and
juveniles of a species are in high abundance and, as such, it is expected to offer some benefits
to the juvenile population such as increased food availability or protection from predators
(Simpfendorfer & Milward, 1993; Beck et al., 2001; Heupel, Carlson & Simpfendorfer, 2007).
Globally, many nursery areas have been described for the smooth hammerhead e.g., in the
Atlantic ocean on the coast of Uruguay, on the Brazilian continental shelf and on the coast
of South Africa; in the Pacific ocean on the occidental shelf of the North Island at New
Zealand (Smale, 1991; Vooren, Klippel & Galina, 2005; Doño, 2008; Francis, 2016).
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Three nursery areas of smooth hammerhead have been described in the HCS based
on the presence and abundance of neonates and juveniles (total length between 53 and
150 cm) (González-Pestana, 2014; González-Pestana, 2018). One is located in the Tropical
East Pacific Marine Province (TEP-MP) at approximately 4◦S in proximity of Máncora
Port and is characterized by high fish diversity (Spalding et al., 2007; Ibanez-Erquiaga et al.,
2018). The other two nursery areas are located in theWarmTemperate Southeastern Pacific
Marina Province (WTSP-MP), one at approximately 6◦40′S in proximity of San José Port
and one at approximately at 8◦15′S in proximity of Salaverry Port (Spalding et al., 2007).
Both of these nursery areas located in WTSP-MP are characterized by high productivity
driven by the HCS and high fish biomass and diversity (Chavez et al., 2008; Ibanez-Erquiaga
et al., 2018). Furthermore, the nursery area at San José Port is characterised by the presence
of small islands and is limited to continental shelf, whereas the nursery area at Salaverry
Port does not accommodate islands and spreads further out to oceanic waters.

The ecological niche is commonly defined as a combination of environmental conditions,
biotic and abiotic variables, in which the species can persist, use resources, and impact
its environment (McGill et al., 2006). The trophic niche is a part of the ecological niche
and it describes all trophic interactions of a population or species, its food resources and
feeding area (Potapov, Tiunov & Scheu, 2018; Shipley et al., 2018). Since the biochemical
composition of an organism is directly related to its feeding habits, it is possible to evaluate
an approximation of the trophic niche of a species through analyses of its stable isotopes
and fatty acids (Bec et al., 2011). Specifically, the isotopic composition of an organism, its
isotopic niche, depends on its diet, feeding habits and trophic interactions (Newsome et al.,
2007). Fatty acid composition can also be used as a trophic marker because it directly relates
to the lipid reserve obtained by feeding (Dalsgaard et al., 2003). Even though themajority of
fatty acids can be synthetized by an organism, still most of them are obtained directly from
consumed food (Iverson et al., 2004). As such, a combination of stable isotope analyses
and evaluation of fatty acid profiles can be a powerful tool to obtain comprehensive,
time integrated (weeks to a year) assessment of diet and feeding behaviour and, therefore,
approximate the trophic niche of a marine predator (Hooker et al., 2001).

Nursery areas are expected to bring benefits to juvenile populations and are essential
for adult population recruitment (Heupel, Carlson & Simpfendorfer, 2007). Increasing
fishery pressure on nurseries of the smooth hammerhead in northern Peruvian waters
can be a serious threat to sustainability of this fishery. However, ecosystem-based fisheries
management has not been implemented in Peruvian waters due to lack of data on biology
and ecology of commercially important elasmobranch species. This study aims to evaluate
the trophic niche of juvenile smooth hammerheads from three nursery areas using stable
isotope and fatty acid analysis in northern Peruvian waters to inform conservation. As
each of the nursery area is under influence of different water masses and is characterised
by different environmental conditions, we expect trophic niches of smooth hammerhead
juveniles to be significantly different among nursery areas.
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METHODOLOGY
Study area
Data on presence of juvenile smooth hammerheads recorded by artisanal fishers and
monitors of ProDelphinus, an non-governmental organization (NGO) dedicated to
fishery conservation, between June 2014 and December 2018 were used to delimitate
specific nursery areas in northern Humboldt Current System (HCS) (Fig. 1). Sea surface
temperature (SST) and chlorophyll-a (Chl-a) data series were obtained from NASA
MODIS-Aqua (Moderate Resolution Imaging Spectrometer Aqua) via Oceancolor Data
Downloader (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/). Satellite images with 4
km2 spatial resolution were downloaded at seasonal scale between 2010 and 2019. Specific
seasons were divided as follows: Summer (December–February), Autumn (March–May),
Winter (June–August) and Spring (September–November). In addition, information on
occurrence of ENSO oscillation events was obtained from NOAA Climate Prediction
Center (https://www.cpc.ncep.noaa.gov/).

Sample collection
Juvenile smooth hammerheads that were captured as bycatch by artisanal gillnet fishers
between February and March 2019 in each nursery area were used with the approval of
Peruvian Ministerio de la Producción (PRODUCE), registry N◦ 00008103-2019. Muscle
and liver tissue samples were extracted from each individual and its total length (TL) was
registered. Due to time limitations some fishers provided sample of only one of the tissues.
Since smooth hammerheads are born with a large liver that carries nutrients frommaternal
heritage that are expected to affect isotopic signature and fatty acid profiles of neonates
(Francis, 1994;Olin et al., 2011), only juveniles between 70 and 120 cm TL were considered
for this study. Furthermore, muscle tissue of sympatric fish and squid species that are
usually caught together with smooth hammerhead were also collected by artisanal fishers
in the same period (the number of available samples depended on both availability of fish
and squid and time that could be dedicated by the fishers for sample collection). Tissues
samples of smooth hammerheads and sympatric species were preserved in 80% ethanol
(since collection areas were remote and no others preservation options were accessible), and
upon arrival to the laboratory were lyophilized for further analyses. Ethanol preservation
may either deplete or enrich isotopic signatures of carbon and nitrogen, however there is
no consensus whether a correction factor should be applied or not (Sarakinos, Johnson &
Vander Zanden, 2002; Xu et al., 2011). Direct evaluations of the effects of ethanol fixation
on fatty acid profiles are scarce, but Phleger et al. (2001) found no differences in fatty
acid profile of ethanol-preserved samples of rock lobster in comparison with frozen or
lyophilized samples. Furthermore, all samples in our study were preserved with the same
method allowing for valid comparisons among the nursery areas. The total of smooth
hammerhead muscle samples obtained was 10 in Máncora (115.2 ± 5.7 cm TL), 19 in
San José (80.2 ± 6.3 cm TL) and 14 in Salaverry (81.1 ± 2.5 cm TL). The total smooth
hammerhead liver samples obtained was 13 in Máncora (114.4 ± 5.2 cm TL), 17 in San
José (80.3 ± 6.6 cm TL) and 14 in Salaverry (81.1 ± 2.5 cm TL).
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Figure 1 Landing ports (dots) and nursery areas smooth hammerhead Sphyrna zygaena (polygons).
Areas were delimitated based on points of presence of juveniles Smooth Hammerhead from catches by ar-
tisanal fishery. Data source: ProDelphinus. Continental shelf area is indicated in light grey.

Full-size DOI: 10.7717/peerj.11283/fig-1

Stable isotope analysis
Lipid content of tissue subsamples that were used for stable isotope analyses was extracted
to prevent the alteration of carbon stable isotope signatures (Sweeting, Polunin & Jennings,
2006). Lipid extraction was performed following the methods described by Folch, Lees
& Sloane (1957) modified by Cequier-Sánchez et al. (2008) and Urzúa & Anger (2013).
We used 20 mg of tissue and 5 ml of the solvent dichloromethane: methanol (2:1).
Subsequently, all muscle samples were dried, pulverized and 1 mg of each sample was
placed inside a tin capsule for analyses of the composition of carbon and nitrogen stable
isotopes. Samples were sent to stable isotopes laboratory at University of California in
Davis, USA (https://stableisotopefacility.ucdavis.edu). To assess the variation in isotopic
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ratios of carbon and nitrogen δ notations were calculated following the equation (Coplen,
2011):

δhX=
(

Rsample

Rstandard
−1

)
Where X is the element, h is the high mass number, Rsample is the high mass-to-low mass
isotope ratio of the sample and Rstandard is the high mass-to-low mass isotope ratio of the
standard (Vienna Pee Dee Belemnite for carbon and atmospheric nitrogen for nitrogen).
The δ ratio was expressed in parts per thousand (h).

When working with stable isotope in elasmobranch tissue, it is recommended to extract
lipid and urea (Ingram et al., 2007; Li et al., 2016; Carlisle et al., 2017). In this study, as urea
extractions were not performed, we used the correction factor from Li et al. (2016) for
smooth hammerhead to correct the δ15N values following the equation:

δ15NLE+UE = 0.984∗δ15NLE+2.063

Where δ15NLE+UE is the value of δ15N corrected with lipid extraction (LE) and urea
extraction (UE).

Fatty acid analysis
The fatty acid profile was determined following the methods presented by Urzúa & Anger
(2011). Fatty acid methyl esters (FAMEs) were measured after preparation using the total
lipid extracted from each sample (Couturier et al., 2020). Total lipid extracts were esterified
usingmethanolic sulphur acid at 70 ◦C for 1 h in a Thermo-Shaker (MRCmodel DBS-001).
Subsequently, fatty acids were rinsed using 6 ml of n-hexane. Finally, the measurement
of FAMEs was performed using a gas chromatograph (Agilent, model 7890A) equipped
with a DB-225 column (J & W Scientific, 30 m in length, 0.25 mm inner diameter and
0.25 µm film thickness) at a range of temperatures. Individual FAMEs were identified by
comparison to known fatty acid standards of marine origin using chromatograph software
(Agilent ChemStation, USA) and certificate material Supelco 37 FAME mix 47885-U, and
quantified by means of the response factor to internal standard 23:0 FA added prior to
transmethylation (Malzahn et al., 2007; Urzúa & Anger, 2011).

Statistical analyses
To compare the environmental variables among three nursery areas we used repeated
measures ANOVA (ANOVA-RM) and post-hoc test with Bonferroni correction. The
factors used in the model were: nursery areas as groups, years as intra-case factor and
seasons as cases. PERMANOVA was used to compare stable isotope signatures (δ13C and
δ15N) among nursery areas (Máncora, San José, Salaverry) and tissue types (muscle, liver)
(Anderson, 2001; Mcardle et al., 2001). Subsequently, niche sizes and niche overlaps of
the smooth hammerheads were compared among the nursery areas using nicheROVER
package in R (Lysy, Stasko & Swanson, 2014; Swanson et al., 2015). This package evaluates
the niche size (NS) as the 95% of the region occupied by the species or population. Niche
overlap is calculated by a Bayesian framework with 95% of the area of the ellipses based
on data points. Subsequently, the overlap is calculated as the probability of the individual
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from one area to share the isotopic space with an individual from another area. An overlap
higher than 60% is consider significant by criteria used in niche studies (Schoener, 1968).
In addition, the package ‘‘tRophicPosition’’ was used to compare trophic position (TP)
of juvenile smooth hammerheads among nursery areas. This package calculates Bayesian
TP estimates using δ15N from the base line (sympatric species) (Quezada-Romegialli et
al., 2018). We used discrimination factors specific for smooth hammerhead that were
estimated by Kim et al. (2012): 1.7± 0.5 for δ13C and 3.7± 0.4 for δ15N. Sympatric species
were assumed to represent TP of 3.6, which is the mean value of the trophic position
of secondary fish consumers in the HCS (Espinoza et al., 2017). Comparisons of isotopic
signatures between smooth hammerhead juveniles and sympatric species were based on
liver signatures of smooth hammerheads because liver has a higher isotopic turnover rate
compared to muscle and therefore it is expected to reflect more recent diet and be less
affected by maternal signature.

To compare fatty acid diversity among nursery areas, ANOVA was performed on the
Shannon diversity index (H’) calculated for fatty acid profiles in each tissue and nursery
area (Shannon, 1948). Data were log transformed prior to analyses to meet ANOVA
assumptions. Subsequently, PERMANOVA based on Bray-Curtis dissimilarity matrix
was used to compare fatty acid profiles and isotopic signatures (δ13C and δ15N) together
among nursery areas (estimated probabilities were based on 999 permutations). Absolute
values of δ13C were used and all data were square root transformed prior to analyses to
reduce the effects of outliers. Subsequently, to assess which response variables were the
most important drivers of differences among nursery areas we used Principal Coordinate
Ordination (PCO) (Anderson, 2017). Variables with Pearson correlation higher than 0.5
were plotted (Meyer et al., 2019). All multivariate statistical analyses were executed in
PRIMER 6 (Plymouth Routines In Multivariate Ecological Research) (Clarke & Warwick,
2001).

RESULTS
Environmental factors
We found significant differences in SST (ANOVA-RM of Area * Years: F(16,3) = 2.26;
p= 0.02) and chlorophyll a (ANOVA-RM of Area * Years: F(16,3) = 4.78; p< 0.001)
among the nursery areas. Specifically, Máncora was characterized by SST consistently 2 ◦C
higher compared to Salaverry. Furthermore, SST in Salaverry was consistently 1 ◦C higher
compared to San José (Fig. S1). In contrast, chlorophyll a concentration in San José were
consistently about 2 mg m−3 higher compared to Máncora and Salaverry (Fig. S2).

Differences in isotopic niches among nursery areas
Smooth hammerhead juveniles captured in Salaverry had similar isotopic signatures
compared to those captured in Máncora but were slightly enriched in 15N (higher δ15N
values; Fig. 2). Furthermore, the highest variability of isotopic signatures in both tissues was
observed in smooth hammerhead juveniles captured in Máncora. Smooth hammerhead
juveniles captured in San José were characterised by isotopic signatures enriched in 13C
and 15N in both liver and muscle tissues (δ13C and δ15N values significantly higher)
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Figure 2 Mean and standard deviation of the δ13C and δ15N of smooth hammerhead Sphyrna zygaena
by nursery area and tissue type. Results for muscle tissue are represented by squares and results for liver
tissue are represented by triangles. Máncora, red; San José, yellow; Salaverry, blue.

Full-size DOI: 10.7717/peerj.11283/fig-2

Table 1 Mean niche size (NS) and niche overlap based on δ13C and δ15N of muscle and liver tissues of
smooth hammerhead Sphyrna zygaena from the three nursery areas.

Máncora San José Salaverry NS

Máncora – 71.39 74.31 5.23
San José 69.92 – 87.27 3.75Muscle

Salaverry 62.37 84.26 – 3.43
Máncora – 67.35 75.02 12.57
San José 70.28 – 88.91 4.82Liver

Salaverry 64.71 82.91 – 7.13

compared to those captured in Salaverry and Máncora and these differences were more
marked in liver tissue (Fig. 2; PERMANOVA; F = 39; p= 0.001). Elliptical isotopic niche
projections showed significant overlap between the three nursery areas (>60%; Fig. 3; Table
1). The broadest isotopic niches were observed in smooth hammerhead juveniles from
Máncora, whereas isotopic niches of smooth hammerhead juveniles from Salaverry and
San José were narrower. These differences were consistent between results based on muscle
and liver tissues. Sympatric species captured in all nursery areas were characterized by
carbon signatures consistently enriched in 13C compared to carbon signatures of smooth
hammerhead juveniles from the same areas (Fig. 4).

Differences in fatty acid concentrations and diversity among nursery
areas
Juvenile smooth hammerheads from Máncora were characterised by the lowest diversity
of fatty acids in both muscle and liver tissues. Furthermore, only saturated fatty acids
were recorded in muscle, while in the liver tissue saturated fatty acids were found in the
highest concentrations (Table 2). Juvenile smooth hammerheads from Salaverry and San
José were also characterised by the highest concentrations of saturated fatty acids, but
polyunsaturated fatty acids were also found in these individuals in both muscle and liver
tissues. The highest diversity (H’) of fatty acids in muscle tissue was found in smooth
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Figure 3 Four elliptical projections of the niche region (NR) of smooth hammerhead Sphyrna zygaena
muscle (A) and liver (B) tissue from each nursery area. Máncora, red; San José, yellow; Salaverry, blue.

Full-size DOI: 10.7717/peerj.11283/fig-3

hammerhead juveniles from Salaverry (1.02± 0.6) followed by San José (1± 0.4), whereas
diversity of fatty acids was significantly lower in smooth hammerhead juveniles from
Máncora (0.46 ± 0.3) (F = 6.42; P = 0.004). Similar pattern was observed in diversity of
fatty acids in liver tissue. Specifically, H’ of fatty acids of smooth hammerhead juveniles
from Salaverry (1.93 ± 0.2) and San José (1.92 ± 0.1) were significantly higher compared
to smooth hammerhead juveniles from Máncora (0.76 ± 0.2) (F = 6.42; P = 0.004).

Differences in trophic niche based on isotopic signatures and fatty
acid profiles among the nursery areas
PERMANOVAs based on fatty acid concentrations together with isotopic signatures (δ13C
and δ15N) indicated significant differences between smooth hammerhead juveniles from
Máncora and smooth hammerhead juveniles from San José and Salaverry in muscle
(F = 4.83; P = 0.004) and liver (F = 3.54; P = 0.002). Furthermore, PCO based on fatty
acid concentrations together with isotopic signatures in muscle tissue clearly separates
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(Ophioscion scierus); Paloma pompano (Trachinotus paitensis); Longnose anchovy (Anchoa nasus).

Full-size DOI: 10.7717/peerj.11283/fig-4

smooth hammerhead juveniles captured in San José and Salaverry from those captured in
Máncora mainly due to higher overall fatty acid concentrations of those captured in San
José and Salaverry (Fig. 5A). Similar pattern was observed in PCO based on both fatty acid
concentrations and isotopic signatures in liver tissue but here, in addition to higher fatty
acid concentration, smooth hammerhead juveniles from Salaverry and San José were also
characterized by carbon enriched in heavier 13C isotope (Fig. 5B).

DISCUSSION
Significant differences in trophic niches based on stable isotope signatures and fatty
acid profiles among three nursery areas suggest distinct trophic dynamics of juvenile
smooth hammerheads in each area largely driven by the HCS. Furthermore, isotopic
signatures corroborate that juvenile smooth hammerheads from San José nursery area
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Table 2 Muscle and liver fatty acid concentrations and Shannon fatty acid diversity of the smooth hammerhead Sphyrna zygaena in each nurs-
ery area.

Muscle Liver

Máncora San José Salaverry Máncora San José Salaverry

C11:0 nd 0.03±0.1 0.05±0.2 0.05±0.2 0.04±0.2 nd
C12:0 nd nd nd 0.06±0.2 0.08±0.2 nd
C13:0 nd nd nd 0.04±0.2 0.05±0.2 nd
C14:0 nd 0.11±0.3 0.31±0.4 7.77±2.1a 12.86±4.7b 14.08±4.6b

C15:0 nd nd nd 1.9±0.5a 2.25±0.7a,b 2.14±0.4b

C16:0 1.35±0.2a 2.40±0.9b 2.22±1.0b 82.3±18.8a 88.6±25.9b 91.36±22.2b

C17: 0 nd nd nd 4.11±0.8a 4.14±1a 5.71±0.1b

C18:0 0.60±0.4a 1.59±0.7b 1.23±0.9a,b 23.9±2.5a 27.67±5.5a,b 29.6±5.1b

C20:0 nd nd nd 0.24±0.5 0.14±0.4 0.18±0.6
C22:0 nd nd 0.33±0.9 nd 0.39±1.6 1.32±3.7
C23:0 nd nd nd 0.69±1.7 2.01±3.8 nd
C24:0 nd nd nd nd 0.08±0.3 0.08±0.3
TOTAL SFA 1.95±0.6a 4.12±1.7b 4.14±2.2b 121.1±22.5 138.3±37.5 143.9±29.3
C14:1 nd nd nd 0.13±0.5 0.05±0.2 nd
C16:1 nd 0.09±0.3 0.28±0.6 17.7±14.1 27±13.3 23.54±7.6
C17:1 nd nd nd 0.48±1 0.68±1.4 nd
C18:1n9 nd 1.03±1.1 0.98±1.1 44.63±19.4 41.18±14.4 48.81±20.5
C20:1 nd nd nd 5.35±4.9a 3.39±3.2b 7.97±5.6a,b

C22:1n9 nd nd nd 0.26±0.7 nd 0.26±0.8
C24:1 nd nd nd 1.11±1.3 1.46±1.8 0.23±1
TOTALMUFA nd 1.12±1.3 1.26±1.5 69.7±33.6 73.8±29 80.8±25.1
C18:3n3 nd nd nd 0.94±1.5 1.09±1.5 1.1±1.5
C20:3n3 nd nd nd 1.57±3.4 2.83±3.5 2.07±3.5
C20:5n3 nd 0.08±0.3 nd 11.32±18.9 20.97±25.1 33.74±25.6
C22:6n3 nd 0.94±1.8 1.41±1.8 11.07±14.2a 52.12±41.2b 42.99±43.5a,b

TOTAL PUFAn3 nd 1.02±2.1 1.41±1.8 24.9±35.4a 77±63.4b 79.9±61.1b

C18:2n6c nd nd nd nd 0.28±0.8 nd
C18:2n6t nd nd nd 1.21±1.9a 2.1±2.1a,b 3.55±2.3b

C18:3n6 nd nd nd 0.2±0.7 0.62±1.1 nd
C20:3n6 nd nd nd nd 0.05±0.2 nd
TOTAL PUFAn6 nd nd nd 1.4±2.5a 3.1±3.5b 3.5±2.3b

C20:2 nd nd nd 0.2±0.7 0.26±0.7 nd
TOTAL PUFA nd 1.02±2.1 1.41±1.8 26.5±38 80.3±64.1 83.4±62.2
TOTAL FAs 1.95±0.6a 6.26±4.5b 6.82±4.6b 217.2±70.1a 292.4±98.8b 308.1±90.4b

Shannon’s Index 0.46±0.32a 0.99±0.43b 1.05±0.58b 1.76±0.21a 1.93±0.19b 1.92±0.1b

Notes.
FAs not detected are indicated with ‘‘nd’’. Superscripted, lowercase letters indicate significant differences between seasons and locations (two-way ANOVA, P < 0.05).
Mean± standard deviation in mg g PS−1.
SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total fatty acids.

feed on prey enriched in heavier isotopes of carbon and nitrogen, compared to juvenile
smooth hammerheads from Salaverry and Máncora nursery areas. In addition, smooth
hammerheads from the San José and Salaverry nursery areas were characterised by similar
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Figure 5 Principal Coordinate Ordination (PCO) based on δ13C and δ15N and fatty acid profiles of
muscle (A) and liver (B) tissue of smooth hammerhead Sphyrna zygaena from each nursery area. Mán-
cora (red), San José (yellow) and Salaverry (blue). Vectors show variables with Pearson correlation ≥ 0.5.

Full-size DOI: 10.7717/peerj.11283/fig-5

fatty acid profiles that were significantly more diverse compared to the fatty acid profile of
smooth hammerheads from Máncora.

Isotopic niche variation among the nursery areas
The influence of the HCS and related coastal upwelling amplified by the extensive
continental shelf results in low water temperatures and high nutrient concentrations
in the nursery areas of San José and Salaverry (Chavez et al., 2008;Morales et al., 2019). The
differences we observed in temperature and chlorophyll-a among the areas are maintained
over time despite the seasonal variability related to El Niño Southern Oscillation (ENSO)
cycles (Fiedler, 2002). Carbon signatures are also directly affected by the influence of HCS
that result in enrichment in the heavier 13C isotope between 7 and 15◦S (Echevin et al., 2008;
Argüelles et al., 2012). Furthermore, the presence of an Oxygen Minimum Zone (OMZ)
in the northern HCS intensifies denitrification and enrichment of 15N isotope available
for photosynthesis (Liu & Kaplan, 1989; Chavez et al., 2008; Paulmier & Ruiz-Pino, 2009).
This influence of the HCS can explain enrichment of juvenile smooth hammerheads
captured in the San José nursery area in 13C and 15N isotopes. Similar enrichment could be
expected for juvenile smooth hammerhead captured in Salaverry nursery area. However,
juvenile smooth hammerheads from Salaverry were characterised by isotopic signatures
and isotopic niche width similar to those captured inMáncora with lower concentrations of
heavier 13C and 15N isotopes. This is probably because juvenile smooth hammerheads from
Salaverry feed in more oceanic waters, where carbon and nitrogen isotopic signatures are
characterized by lower concentrations of 13C and 15N isotopes, similar to those observed
in Máncora nursery area (Echevin et al., 2008; Argüelles et al., 2012; Rabehagasoa et al.,
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2012). The probability that juvenile smooth hammerheads captured in Salaverry and
Máncora migrate between these two nursery areas is low since smooth hammerheads are
characterized by high fidelity to nursery areas where they were born (Holland et al., 1993).

Sympatric species, mostly fishes, that were evaluated within this study showed isotopic
signatures enriched in 13C isotope compared to isotopic signature in the livers of juvenile
smooth hammerheads. Therefore, species that were available for this study most probably
are not consumed by juvenile smooth hammerheads. Indeed, squids, species from oceanic
water, were previously documented to be themost important prey of juvenile hammerheads
based on stomach content analyses (Bornatowski et al., 2007; Galván-magaña et al., 2013;
González-Pestana et al., 2017;Dicken et al., 2018). Few jumbo squidDosidicus gigas samples
that were analyzed within this study were characterized by lower concentrations of 15N
isotope compared to smooth hammerhead juveniles. This suggests jumbo squid as potential
prey of smooth hammerhead, however analyses of larger amount of samples is needed to
corroborate this finding. Other recent studies based on stable isotope analyses suggest that
also demersal fishes and crabs may significantly contribute to the diet of juvenile smooth
hammerheads (Kiszka et al., 2015; Loor-andrade et al., 2015; Rosende-Pereiro et al., 2020).
Exhaustive sampling of sympatric species and development of isotopic baselines in all
nursery areas including at least two seasons is recommended to elucidate the specific prey
contributing to the diet of juvenile smooth hammerheads.

Fatty acid profiles variation among nursery areas
Fatty acid biomarkers complement analyses of stable isotopes and allow to elucidate
further differences in trophic niches among nursery areas. The presence of polyunsaturated
and saturated fatty acids (PUFA and SFA) in muscle and liver are indicators of pelagic
zooplanktivorous prey such as squids and fishes (Pethybridge et al., 2010; Rohner et al.,
2013). Juvenile smooth hammerheads from San José and Salaverry were characterized by
higher concentrations of these fatty acids, probably due to a higher biomass of pelagic prey
in these nursery areas driven by the HCS. The meristic acid (C14:0) detected in muscle and
liver tissues of smooth hammerhead juveniles from San José and Salaverry nursery areas
may indicate higher abundances of proteobacteria and diatoms in these areasmost probably
as a result of the HCS and coastal upwelling (Dalsgaard et al., 2003). Polyunsaturated EPA
(C20:5n3) and DHA (C22:6n3) are the most relevant as dietary indicators as they cannot be
synthetized by sharks (Turner & Rooker, 2005). These fatty acids are positively correlated
to total length as they are usually depleted in sharks under one year (Wai et al., 2011;
Wai et al., 2012; Belicka et al., 2012). Our results do not corroborate this relationship for
smooth hammerhead juveniles as the largest individuals were captured in Máncora and
were characterised by the lowest concentrations of EPA and DHA. In contrast, smooth
hammerhead juveniles from San José and Salaverry nursery areas were characterised by
higher concentration of both EPA and DHA perhaps due to lower temperatures and higher
abundances of prey such as squids or migratory fishes driven by the influence of the HCS
(Bell & Sargent, 1986; Saito, Ishihara & Murase, 1997; Semeniuk, Speers-Roesch & Rothley,
2007; Beckmann et al., 2013).
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In comparison with previous studies, we found lower diversity of fatty acids in muscle
tissue of smooth hammerheads (Davidson et al., 2011;Davidson et al., 2014). This difference
could be related to the differences in extraction protocol as studies by Davidson et al. used
20 mg of lipids, while due to limited sample availability we used the lipids extracted from
20 mg of tissue. We still found the results of muscle tissue analyses worth presenting as the
fatty acid profiles registered in liver tissues were similar to those registered in muscle tissue
of the same individuals and, as expected, the concentrations in liver tissue were higher.

Smooth hammerhead trophic niche and its implications for fishery
management and conservation
Integration of the stable isotope signatures and fatty acid profiles allowed differentiation
of smooth hammerhead juveniles among San José, Salaverry and Máncora nursery areas.
The trophic niche of a species or population consists of biotic and abiotic variables related
to feeding habits and here we document that smooth hammerhead juveniles from each
nursery area in Peruvian waters have distinct trophic niches characterised by specific types
and quantities of prey they consume and their feeding habitats (oceanic or coastal waters).

The smooth hammerhead is among the elasmobranchs species most frequently landed
in the Peru and its catches severely declined during recent years (González-Pestana, Kouri
& Velez-zuazo, 2016). Conservation initiatives and implementation of ecosystem based
fishery management are urgently needed to sustain this fishery, however they lack essential
baseline data (Lack et al., 2014). We document that smooth hammerhead juveniles from
three nursery areas in northern Peru differ significantly in their diets and trophic niches.
Thus, management and conservation efforts should consider each nursery area as a unique
juvenile stock associated with unique ecosystem and recognize the dependence of smooth
hammerhead recruitment in San José and Salaverry on the productivity driven by the
Humboldt Current System. Additional research could be undertaken to further refine
our understanding of the spatial, temporal and environmental characteristics of these
nursery areas and their stability over time given potential ENSO impacts. Our results and
future studies may inform ecosystem-based fishery management that takes into account
the entire ecosystem rather than a single species (Kinney & Simpfendorfer, 2009; Mason et
al., 2020). New measures could build upon existing seasonal bans and landings restriction
to take into account protection of distinct nursery areas. To be most effective, any future
monitoring or management actions should involve fishers and communities that operate
in these nursery areas to help design management measures that allow for both sustainable
shark populations and sustainable fisheries. Ecosystem-based co-management may be
instrumental in enhancing rapidly declining smooth hammerhead populations.
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