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Abstract

The formation of the sea urchin spicule skeleton requires the participation of hydrogel-form-

ing protein families that regulate mineral nucleation and nanoparticle assembly processes

that give rise to the spicule. However, the structure and molecular behavior of these proteins

is not well established, and thus our ability to understand this process is hampered. We

embarked on a study of sea urchin spicule proteins using a combination of biophysical and

bioinformatics techniques. Our biophysical findings indicate that recombinant variants of the

two most studied spicule matrix proteins, SpSM50 and SpSM30B/C (S. purpuratus) have a

conformational landscape that include a C-terminal random coil/intrinsically disordered

MAPQG sequence coupled to a conserved, folded N-terminal C-type lectin-like (CTLL)

domain, with SpSM50 > SpSM30B/C with regard to intrinsic disorder. Both proteins possess

solvent-accessible unfolded MAQPG sequence regions where Asn, Gln, and Arg residues

may be accessible for protein hydrogel interactions with water molecules. Our bioinformatics

study included seven other spicule matrix proteins where we note similarities between these

proteins and rare, unusual proteins that possess folded and unfolded traits. Moreover, spic-

ule matrix proteins possess three types of sequences: intrinsically disordered, amyloid-like,

and folded protein-protein interactive. Collectively these reactive domains would be capable

of driving protein assembly and hydrogel formation. Interestingly, three types of global con-

formations are predicted for the nine member protein set, wherein we note variations in the

arrangement of intrinsically disordered and interactive globular domains. These variations

may reflect species-specific requirements for spiculogenesis. We conclude that the molecu-

lar landscape of spicule matrix protein families enables them to function as hydrogelators,

nucleators, and assemblers of mineral nanoparticles.

PLOS ONE | https://doi.org/10.1371/journal.pone.0222068 October 1, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pendola M, Jain G, Evans JS (2019)

Skeletal development in the sea urchin relies upon

protein families that contain intrinsic disorder,

aggregation-prone, and conserved globular

interactive domains. PLoS ONE 14(10): e0222068.

https://doi.org/10.1371/journal.pone.0222068

Editor: Eugene A. Permyakov, Russian Academy of

Medical Sciences, RUSSIAN FEDERATION

Received: June 27, 2019

Accepted: August 21, 2019

Published: October 1, 2019

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0222068

Copyright: © 2019 Pendola et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The sole funder for this work is the U.S.

Army Research Office. The funder had no role in

http://orcid.org/0000-0003-1453-695X
https://doi.org/10.1371/journal.pone.0222068
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222068&domain=pdf&date_stamp=2019-10-01
https://doi.org/10.1371/journal.pone.0222068
https://doi.org/10.1371/journal.pone.0222068
http://creativecommons.org/licenses/by/4.0/


Introduction

The formation of endo- and exoskeletons requires the participation of protein families that

enable the construction of biomaterials that can withstand stress and provide support, protec-

tion, and survival [1–3]. Among these are the sea urchin skeletal elements, e.g., the protective

embryonic spicules and adult spines where extracellular matrix (ECM) proteins combine to

form an environment for inorganic nanoparticle nucleation (calcium carbonates), nanoparti-

cle assembly, and the creation of a mineralized fracture resistant inorganic-organic composite

[1–3]. In the sea urchin embryo, the spicule matrix (SM) proteome plays an important role in

creating a hydrogel-based meshwork within the ECM that limits ion diffusion, creates ultra-

small volume compartmentalization for nanoparticle formation, and assembles the nanoparti-

cles into a mesocrystal [4–7]. Several SM proteins have been identified as regulators of the

spicule mineralization process [4–17] and some of these protein sequences in peptidomimetic

form have been shown to possess very interesting conformational properties, such as the pres-

ence of intrinsic disorder or unfolded structure, repetitive beta turn, glycine loop, and

extended twist structural repeats [18–20]. In studies of two Strongylocentrotus purpuratus spic-

ule matrix proteins, SpSM30B/C [13] and SpSM50 [14] it was speculated that the molecular

features which promote protein-protein assembly, matrix formation, water binding and

release, and nanoparticle assembly [13–17] include disordered [21–29] and amyloid-like [30–

32] sequences. It is likely that conserved SM domains, such as the C-type lectin-like (CTLL)

carbohydrate binding motif [7–12], are also contributors to these processes. However, the

structural features of SM protein families have not been fully identified, either in S. purpuratus
[4,7–12] or in other sea urchin species, and important functionalities such as hydrogel-water

binding [17] have not been fully explained. Thus, further investigation is required if we are to

understand protein matrix formation and hydrogel regulation of mineralization during spicule

development.

In this article, we address the structural features that exist amongst SM proteins, and, iden-

tify the basis for spicule matrix protein hydrogel-water binding and release. To achieve this, we

first performed experiments on a well-characterized set of hydrogelator SM proteins from the

well-known Strongylocentrotus purpuratus proteome (SpSM50, pI = 10.7, 428 AA, 44541 Da;

SpSM30B/C, pI = 5.73; 270 AA, MW = 33287.4 Da)[7–17]. Using recombinant, tag-free vari-

ants [13,14] of both proteins (rSpSM50, rSpSM30B/C-G) we determined that each protein is

intrinsically disordered and possesses residual secondary structures within the assembled

hydrogel state. Additionally, in hydrogel form both rSpSM50 and rSpSM30B/C-G proteins

exhibit solvent-accessible Asn, Gln, and Arg sidechain residues and these residues are likely

candidates for observed water exchange and subsequent mineral precursor hydration/dehy-

dration processes reported in earlier studies [15–17]. Subsequently, we complemented our

experimental studies with bioinformatics investigations of a subset of nine published SM

sequences originating from four different sea urchin species (Lytechinus pictus, Hemicentrotus
pulcherrimus, Strongylocentrotus purpuratus, Heliocidaris erythrogramma)[33–36]. Here, the

idea was to extend our SpSM50 and SpSM30B/C experimental investigations, by using predic-

tive bioinformatics [25–27;30–32;37,38] to determine the presence of hydrogelator-related

structural traits, such as intrinsic disorder, aggregation propensity, and interactive conserved

folded sequence regions [13,14] within other spicule matrix proteins. Together, these

approaches revealed that spicule matrix protein families have a common molecular landscape

that features an open global conformation consisting of intrinsically disordered, amyloid-like

cross-beta strand, and folded protein-protein interactive domains. It is likely that these molec-

ular features not only drive protein hydrogel formation, but also spiculogenesis and biominer-

alization schemes within the skeletal development of sea urchins in general.
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Experimental

Sample preparation

The expression, preparation and purification of recombinant tag-free insect cell expressed

SpSM30B/C-G glycoprotein (rSpSM30B/C-G) and bacteria-expressed SpSM50 (rSpSM50)

were performed as described previously [13,14]. For subsequent experimentation, both protein

samples were created by exchanging and concentrating appropriate volumes of stock solution

into unbuffered deionized distilled water (UDDW) or other appropriate buffers using Amicon

Ultra 0.5 3 kDa MWCO concentration filters [13,14]. For subsequent experiments protein

concentrations were determined using rapid gold BCA protein assay kit (ThermoFisher Scien-

tific, USA).

Circular dichroism spectrometry

CD spectra (190–260 nm) of 3 μM rSpSM50 and 7.5 μM rSpSM30B/C-G in 100 μM HEPES

pH 8.0 were collected at 25 ˚C on the AVIV Stopped Flow 202SF CD Spectropolarimeter [39].

Due to the high aggregation propensity of rSpSM50, this protein was examined at a lower pro-

tein concentration (~ 2.5x) compared to rSpSM30B/C-G. A total of eight scans per sample

were collected in a cuvette with 0.1 cm path length, using 1 nm bandwidth, 1 nm wavelength

step and 0.5 s averaging time. The instrument was previously calibrated with d-10-camphor-

sulfonic acid [39]. The recorded spectra were averaged and the appropriate background spec-

tra (HEPES buffer) subtracted. Spectra were smoothened using the binomial algorithm

included in the AVIV CD software. Ellipticity is reported as mean residue ellipticity (deg cm2

dmol−1)[39].

NMR spectroscopy

We performed 1H NMR PFG experiments on 22 μM rSpSM30B/C-G and rSpSM50 in 150 μL

of 30 nm filtered Fisher Ultrapure water (Fisher Scientific, USA) containing 10% v/v 99.9%

D2O (Cambridge Scientific Labs, USA) and 100 μM HEPES, pH 7.5 [17]. The presence of

HEPES buffer induces hydrogelation of both proteins [13,14]. The purpose of these experi-

ments was to determine if there exist any labile or mobile backbone and sidechain regions

within protein molecules that comprise the hydrogel particles. 1H NMR experiments were

conducted at 25 ˚C on a Bruker AVANCE-800 NMR Spectrometer using a 3 mm cryo-probe-

head. 2-D TOCSY (mixing time = 40 msec) and NOESY (mixing time = 50 msec) experiments

[40,41] were performed on all samples using the following parameters: 16 scans per experi-

ment; relaxation delay = 1.5 sec; WATERGATE gradient solvent suppression. All NMR data

was processed, analyzed, and plotted using TopSpin Software (Bruker BioSpin, USA) and 1H

NMR chemical shifts are reported from internal d4-TSP (deuterated trimethylsilapentanesulfo-

nic acid)[17,40,41].

Bioinformatics

Intrinsic disorder [DISOPRED [25], IUP [26], GLOBPLOT 2.3 [27]) and short length amy-

loid-like cross-beta strand sequence (FOLD_AMYLOID [30], AGGRESCAN [31], ZIP-

PER_DB [32]) prediction algorithm cohorts were utilized using default parameters to

comparatively map out intrinsic disorder and aggregation-prone sequences, respectively, for

nine spicule matrix protein sequences (Table 1). Putative signal peptide regions were identified

using ExPASy Signal P software [42] and these signal regions were deleted from each DNA-

derived sequence prior to the analyses described above. The charge–hydrophobicity plots

(CH-plots) [43] and the cumulative distribution function (CDF) analyses [44] were used for
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binary prediction of protein stability based of its amino acid sequence; these values were calcu-

lated using PONDR1 online service (http://www.pondr.com/) to create the CH-CDF analysis

[45]. To determine a hypothetical global structure of each SM sequence, we utilized the DISO-

clust—IntFOLD4 integrated protein structure and function prediction server (University of

Reading, UK, using default parameters [37,38] which provides tertiary structure prediction/

3D modeling of protein sequences that contain folded and unfolded sequence elements. Mole-

cules were visualized using PyMol (Schrodinger, Pasadena, CA, USA).

Results

rSpSM30B/C-G and rSpSM50 possess different contents of intrinsic disorder and residual sec-

ondary structure in the gel state. Bioinformatics have indicated that SpSM30B/C and SpSM50

proteins contain a folded CTLL domain at the N-terminus and an unfolded, MAQPG repeti-

tive sequence domain at the C-terminus [13,14]. To explore this, we employed circular dichro-

ism spectrometry and examined the recombinant versions of both proteins under conditions

known to promote hydrogel particle formation (10 mM HEPES, pH 8.0)(Fig 1) [13,14]. We

find that in the suspended gel state rSpSM50 presents with a single (-) π– π� transition minima

band centered near 222 nm, and rSpSM30B/C-G exhibits with a single (-) π– π� transition

minima band centered near 216 nm, i.e., a 6 nm blue shift from rSpSM50. In either case these

transition minima bands are consistent with the presence of intrinsically disordered confor-

mations along with residual secondary structures such as alpha-helix and beta-strand [18–

20;39]. From this data we conclude that both proteins in the gel state possess residual second-

ary structure and disordered or unfolded structural content. If we presume that intrinsic disor-

der content is a contributing driving force in self-association [22–25], then this in part

explains why both sea urchin spicule matrix proteins are strong aggregators that can form dis-

ordered gels [13,14,17].

SpSM protein hydrogels possess accessible Asn, Gln, Arg residues. It has been established

that rSpSM30B/C-G and rSpSM50 hydrogels can rapidly exchange water [17]. This ability may

be crucial for hydration-based processes in nucleation such as stabilization/destabilization of

amorphous calcium carbonate [13–15;17]. But to achieve this, the hydrogel particles must pos-

sess regions where mobile protein sidechains can access and bind/release solvent molecules,

e.g., on the exterior surface or within the porous interior of the hydrogel. Previously, NMR

spectroscopy of mollusk shell-associated biomineralization protein hydrogels revealed that not

all of the amino acid residues are involved in intermolecular contacts; rather, some of these are

mobile and therefore accessible, either internally or externally, for additional interactions such

as solvent or solute binding [40,41]. This mobility/accessibility phenomenon may also exist in

SpSM hydrogel particle systems [17] but has yet to be investigated.

Table 1. Spicule matrix protein sequences.

Spicule Matrix Protein Sea Urchin Species Accession Number

SpSM50 Strongylocentrotus purpuratus P11994, SM50_STRPU

SpSM37 Strongylocentrotus purpuratus Uniprot O76450, GenBank AAC33762.1

SpSM32 Strongylocentrotus purpuratus Uniprot Q8MUL1, GenBank AAM70486.1

SpSM30B/C Strongylocentrotus purpuratus P28163, SM30_STRPU

SpSM29 Strongylocentrotus purpuratus Uniprot Q8MUL0, GenBank AAM70487.1

LSM34 Lytechinus pictus Uniprot Q05904, GenBank CAA42179.1

HSM30 Hemicentrotus pulcherrimus Uniprot Q25116

HSM41 Hemicentrotus pulcherrimus Uniprot Q26264, GenBank AAB24285

PM27 Heliocidaris erythrogramma Uniprot Q95W96

https://doi.org/10.1371/journal.pone.0222068.t001
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To determine if rSpSM50 and rSpSM30B/C-G protein molecules within hydrogel particles

possess backbone or sidechain mobility, we performed 1H NMR experiments on both samples

under conditions which promote hydrogelation (pH 7.5 in 100 μM HEPES)(Fig 2) and exam-

ined the exchangeable sidechain NH proton frequency region (6.5–8.0 ppm). We chose 1H

NMR as a simple, low cost approach to understanding sidechain molecular mobility and acces-

sibility [40] in these protein molecules and to plan for future 13C/15N labeled multidimensional

NMR studies [41] of these proteins. Note that due to the use of HEPES buffer, 1H NMR chemi-

cal shift overlap generated by HEPES 1H resonances prevented us from performing analyses of

Fig 1. Far-UV circular dichroism spectra of rSpSM30B/C-G (7.5 μM) and rSpSM50 (3 μM) proteins in 100 μM

HEPES, pH 8.0. Dashed line extrapolates the ellipticity minima for each protein.

https://doi.org/10.1371/journal.pone.0222068.g001

Fig 2. Homonuclear 800 MHz 1H TOCSY spectra (exchangeable sidechain amide chemical shift region) of 22μM

rSpSM30B/C-G and rSpSM50 hydrogel particle samples, 100 μM HEPES, pH 7.5. Diagonal and off-diagonal regions

for sidechain and backbone NH Arg, Asn, and Gln resonances are shown, along with corresponding 1-D spectra.

https://doi.org/10.1371/journal.pone.0222068.g002
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the aliphatic proton sidechain region (i.e., 0–5 ppm) and thus our focus is limited to the NH

sidechain frequency region. As expected, intermolecular contacts between protein molecules

within large rSpSM50 and rSpSM30B/C-G hydrogel assemblies would be expected to attenuate

the majority of NH backbone and sidechain resonances in the TOCSY spectra for both sam-

ples, since aggregation-induced changes in protein backbone dynamics leads to intermediate

time scale broadening and other relaxation effects [40,41]. Surprisingly, a closer look reveals

that not all of the NMR NH sidechain resonances are attenuated in either the rSpSM50 or

rSpSM30B/C-G samples (Fig 2). The absence of signal attenuation indicates that these side-

chain resonances are not involved in intermolecular contacts within the protein hydrogels or

limited in molecular motion. Thus, there are some amino acids that reside in rSpSM50 and

rSpSM30B/C-G protein sequence regions where mobility is permissible and thus may reside in

solvent-accessible interior or exterior regions of the hydrogel particles [40,41].

Although NMR signal attenuation and 1H NMR chemical shift overlap prevents us from

obtaining sequence-specific spectral assignments at this time, we can leverage the unique

repetitive sequence features of both proteins to identify the types of amino acids within each

rSpSM protein that give rise to these resonances. In both the rSpSM30B/C-G and rSpSM50

TOCSY spectra we note scalar crosspeaks in the 1H NMR frequency range of 6.80–7.40 ppm,

which are consistent with hydrogen-bonding donor/acceptor Arg δ-NH guanidine sidechain

proton resonances (Fig 2). Additionally, we also note the presence of TOCSY crosspeaks in the
1H NMR frequency range of 7.1–7.4, which are consistent with hydrogen-bonding donor/

acceptor Asn δ-NH and Gln ε-NH amide sidechain resonances (Fig 2). The content of these

three amino acids is significant within the unfolded MAQPG C-terminal sequence region of

each protein (rSpSM30B/C-G = Asn, 55%, Gln, 47%, Arg = 58%; rSpSM50 = Asn, 94%,

Gln = 75%, Arg = 89%)(Fig 3)[13,14]. Thus, our TOCSY experiments suggest that the non-

attenuated Asn, Gln, and Arg NH resonances most likely arise from the unfolded C-terminal

MAQPG sequence regions of rSpSM30B/C-G and rSpSM50 molecules that reside throughout

the hydrogel matrices. Since the unfolded MAQPG regions would be expected to be motion-

ally unrestricted (i.e., greater degrees of freedom) and solvent-accessible [13,14,17], then the

Asn, Gln, and Arg residues in these regions would also be expected to exhibit molecular mobil-

ity and solvent-accessibility as well. Thus, we hypothesize that the MAQPG domain and its

associated Asn, Gln, Arg residues represents a putative site for rapid water exchange phenom-

ena that we observed for both spicule matrix protein hydrogels in bulk solution [17]. Note that

at this time we are unable to determine if other MAQPG—associated hydrogen-bonding

donor-acceptor amino acids, such as His, Thr, Ser, and Tyr [13,14], are also solvent-accessible

within rSpSM50 and rSpSM30B/C-G hydrogels and participate in water exchange as well.

Molecular landscape: SM sequences are defined by disorder content, aggregation propen-

sity, and folded/unfolded structure. Although studies have shown that both SpSM30B/C and

SpSM50 possess an intrinsically disordered MAQPG domain and aggregation-prone

sequences [13,14] little is known regarding the extent of intrinsic disorder content or aggrega-

tion propensity within other spicule mineral-associated proteins that are expressed during

embryonic development in S. purpuratus or in other sea urchin species. To explore this fur-

ther, we initiated a bioinformatics study to determine the frequency and location of intrinsi-

cally disordered (DISOPRED [25], IUP [26], GLOBPLOT 2.3 [27]) and short length amyloid-

like cross-beta strand aggregation propensity sequences (FOLD_AMYLOID [30], AGGRES-

CAN [31], ZIPPER_DB [32]) within nine spicule matrix protein sequences obtained from four

different sea urchin species (Lytechinus pictus, Hemicentrotus pulcherrimus, Strongylocentrotus
purpuratus, Heliocidaris erythrogramma)(Table 1, Fig 4).

We will first consider the issue of unfolded or disordered states (Fig 4). We found that all

nine spicule matrix protein sequences contain varying percentages of intrinsic disorder, with

Skeletal development in the sea urchin relies upon protein families
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SpSM50 and HSM30 possess the largest (75%) and smallest (22%) sequence percentage of

intrinsic disorder, respectively, and the average percentage of intrinsic disorder content being

40% for all spicule matrix proteins in this study. Subsequently we calculated the CH-CDF

(charge hydropathy—cumulative distribution function) scores for all nine spicule matrix pro-

tein sequences (Fig 5)[44,45]. CH-CDF plots provide comparisons of structure-disorder ten-

dencies within proteomes and is more sensitive to disorder than a traditional CH plot. Here,

we observe a narrow distribution of CH scores (i.e., > 0.39, < 0.47) for the nine proteins, indi-

cating that charge-hydropathy values are similar amongst these sequences. In contrast, what

distinguishes the spicule matrix sequences from one another are their CDF scores, which

exhibit a broader distribution (i.e., > 0.4,< 0.9) compared to the CH scores. We see that

SpSM50 and SpSM30B/C have the lowest and highest CDF scores, respectively, indicating that

SpSM50 is more unfolded than SpSM30B/C. But what is remarkable about Fig 5 is when we

integrate the CH and CDF scores together, we note that all spicule matrix sequences fall into

the Quadrant 1 region, which represents rare or unusual proteins whose CDF scores corre-

spond to folded proteins but the CH scores are typical of disordered sequences [44,45]. At this

time there is very little data available for Quadrant 1 type proteins [44,45], but it should not be

surprising that spicule matrix proteins fall into this rare category given their unique repetitive

Fig 3. Primary sequences of SpSM30B/C-G and SpSM50. Arg, Gln, and Asn residues are presented in red. MAQPG

domains are highlighted in yellow. Note high concentration of Arg, Asn, Gln within disordered MAQPG regions.

https://doi.org/10.1371/journal.pone.0222068.g003
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disordered MAQPG sequences, presence of modified globular domains [4,7–12], and in the

case of SpSM50 and SpSm30B/C, their hydrogelation propensities.

The significance of intrinsic disorder within spicule matrix protein sequences is that these

regions are energetically unstable due to the absence of stabilizing elements such as intrastrand

backbone hydrogen bonding found in alpha-helical and beta-strand sequences [22–25]. In

some cases, it has been documented that some unstable disordered domains can be triggered

to fold when they bind to targets or are influenced by environmental factors [23–25]. In either

instance, sequence reactivity would be important for promoting protein—protein interactions

that lead to hydrogelation and the formation of protein hydrogel particles [13–17].

We now examine aggregation propensity. All nine spicule matrix protein sequences possess

more than one aggregation-prone amyloid-like cross-beta strand region, with SpSM30B/C

and SpSM29 possess the highest (7) and lowest (4) number of regions, respectively (Fig 4),

with the average number of amyloid-like domains being five for all proteins in this study. The

significance is that these aggregation-prone sequences have been shown to be important for

initiating molecular assembly [30–32]. The widespread occurrence of these short motifs within

the nine tested SM proteins strongly suggests that amyloid-like aggregation motifs may play an

important role in spicule matrix assembly and hydrogel formation [13–17].

However, Figs 4 and 5 are two-dimensional and tell only part of the story. The overall

molecular features which enable spicule matrix proteins to self-assemble and form protein

hydrogel particles are three-dimensional in nature and can be better understood using algo-

rithms such as the DISOclust/IntFOLD4 predicted 3D modeling prediction program [37,38].

Here, the algorithm uses sequence homology modeling and intrinsic disorder prediction to

generate a qualitative global conformation for proteins that possess both folded and unfolded

regions (Fig 6). A comparison of the predicted global conformations of the nine spicule matrix

proteins (best template model for the globular domain, confidence levels, P scores, and global

model quality scores, see Table 2) in this study reveal some interesting trends for global

Fig 4. Predicted regions of intrinsic disorder (GLOBPLOT 2.3, DISOPRED, IUP) and aggregation-prone

amyloid-like (AGGRESCAN, FOLD_AMYLOID, ZIPPER_DB). Shaded areas (red = intrinsic disorder;

blue = amyloid-like cross-beta strand) denote sequence regions predicted as positive by each cohort of algorithms.

Grey area denotes regions that do not score as positive for either intrinsic disorder or amyloid-like sequences. Purple

color denotes sequence region overlap between aggregation-prone and intrinsic disorder.

https://doi.org/10.1371/journal.pone.0222068.g004
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conformations. First, it is clear that open, unfolded conformations comprise a significant pro-

portion of the global structure of each protein, which supports the findings obtained in Figs 4

and 5. Given that these proteins assemble to form matrices, an open unfolded global confor-

mation would facilitate protein-protein interactions that are necessary for matrix formation.

Fig 5. (A) Four quadrant (1–4) CH-CDF plot for spicule matrix protein sequences. (B) Enlargement of relevant

Quadrant 1. The Y-coordinate in the CH-CDF plot corresponds to the distance from the obtained ordinate value to the

correlation line separating the structured and unstructured conformational state of the protein on the CH (charge-

hydrophobicity) plot. The X-coordinate on the CH-CDF plot corresponded to the distance from the obtained ordinate

value to the correlation line separating the structured and unstructured conformational state of the protein in the CDF.

There are 4 quadrants: Quadrant 1 (CH> 0, CDF> 0) representing rare proteins for which it is impossible to

determine accurately the state, i.e., their CDF scores correspond to structured domains but CH scores correspond to

unstructured proteins. Quadrant 2 (CH> 0, CDF< 0) represents unfolded proteins (U), Quadrant 3 (CH< 0,

CDF< 0) represents the molten globule state (MG). Quadrant 4 (CH< 0, CDF> 0) represents structured or folded

proteins (F)[44,45].

https://doi.org/10.1371/journal.pone.0222068.g005
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However, of equal importance is the presence of a conserved, interactive CTLL domain

(Table 2) in eight of the nine proteins, which we believe is also involved in matrix formation.

Interestingly, the outlier to this trend is HSM41; instead of a single CTLL domain, this protein

contains two globular, folded regions that are known protein-protein interaction domains: the

fatty acid synthase α-subunit of Saccharomyces cerevisiae, and the PSCD-region of the cell wall

protein pleuralin-1 from the biomineralizing silica diatom, Cylindrotheca fusiformis (Table 2).

Like the CTLL domain, we believe that these two interactive folded domains represent putative

sites within HSM41 for spicule matrix assembly. Obviously, the substitution of these two

Fig 6. Categories of spicule matrix protein backbone conformations predicted by DISOclust/Intfold 4.0 (ribbon

representation, lowest energy conformer) for nine sea urchin spicule matrix proteins (Table 1). Under each Type is

a cartoon representation of global conformation (circle = folded conformation; squiggle line = disordered

conformation). Best template model for the globular domain, confidence levels, P scores, and global model quality

scores can be found in Table 2. N- and C-terminal ends are denoted.

https://doi.org/10.1371/journal.pone.0222068.g006

Table 2. DISOclust/INTFOLD4 fitted crystal structure template models homologous to conserved globular domains in sea urchin spicule matrix proteins.

Protein Model Template (globular domain) Confidence/P value Global model quality score

SpSM50 3alsA High/3.23 E-3 0.5112

SpSM30B/C 1qddA, 1jznA, 1eggB High/4.53 E-3 0.5092

SpSM37 3alsA Medium/1.552 E-2 0.3794

SpSM32 1wmyA, 1jzna High/2.684 E-3 0.4205

SpSM29 2ox9C Cert/2.406 E-5 0.5333

LSM34 1wmyA High/5.13 E-3 0.4055

HSM41 2nbiA, 2pff High/8.79 E-3 0.3920

HSM30 1qddA, 1jznA High/6.215 E-3 0.4788

PM27 1wmyA Cert/4.182 E-5 0.5158

3alsA, 1wmyA = C-type lectin CEL-I, Cucumaria echinata
1jznA = Galactose-specific C-type lectin, Crotalus atrox
1qddA = Lithostathine, Homo sapiens
2h2r = CD23 lectin domain, Homo sapiens
2ox9C = Mouse scavenger receptor C-type Lectin carbohydrate-recognition domain, Mus musculus
1eggB = C-type carbohydrate recognition domain (CRD-4), macrophage mannose receptor, Homo sapiens
2pff = fatty acid synthase subunit alpha, Saccharomyces cerevisiae.
2nbiA = pscd-region of the cell wall protein pleuralin-1, Cylindrotheca fusiformis

https://doi.org/10.1371/journal.pone.0222068.t002
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globular domains for the S. purpuratus CTLL domain represents a species-specific adaptation

of HSM41 for spicule matrix formation in H. pulcherrimus, which we will discuss later on.

Analyses of these predicted SM global structures reveal 3 conformational categories (arbi-

trarily denoted as Types A, B, C) that reflect two variables: 1) the position of disordered

regions relative to conserved globular domains, and 2) the number of conserved globular

domains. The Type A conformation is represented within the entire SpSM series as well as

HSM30 and LSM34 (which is homologous to SpSM50)[40]. The Type A conformer consists

of a short (~5–40 AA) disordered N-terminal segment, followed by a single conserved globu-

lar CTLL domain, and lastly by an open conformation C-terminal MAQPG domain. In con-

trast, Type B conformation, which is represented by PM27, has a longer N-terminal

disordered sequence (� 50 AA) that is coupled to a single conserved CTLL domain, which is

then followed by an open conformation C-terminal MAQPG domain. In both classifications,

the presence of extended, disordered MAQPG regions can act as interactive motifs for pro-

tein-protein binding [13,14] and sidechain—water interactions [17]. Lastly, Type C, repre-

sented by HSM41, is essentially a modified Type B configuration: two globular folded

domains linked by an open conformation region with flanking N- and C-terminal regions

existing in an open conformation. From these results, we conclude the following: 1) Given

the hydrogelation capabilities of SpSM50 and SpSM30B/C [13–17], the gross similarities of

the Type A, B, C conformations (i.e., interactive globular + reactive disordered) suggest that

all investigated spicule matrix proteins are hydrogelators as well. 2) The noted differences in

globular—disordered domain sequence locations and the length of disordered sequences

(Figs 3 and 5) could affect a number of parameters with regard to spicule matrix protein

hydrogels, such as pore size, gel density, nanoparticle formation and ordering, and intracrys-

talline nanoinclusion size and distribution, features which we have noted to be unique for

SpSM50 and SpSM30B/C [13–17].

Discussion

Recently, considerable emphasis has been placed on intrinsic disorder as a major factor in the

formation of skeletal extracellular matrices, particularly those that support the biomineraliza-

tion process [22,23,28]. Given that intrinsically disordered sequences lack internal stabilization

(e.g., absence of intrastrand hydrogen bonding), they are thermodynamically unstable and

hence highly reactive to other molecular species such as proteins or other substrates [21–28].

This would explain the presence of intrinsic disorder within extracellular matrix protein

sequences that enable protein assembly. However, based upon our current study we believe

that intrinsic disorder represents only part of the matrix story. The spicule matrix proteome

consists of 3 major components: a) intrinsically disordered regions; b) folded protein-protein

interactive motifs, and c) amyloid-like cross-beta strand aggregation-prone sequences (Figs 1,

4 and 5; Table 2). Similar results been reported in different mollusk shell biomineralization

protein investigations [22;39–41]. We argue that there is a need for this structural heterogene-

ity in biomineralization proteins: 1) The creation of a hydrogel matrix that can bind and

release water, thereby impacting the mineralization process [19] requires protein-protein rec-

ognition and assembly [13–17;39–41]. Amyloid-like and interactive globular domains jointly

satisfy this requirement alongside intrinsically disordered domains. 2) There is also a require-

ment to generate a disordered gel or polymer induced liquid phase (PILP) matrix that acts as a

liquid-liquid phase separator [46] for the formation and assembly of mineral phase precursors,

such a pre-nucleation clusters [47,48], into amorphous calcium carbonate (ACC)[46–48]. In

this instance, intrinsically disordered sequences are appropriate. We postulate that the number

and location of intrinsically disordered, amyloid, and conserved domains within specific
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spicule matrix proteins (Figs 4 and 6) reflects the number and nature of potential matrix

molecular species that each protein is destined to interact with [16].

Our study of rSpSM50 and rSpSM30B/C-G highlights the structural similarities and differ-

ences that exist within the two major spicule matrix proteins expressed by the embryonic sea

urchin S. purpuratus. From previous studies we learned that rSpSM50 is a stronger aggregator

than rSpSM30B/C-G, forming larger dimension hydrogel particles in solution [13,14] and

inducing a greater degree of mineral particle organization [15]. Obviously, factors such as

molecular net charge (rSpSM50 = cationic; rSpSM30B/C-G = anionic) and the presence of gly-

cosylation (rSpSM30B/C-G) could explain these differences in hydrogelation [13,14]. How-

ever, based upon our CD (Fig 1) and bioinformatics (Figs 4, 5 and 6) studies, we believe that

differences in structural features also play a role in defining rSpSM50 and rSpSM30B/C-G

aggregation and the organization of hydrogel particles. Specifically, rSpSM30B/C-G possesses

a higher degree of residual secondary structure and lower degree of intrinsic disorder relative

to rSpSM50 (Figs 4 and 5). Given that rSpSM50> rSpSM30B/C-G in terms of aggregation

and hydrogel particle size [13,14], we would conclude that intrinsic disorder content plays an

important role in spicule matrix protein hydrogelation and explains in part why rSpSM50

exhibits higher aggregation propensity. In turn, the differences in protein hydrogelation could

impact calcium carbonate nucleation, intracrystalline nanoporosity size and distribution, sol-

ute and water diffusion, and mineral particle assembly and organization [13–17].

Although structural differences exist between rSpSM50 and rSpSM30B/C-G (Fig 1), they

essentially function on an equivalent level with regard to water exchange [17], and this is

reflected in our NMR data, where both proteins possess detectable hydrogen-bonding donor/

acceptor amino acids (e.g., Asn, Gln, Arg) (Figs 2 and 3) within the motionally unrestricted,

solvent-accessible intrinsically disordered MAQPG regions (Figs 2 and 3). This implicates the

MAQPG region and its associated Asn, Gln, Arg residues as one site for rapid water exchange

[17] throughout the protein hydrogel network created by rSpSM50 and rSpSM30B/C-G [13–

16]. As described in our past work, this type of exchange could affect the hydration or solubil-

ity of precursor calcium carbonate mineral phases during nucleation [13–15], which, in turn,

could affect amorphous calcium carbonate stabilization and eventual transformation into cal-

cite [46–48] is process would be highly relevant for spiculogenesis and biomineralization and

we believe that other spicule matrix protein hydrogels (Fig 6, Table 1) would likewise possess

similar features that can engage in water exchange processes.

We can use the insights obtained from the SpSM50 and SpSM30B/C data (Figs 1 and 2)

along with bioinformatics predictions (Fig 6) to extend our understanding of structure and

function within the known S. purpuratus proteome. In general, the spicule matrix proteome is

similar to rare, unusual proteins whose traits mimic both folded and unfolded species (Fig 5)

[44,45]. A closer examination (Fig 6) reveals how disordered and folded traits are utilized in

these proteins. Here, we note that the predicted Type A conformation, featuring the interactive

CTLL domain, represents the majority of known spicule matrix protein sequences originating

from S. purpuratus (Fig 6)[7–12]. What distinguishes different Type A proteins from one

another is the structure of the interactive CTLL domain itself (Table 2), which we note to be

similar in SpSM50 and SpSM37 yet different in SpSM32, SpSM29, and SpSM30B/C. We inter-

pret these findings as follows: 1) the gross conformational similarities within Type A signal

functional similarities in these proteins vis a vis hydrogel formation, water exchange, and sub-

sequent spicule mineralization in S. purpuratus. 2) The variations in CTLL domain structure

(Table 2), intrinsic disorder and amyloid-like sequences (Fig 4) may be indicative of slightly

different molecular recognition strategies used by different S. purpuratus proteins to identify

and bind to each other during spiculogenesis, such as SpSM50 binding to SpSM30B/C [16].
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But what of other sea urchin species? Once again, the rare, unusual traits of disorder, aggre-

gation propensity, and folded structure manifest themselves in other sea urchin species. We

find that LSM34 (L. pictus) and HSM30 (H. pulcherrimus) are conformationally similar to the

S. purpuratus proteome and contain a N-terminally located CTLL domain coupled to a C-ter-

minal disordered region (Fig 6, Table 2). In contrast H. erythrogramma and H. pulcherrimus
express spicule matrix proteins that feature Type B (PM27) or C (HSM41) conformations (Fig

6) that feature slightly different folded-disordered arrangements. Interestingly, HSM41, which

possesses the Type C configuration, evolved with two conserved non-CTLL protein-protein

interaction domains instead of the interactive CTLL domain (Fig 6). Again, given the presence

of intrinsic disorder, amyloid-like, and protein-protein recognition domains (Fig 4), we

hypothesize that the Type B and C spicule matrix proteins would be expected to function as

hydrogelators, participate in water exchange, and modulate the mineralization process as per

the Type A group. However, the differences in CTLL location and sequence variation as well

as the use of non-CTLL interactive domains (Fig 6, Table 2) may reflect molecular strategies

that evolved to allow adaptations in hydrogelation, water exchange, and protein-mediated

mineral particle assembly that meet the specific skeletal requirements of that organism. Fur-

thermore, as noted for mollusk shells [49], different sea urchin species thrive under different

conditions (e.g., water temperature, pH, pressure, salinity, Ca(II)/Mg(II) concentrations and

so on) and thus each species may have evolved different primary sequences to perform similar

roles in spiculogenesis but “tuned” to the environment of that species. These are intriguing

concepts and further research will be required to understand how different sea urchin spicule

matrices undergo assembly and mineral formation and how individual proteins participate in

this assembly process.
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