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Chemical patents are an essential source of information about novel chemicals and
chemical reactions. However, with the increasing volume of such patents, mining
information about these chemicals and chemical reactions has become a time-
intensive and laborious endeavor. In this study, we present a system to extract
chemical reaction events from patents automatically. Our approach consists of two
steps: 1) named entity recognition (NER)—the automatic identification of chemical
reaction parameters from the corresponding text, and 2) event extraction (EE)—the
automatic classifying and linking of entities based on their relationships to each other.
For our NER system, we evaluate bidirectional long short-term memory (BiLSTM)-based
and bidirectional encoder representations from transformer (BERT)-based methods. For
our EE system, we evaluate BERT-based, convolutional neural network (CNN)-based, and
rule-based methods. We evaluate our NER and EE components independently and as an
end-to-end system, reporting the precision, recall, and F1 score. Our results show that the
BiLSTM-based method performed best at identifying the entities, and the CNN-based
method performed best at extracting events.

Keywords: named entity recognition, event extraction, relation extraction, information extraction, chemical natural
language processing

1 INTRODUCTION

Chemical patents are a significant source of information about novel chemicals and chemical
reactions. New chemical compound discovery plays a vital role in the chemical and pharmaceutical
industry, and chemical patents are the first venue this information is disclosed (He et al., 2021).
Unfortunately, there has been a rapid growth of chemical patents in recent years, and with the
increasing volume, the manual cataloging of these chemicals and chemical reactions is become
laborious and time-intensive, making it difficult for researchers to keep up with the current state of
the art. This has created an urgent need for automated solutions to extract information from patents
in order to expedite the work of synthetic chemists (Lowe and Mayfield, 2020). Furthermore, these
databases allow for the discovery of new chemical and synthetic pathways (Wang et al., 2001; Bort
et al., 2020).

A chemical reaction typically includes an ordered sequence of reaction and workup steps that
transforms a starting material into an end product (He et al., 2021). The process of extracting these
steps consists of two key tasks: chemical named entity recognition (NER) and event extraction (EE).
NER is the automatic identification of entities involved in a chemical reaction, and EE is the
automatic identification and classification of event steps that link entities together. Here, the entities
are names of chemical compounds labeled based on their role in a reaction and conditions associated
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with the reaction, such as yield and temperature (Copara et al.,
2020), and the event is the relation between the entities that
describe the steps taken to create the final product. To identify the
entities and trigger words, we explored bidirectional long short-
term memory (BiLSTM)-based and bidirectional encoder
representations from transformer (BERT)-based (Devlin et al.,
2018) methods each combined with a conditional random field
(CRF) output layer for the final prediction. To identify the events,
we explored rule-based, convolutional neural network (CNN)-
based, and BERT-based methods. We evaluated our methods on
the CLEF ChEMU-2020 dataset (He et al., 2021) where we also
participated in the challenge (Mahendran et al., 2020). We
evaluated each of the methods on their individual tasks (NER
and EE) independently, and as an end-to-end system. We
reported the precision, recall, and F1 score finding our best
method (BiLSTM + CRF) for NER obtained an overall relaxed
precision of 0.95 and exact precision of 0.87, relaxed recall of 0.99
and exact recall of 0.85, and a relaxed F1 score of 0.97 and an exact
F1 score of 0.87. Our best method for EE (CNN-based) obtained
an overall precision of 0.81, recall of 0.54, and F1 score of 0.65.

The remainder of the study is as follows. First, we discuss the
current literature on extracting chemical reactions for patents.
Second, we describe our NER and EE methods. Third, we discuss
and analyze the results of our NER and EE separately, and then
the results of combining them into an end-to-end system. Finally,
we discuss the conclusions and future work of our research.

2 RELATED WORK

The extraction of chemical reaction properties and events from
unstructured text is essential due to the increasing volume of
information. We define properties as the entities associated with
the reaction, and the events as sequence of steps that transform a
starting material into an end product. Here, we discuss the
previous literature within this domain.

He et al. (2021) used a CRF-based model for NER and a rule-
based system for EE. For NER, they developed the BANNERNER
system (Leaman and Gonzalez, 2008) which uses lexical,
syntactic, and contextual features in a CRF model. For EE,
they used a co-occurrence–based method where they created
two dictionaries: De—for the observed trigger words and their
corresponding types, and Dr—for the observed event types from
the training and development sets. To predict events, they first
identified all trigger words in the test data using De and then
extracted two events for a trigger word–entity pair based on the
following two conditions: 1) they co-occur in the same sentence,
and 2) the relation is included in Dr . This system was utilized as
the baseline system for the CLEF ChEMU-2020 challenge.

Copara et al. (2020) and Malarkodi et al. (2020) each
developed a NER system to identify chemical entities from
patents. Copara et al. (2020) used a BERT-based method
assessing five variations of the BERT language models,
including a domain-specific model called ChemBERTa. The
models have a fully connected layer on top of the hidden
states of each token and fine-tuned on the ChEMU dataset,
using the training and development sets provided.

Malarkodi et al. (2020) investigated using CRFs and multilayer
perceptrons (MLPs), and they used word-level features,
grammatical features, and functional term features.

Lowe and Mayfield (2020), Zhang and Zhang (2020), Ruas
et al. (2020), and Dönmez et al. (2020) developed both NER and
EE systems to extract chemical entities, and their trigger words,
and subsequently link the trigger words to the entities to identify
events. However, only Lowe and Mayfield (2020) and Zhang and
Zhang (2020) conducted an end-to-end evaluation.

Lowe and Mayfield (2020) proposed a method utilizing
parsing information with grammar rules for both NER and
EE. For NER, they used ChemicalTagger (Hawizy et al., 2011)
for efficient matching against extensive grammars that describe
entity types to recognize chemicals and physical quantities, and
then used regular expressions to recognize the remainder of the
entity types and trigger words. For EE, they associated all of the
entities within a phrase to its corresponding trigger word, with
some predefined exception rules.

Zhang and Zhang (2020) proposed a hybrid combination of
deep learning models and pattern-based rules for both NER and
EE. In their work, a new language model, named
Patent_BioBERT, was generated by pretraining the patent texts
over BioBERT (Lee et al., 2019). For NER, they fine-tuned
Patent_BioBERT on a BiLSTM + CRF and post-processed the
output utilizing a set of pattern rules. For EE, they built a binary
classifier by fine-tuning Patent_BioBERT to recognize relations
between the trigger words and entities. They also designed post-
processing rules based on patterns observed in the training data
and applied them to recover some of these false-negative
relations.

Ruas et al. (2020) proposed a BERT-based method for NER
and EE. For NER, they first used a rule-based tokenizer for text
tokenization and then a BERT-based model to extract the entities
evaluating both BioBERT and BERT. For EE, they first performed
sentence segmentation masking the trigger words, and the
segment is then fed into a BERT model to classify the relation.
Dönmez et al. (2020) proposed a BERT-based method for NER
and a rule-based method for EE. For NER, they used the
pretrained BERT model, BioBERT, to detect the entities and
trigger words. For RE, if there is a trigger word in the same
sentence as an entity, the event is identified based on a set of rules.

In this work, we analyze and benchmark different approaches
for both NER and EE. For NER, we explore a BiLSTM + CRF and
a BioBERT-based method. For EE, we explore a rule-based
method that utilizes the colocation information, a CNN-based
method that divides a sentence into segments and processes each
segment unit separately, and two BERT-based methods. We
evaluate the methods for NER and EE individually as well as
an end-to-end system, conducting a thorough analysis of our
results to identify the areas in which each approach does well and
falls short.

3 DATA

The CLEF ChEMU-2020 dataset contains patents annotated with
chemical entities and events explaining the sequence of steps that
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lead a starting material through a chemical reaction to an end
product (Nguyen et al., 2020). It includes ten entities and two
event classes. Table 1 displays the definitions of each entity and
trigger word label in detail. Table 2 shows the event statistics of
the training dataset. The dataset includes two trigger words
(REACTION_STEP and WORKUP), and an event consists of
a trigger word and an entity. Events are divided into two classes:
ARG1 and ARGM. The ARG1 event label corresponds to
relations between a trigger word and chemical compound
entities. The ARGM event label corresponds to the relations
between a trigger word and temperature, time, or yield
entities. Figure 1 shows an example of a sentence from the
CLEF ChEMU-2020 dataset (He et al., 2021) that explains the
relationship between an entity and a trigger word.

4 METHODS

This section describes the underlying methodology of our NER
and EE systems.

4.1 Named Entity Recognition and Trigger
Detection
We evaluate using BiLSTMs and a BERT to identify the chemical
entities and their trigger words. In this section, we describe each
of these in detail.

4.1.1 Bidirectional Long Short Term Memory
For our BiLSTM method, we use BiLSTM units with a CRF
output layer (BiLSTM + CRF). An LSTM (Huang et al., 2015) is a

TABLE 1 | Definitions of entities and trigger words of the dataset.

Entity labels Definition

REACTION_PRODUCT (R.P.) A product is a substance that is formed during a chemical reaction
STARTING_MATERIAL (S.M.) A substance that is consumed in the course of a chemical reaction providing atoms to products is considered as starting material
REAGENT_CATALYST (R.C.) A reagent is a compound added to a system to cause or help with a chemical reaction. Compounds like catalysts, bases to remove

protons, or acids to add protons must also be annotated with this tag
SOLVENT (S) A solvent is a chemical entity that dissolves a solute, resulting in a solution
OTHER_COMPOUND (O.C.) Other chemical compounds that are not the products, starting materials, reagents, catalysts, and solvents
TIME The reaction time of the reaction
TEMPERATURE (Temp) The temperature of the reaction
YIELD_PERCENT (Y.P.) Yields given in percent values
YIELD_OTHER (Y.O.) Yields provided in other units than %
EXAMPLE_LABEL A label associated with a reaction specification
REACTION_STEP Event within which starting materials are converted into product
WORKUP Event step required to isolate and purify the product of a chemical reaction

TABLE 2 | Number of entity types and trigger words in the training data and their event relations.

Events Entities Instances REACTION_STEP WORKUP

ARG1 EXAMPLE_LABEL 886 — —

REACTION_PRODUCT 2052 1,101 11
STARTING_MATERIAL 1754 1747 4
REAGENT_CATALYST 1,281 1,272 —

SOLVENT 1,140 1,134 4
OTHER_COMPOUND 4,640 161 4,097

ARGM YIELD_PERCENT 955 937 1
YIELD_OTHER 1,061 1,043 2
TIME 1,059 839 81
TEMPERATURE 1,515 813 242

Triggers REACTION_STEP 3,815
WORKUP 3,053

FIGURE 1 | An example from the CLEF ChEMU-2020 dataset that shows the entities, trigger words, and events.
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type of recurrent neural network (RNN). It has two sources of
input: the current state and the past states. This allows the cell to
connect the previous observations, such as words in a sentence,
and learn the dependencies of these words over arbitrarily long
distances. The LSTM identifies what information should be
passed to the next component, allowing only the relevant
information. With BiLSTMs, data are processed in both
directions with two separate hidden layers to enable the
system to exploit context in both directions. We use a linear-
chain CRF to assign the final class probability. CRF is a sequence-
learning algorithm that incorporates the interdependence
between labels into model induction and prediction. This
allows the model to use the preceding label predictions to
inform what labels are most likely to follow or to occur close
together.

We represent our input into the BiLSTM + CRF using
pretrained word embeddings (Mikolov et al., 2013) in
combination with character embeddings (Gridach, 2017). We
use the pretrained ChemPatent embeddings (Nguyen et al., 2020)
that are trained over a collection of 84,076 full patent documents
(1B tokens). The word and character embeddings are then
concatenated and then passed through the network. The
character embeddings are learned using a BiLSTM layer and
concatenated onto the word embeddings. The character
embeddings are valuable for alleviating the problem of “out of
vocabulary” (OOV) terms for the model. In the case of chemical
patents, many tokens are long chemical names that do not show
up in the dataset used to train word embeddings, such as the
reaction product 3-Isobutyl-5-methyl-1-(oxetane-2-ylmethyl)-6-
[(2-oxoimidazolidin-1-yl)methyl]thieno[2,3-d]pyrimidine-2,4(1H,3H)-
dione.

4.1.2 Bidirectional Encoder Representations From
Transformers
For our BERT method, we use BERT’s embedding representation
into a feed-forward neural network with a CRF output layer.
BERT is a contextualized word embedding model trained over a
large corpus for masked language modeling and next sentence
prediction tasks. Devlin et al. (2018) showed that this pretrained
model could then be fine-tuned for other NLP tasks, including
NER, by adding a simple classification layer. We evaluated BERT
and several other additions for extracting chemical reaction
parameters from chemical patents. Our architecture consists of
an 1) alternate WordPiece labeling component, 2) BioBERT
feature representation, and 3) a simple feed-forward layer into
a CRF output layer for the final prediction.

Alternate WordPiece labeling: BERT tokenization involves
splitting some tokens into “WordPieces” referred to as
subwords, which alleviates the problem of OOV words.
However, this creates a complication when doing token-level
classification like NER; as per Devlin et al. (2018)
recommendation, we only classify the first WordPiece by
masking the rest and applying an “X” label.

BioBERT: BioBERT (Lee et al., 2019) is a BERTmodel that was
further pretrained over biomedical text. In our work, the input to
BioBERT is a single text sentence that is broken into subwords.
An input representation is constructed by integrating the token,

segment, and positional embeddings. Lee et al. (2019) started by
loading the BERT-based cased weights and then training over
PubMed abstracts and PubMed Central articles. For our
experiments, we loaded the BioBERT v1.1 weights and then
fine-tuned the model identically to standard BERT.

Classification layers: The system takes the output of the
BioBERT layers, and passes it through a simple dense feed-
forward layer and then into the CRF layer for the final
classification. The CRF layer allows for the dependencies
between the labels to be incorporated into the final prediction.

4.2 Event Extraction
Since a chemical reaction step involves action and chemical
compound(s) on which the action takes effect, we treat EE as
a two-stage task: 1) identification of a trigger word that indicates a
chemical reaction step and 2) identification of the relation
between a trigger word and chemical compound(s) that is
(are) linked to the trigger word.

To identify the trigger words, we use our NER system BiLSTM
+CRFmethod described in Section 4.1.1. To identify the relations
between the trigger words and the entities, we explore three
methods: 1) rule-based method, 2) convolutional neural
network(CNN)-based method, and 3) BERT-based methods:
BERT_cased and BioBERT (Lee et al., 2019). In this section,
we describe each of the methods in detail.

4.2.1 Rule-Based Method
For our rule-based method, we utilize the colocation information
between the trigger word and the chemical entity to determine if a
relation should exist. We use a breadth-first search algorithm to
find the trigger word’s closest occurrence on either side of the
entity and all the closest occurrences of the trigger words within a
sentence. Then, for each entity in the dataset, we traverse both
sides until the trigger word’s most immediate occurrence is found
using the provided span values of the entities. We apply different
traversal techniques and determine the best traversal technique.
The following are the traversal techniques we explore: traverse
left-only, traverse right-only, traverse left-first-then-right, and
vice versa. In this work, we report the best results, which used the
left-only traversal where we traverse to the left side of the entity
mention finding the closest occurrence of the trigger words.

4.2.2 CNN-Based Method
For our CNN-based method, we split the sentence into segments and
pass each segment into its respective CNN architecture, joining the
resulting weights into a softmax layer for classification. CNNs are a
formof deep neural networks and consist of fourmain layers (Nguyen
and Grishman, 2015): 1) an embedding layer, 2) a convolution layer,
3) a pooling layer, and 4) a feed-forward layer. The convolution layer
acts as a filter and learns what features to extract from the input. The
max-pooling layer uses the position information to identify the most
significant features from the convolution filter’s output. Finally, the
feed-forward layer performs classification.

In our architecture, we perform a binary classification for each
trigger word–entity pair to identify whether a relation exists between
the trigger word and the entity. First, we identify and extract the
sentence where a trigger word–entity pair lies, and based onwhere the
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text spans are located in the sentence, we divide the sentence into five
segments: 1) preceding—tokenized words before the first concept,
2) concept 1—tokenized words in the first concept, 3)
middle—tokenized words between the two concepts, 4) concept
2—tokenized words in the second concept, and 5)
succeeding—tokenized words after the second concept. A segment
is represented by a matrix of kpN , where k is the dimension of the
word embeddings and N is the number of words in a segment. We
construct separate convolution units for each segment and
concatenate them before the fixed-length vector is fed to the dense
layer that performs the classification. Each convolution unit applies a
sliding window that processes the segment and feeds the output to the
max-pooling layer to extract essential features independent of their
location. The output features of the max-pooling layer of each
segment are then flattened and concatenated into a vector before
feeding it into the fully connected feed-forward layer. The vector is
finally fed into a softmax layer to perform the binary classification on
whether the relationship exists.

4.2.3 BERT-Based Method
For our BERT-based methods, we explore two BERT-
contextualized embedding representations. BERT is a
transformer-based attention model which trains in both
directions. Here, we use BERT-contextualized embeddings and
feed them into a simple feed-forward neural network. We explore
two BERT-based models: BERT_cased and BioBERT.

• BERT_cased: general BERT models trained on a large
corpus of English data: Book-Corpus (800 M words) and
Wikipedia (2,500 M words) in a self-supervised manner
(without human annotation). Here, we used the model
with 2 heads, 12 layers, 768 hidden units/layers, and a
total of 110 M parameters.

• BioBERT: general BERT model, further trained over a
corpus of biomedical research articles from PubMed1

abstracts and PubMed Central2 article full texts.

In this architecture, we first extract the sentences that contain a
trigger word and entity arguments. Next, as our feature extraction
component, we pass the sentences through the pretrained BERT
models to extract the features. Then, we feed the output into a
dropout layer and finally into a fully connected dense layer for
classification. As with our CNN-based method, we treat the EE as
a binary classification task building a separate model for each
trigger word–entity pair.

4.3 Experimental Details
4.3.1 Our Framework
In this work, we used our NER and EE frameworks: MedaCy and
RelEx.

MedaCy3 is a python-based framework developed to
automatically identify the experimental parameters associated

with the reaction, including the trigger words. RelEx4 is a python-
based framework developed to automatically link the trigger
words with the experimental parameters to provide the
sequence of steps within the reaction. MedaCy contains a
number of supervised multi-label sequence classification
algorithms for NER. RelEx contains rule-based, deep
learning–based, and BERT-based algorithms to identify
relations between entities.

MedaCy: we used PyTorch (Paszke et al., 2019) for the
implementation of the BiLSTM + CRF and BioBERT + CRF
architectures. The models were trained for 40 epochs and
optimized using stochastic gradient descent. Tokenization was
conducted using the SpaCy tokenizer. The labels are strictly the
entity types.

RelEx: we used Keras (Charles, 2013) for the
implementation of the CNN architecture. We
experimented with different sliding window sizes, filter
sizes, and loss functions for fine-tuning, and in this work,
small filter sizes generated the best results. We applied the
dropout technique on the output of the convolution layer to
regularize the model. We used Adam and rmsprop optimizers
to minimize our loss function. We utilized SpaCy tokenizer
(Schatz and Weber, 2015) and Keras tokenizer5 for the rule-
based and the CNN-based method, respectively. We trained
the models for 5–10 epochs to avoid over-fitting. We used the
HuggingFaceTransformers to build the BERT models from
Tensorflow 2.0, and used BertTokenizer (Devlin et al., 2018)
and AutoTokenizer (Alsentzer et al., 2019) for tokenization.

4.4 Evaluation
We report the precision, recall, and F1 scores. Precision is the
ratio between correctly predicted mentions over the total set of
predicted mentions for a specific entity, recall is the ratio of
correctly predicted mentions over the actual number of mentions,
and F1 is the harmonic mean between precision and recall. We
also report both the exact and relaxed results for each entity
category for our NER and end-to-end evaluation. In the exact
evaluation, two annotations are equal only if they have the same
tag with exactly matching spans. With the relaxed evaluation, two
annotations are equal if they share the same tag and their spans
overlap.

5 RESULTS AND DISCUSSION

In this section, we present and discuss the results of our NER and
EE systems evaluated independently and then as a complete end-
to-end system.

5.1 Named Entity Recognition Results
Table 3 shows the exact and relaxed precision (P), recall (R), and
F1 (F) scores obtained over the test set for our BiLSTM + CRF

1https://www.ncbi.nlm.nih.gov/pubmed/.
2https://www.ncbi.nlm.nih.gov/pmc/.
3https://github.com/NLPatVCU/MedaCy/.

4https://github.com/NLPatVCU/RelEx/tree/CLEF_2020.
5https://github.com/keras-team/keras.
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with the ChEMU patent embeddings and our BioBERT + CRF
methods.

In the BiLSTM + CRF results, the exact F-1 score was high
(≥ 0.85) across all entities, except for the exact results for
TEMPERATURE (0.63). In many cases of the
TEMPERATURE label, the model labeled “C” or “°C,”
excluding the number preceding the temperature symbol. We
believe this accounts for the model performed poorly when
evaluating in the exact mode but performed well when
evaluating in the relaxed mode.

In the BioBERT + CRF results, the model performed on par
with the BiLSTM + CRF except for REACTION_PRODUCT and
STARTING_MATERIAL. The relaxed results indicate that the
model is labeling a portion of the entity and can identify most of
them; however, the precision is relatively low. BioBERT initially
obtains a label for each subword token. These are then combined
to provide both token-level predictions, which are fed into the
CRF layer to obtain the final entity-level predictions. This allows
for dependencies between the entities to be taken into
consideration for sequence labeling. The BioBERT results
indicate that it is getting most of an entity but not all of it;
this suggests that post-processing of the labels can be improved in
the future to obtain a full exact match.

5.1.1 Error Analysis
Confusionmatrices for the BiLSTM + CRF and BERT + CRF over
the testing dataset are shown in Figure 2. Rows in the matrix
represent annotated entities, and columns represent predicted

entities. For instance, in the BiLSTM + CRF, the bottom right
corner of each matrix is darker because of the large number of
OTHER_COMPOUND (O.C) entities in the dataset. The colors
in the matrix indicate the density of the entities and the system
annotations. The matrix shows that the majority of mislabeling
for both models occurred when many of the specific entity labels,
such as STARTING_MATERIAL (S.M.), REAGENT_CATALYST
(R.C.), REACTION_PRODUCT (R.P.), and SOLVENT (S), were
predicted to be OTHER_COMPOUND (O.C.), as all four of those
entities are chemicals. We believe this is due to two main reasons.
The first reason is obvious; there is a significantly larger number of
training instances for OTHER_COMPOUND than the other entities.
However, the second reason is that OTHER_COMPOUND is
quite a broad category referring to any chemical that is not one of
the other four entities. Therefore, if the context surrounding the
chemical is not sufficient to place it in the STARTING_MATERIAL,
REAGENT_CATALYST, REACTION_PRODUCT, or SOLVENT
label, it defaults to the broader OTHER_COMPOUND label.

5.1.2 Comparison With a Previous Work
Table 4 shows a comparison between the top results reported by the
CLEF ChEMU-2020 challenge using the CLEF-2020 dataset,
baseline, and our NER methods. Baseline is a CRF-based NER
system called BANNER (Leaman and Gonzalez, 2008) provided by
the ChEMU organizers using the CLEF-2020 dataset. From the
overall results of our models, we can see the BiLSTM + CRFmethod
trained using patent embeddings returned the best relaxed results
over both the BioBERT + CRF and the CRF baseline, obtaining a

TABLE 3 | Precision (P), recall (R), and F1 (F) results for our NER system.

Method Entity Exact Relax

P R F P R F

BiLSTM + CRF EXAMPLE_LABEL 0.94 0.95 0.94 0.94 0.98 0.96
OTHER_COMPOUND 0.9 0.82 0.86 0.97 0.99 0.98
REACTION_PRODUCT 0.84 0.83 0.83 0.9 0.97 0.94
REAGENT_CATALYST 0.85 0.9 0.87 0.88 0.99 0.93
SOLVENT 0.91 0.94 0.93 0.92 1 0.96
STARTING_MATERIAL 0.85 0.84 0.85 0.91 1 0.95
TEMPERATURE 0.63 0.63 0.63 0.99 0.99 0.99
TIME 0.88 0.88 0.88 1 1 1
YIELD_OTHER 0.95 0.98 0.97 0.96 1 0.98
YIELD_PERCENT 0.99 0.99 0.99 1 1 1

System 0.87 0.85 0.86 0.95 0.99 0.97

BioBERT + CRF EXAMPLE_LABEL 0.91 0.94 0.92 0.92 0.95 0.94
OTHER_COMPOUND 0.88 0.83 0.85 0.95 0.94 0.95
REACTION_PRODUCT 0.44 0.65 0.52 0.73 0.95 0.82
REAGENT_CATALYST 0.78 0.81 0.79 0.86 0.87 0.87
SOLVENT 0.89 0.92 0.90 0.90 0.92 0.91
STARTING_MATERIAL 0.39 0.60 0.48 0.69 0.92 0.79
TEMPERATURE 0.95 0.96 0.96 0.98 0.99 0.99
TIME 0.88 0.88 0.88 0.99 0.99 0.99
YIELD_OTHER 0.78 0.85 0.81 0.89 0.95 0.92
YIELD_PERCENT 0.95 0.99 0.97 0.97 1.00 0.98

System 0.73 0.82 0.77 0.87 0.95 0.91

Bold indicates system performance of both models.
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97% system-wide relaxed + score, however, scoring slightly lower on
the exact results than on the baseline. Melaxtech (Zhang and Zhang,
2020) fine-tuned the BioBERT over the patent texts and a BiLSTM+
CRF for NER; they outperformed other systems, achieving a high
F1-score of 0.96. VinAI (Dao and Nguyen, 2020), Lasige BioTM
(Ruas et al., 2020), and BiTeM (Copara et al., 2020) performed
equally and better than our methods under exact match. Our
BiLSTM + CRF method outperformed the baseline and other
methods under relaxed match, achieving higher recall. As
discussed in the related work (Section 2), MelaxTech, BiTeM,
and LasigBioTM developed BERT-based systems; MelaxTech also
used a BiLSTM + CRF as VinAI. AU-KBC built systems using CRFs
and MLP.

5.2 Event Extraction Results
Table 5 shows the exact match precision (P), recall (R), and F1 (F)
scores obtained for the EE system. The triggers were identified using
our BiLSTM + CRF method trained over the ChemPatent
embeddings, and the events were identified using our rule-based
method, our CNN-based method, and our two BERT-based
methods. The results show that the CNN-based method obtained
a higher overall F1 score than the othermethods.When training with
CNN, the overall precision of the predictions is high, but the recall is
low; this result shows that CNN failed to classify all instances but was
able to classify most of the predicted instances correctly. This is
primarily due to the limited number of training instances for many
of the WORKUP relations. For example, SOLVENT,

FIGURE 2 | Confusion matrix using (A) BiLSTM + CRF and (B) BERT + CRF results. Keys for the acronyms are as follows: EXAMPLE_LABEL (E.L.),
REACTION_PRODUCT (R.P.), STARTING_MATERIAL (S.M.), REAGENT_CATALYST (R.C.), SOLVENT (S), OTHER_COMPOUND (O.C.), YIELD_PERCENT (Y.P.),
YIELD_OTHER (Y.O.), TIME (Time), and TEMPERATURE (Temp).

TABLE 4 | Our best results in comparison with the top results of the ChEMU-2020 competition for NER. Baseline is provided by the organizers of the ChEMU-2020
challenge.

Exact Relax

P R F P R F

Our methods BiLSTM-based 0.87 0.85 0.86 0.95 0.99 0.97
BioBERT-based 0.73 0.82 0.77 0.87 0.95 0.91

ChEMU_2020 teams Melaxtech Zhang and Zhang (2020) 0.96 0.96 0.96 0.97 0.97 0.97
VinAI Dao and Nguyen (2020) 0.95 0.95 0.95 0.97 0.97 0.97
Lasige BioTM Ruas et al. (2020) 0.93 0.95 0.94 0.96 0.97 0.96
BiTeM Copara et al. (2020) 0.94 0.91 0.92 0.97 0.96 0.96
NextMove/Minesoft Lowe and Mayfield (2020) 0.90 0.89 0.90 0.93 0.92 0.92
AUKBC Malarkodi et al. (2020) 0.68 0.41 0.51 0.88 0.53 0.66

Baseline ChEMU organizers 0.91 0.87 0.89 0.92 0.89 0.91

Bold indicates best results for P, R, and F for both exact and relax match results.
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TABLE 5 | Precision (P), recall (R), and F1 (F) score of the EE system with trigger words identified using our BiLSTM + CRF trained with ChEMU patent embeddings.

Method Argument Trigger Entity # Train P R F

Rule-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.02 0.06 0.04
REACTION_PRODUCT 1,101 0.82 0.78 0.80
REAGENT_CATALYST 1,272 0.52 0.35 0.42
SOLVENT 1,134 0.81 0.55 0.65
STARTING_MATERIAL 1747 0.63 0.31 0.41

Average 0.56 0.52 0.46

WORKUP OTHER_COMPOUND 4,097 0.90 0.86 0.88
REACTION_PRODUCT 11 0.01 1.00 0.02
REAGENT_CATALYST — 0.00 0.00 0.00
SOLVENT 4 0.07 1.00 0.14
STARTING_MATERIAL 4 0.04 1.00 0.08

Average 0.20 0.77 0.22

ARGM REACTION_STEP TEMPERATURE 813 0.77 0.89 0.83
TIME 839 0.85 0.93 0.89
YIELD_OTHER 1,043 0.83 0.80 0.81
YIELD_PERCENT 937 0.86 0.85 0.85

Average 0.83 0.87 0.85

WORKUP TEMPERATURE 242 0.66 0.81 0.73
TIME 81 0.36 0.53 0.43

Average 0.51 0.67 0.58

System 0.51 0.72 0.60

CNN-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.00 0.00 0.00
REACTION_PRODUCT 1,101 0.92 0.96 0.94
REAGENT_CATALYST 1,272 0.78 0.69 0.74
SOLVENT 1,134 0.64 0.74 0.69
STARTING_MATERIAL 1747 0.82 0.43 0.56

Average — 0.63 0.56 0.59

WORKUP OTHER_COMPOUND 4,097 0.73 0.29 0.42
REACTION_PRODUCT 11 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00

Average 0.18 0.07 0.11

ARGM REACTION_STEP TEMPERATURE 813 0.83 0.30 0.44
TIME 839 0.78 0.73 0.75
YIELD_OTHER 1,043 0.93 0.96 0.95
YIELD_PERCENT 937 0.91 0.94 0.92

Average 0.86 0.73 0.77

WORKUP TEMPERATURE 242 0.56 0.08 0.14
TIME 81 0 .00 0.00 0.00

Average 0.28 0.04 0.07

System 0.81 0.54 0.65

BERT-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.03 0.06 0.04
REACTION_PRODUCT 1,101 0.84 0.82 0.83
REAGENT_CATALYST 1,272 0.51 0.2 0.29
SOLVENT 1,134 0.49 0.62 0.55
STARTING_MATERIAL 1747 0.55 0.92 0.69

Average 0.48 0.52 0.59

WORKUP OTHER_COMPOUND 4,097 0.54 0.48 0.51
REACTION_PRODUCT 11 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00

Average 0.14 0.12 0.13

(Continued on following page)
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REACTION_PRODUCT, and STARTING_MATERIAL all have
less than 11 instances in the training data.

We can also see that each event class performance (trigger
word–entity pair) in the CNN-based method is proportional to
the number of instances in the training set. For example, event
classes REACTION_STEP—REAGENT_CATALYST, and
REACTION_STEP–STARTING_MATERIAL have more
training instances and obtain a high F1 score, whereas the event
classes WORKUP-SOLVENT and WORKUP-
STARTING_MATERIAL have a very few instances and obtain
an F1 score of zero. The rule-based method obtains
comparatively high recall but low precision. It predicts all the
closest occurrences of the trigger words of the entity compounds
in the traversal area; however, many predictions are false positives.
Since the number of instances in the training set does not affect the
rule-based methods, the event classes that have few instances
perform better. For example, the event classes WORKUP-TIME
and REACTION_STEP-OTHER_COMPOUND obtained zero F1
score with the CNN-based method but performed better with the
rule-basedmethod, obtaining F1 scores of 0.43 and 0.88, respectively.

Both BERT-based methods obtain mediocre results compared to
other rule-based and CNN-based methods, which we find

surprising. The precision of both BERT-based methods is higher
than that of the rule-based method but lower than that of the CNN-
based method, and the recall is lower than that of the rule-based
method but higher than that of the CNN-based method.We assume
the reasons behind these findings are the BERT-based methods
utilize contextualized embeddings which improve the number of the
predictions (high recall), but the CNN-based method utilizes
domain-related, non-contextualized patent embeddings that
improve the number of true positives (high precision). Also,
BERT-based methods take only the sentence where the trigger
word–entity pair is located as the input, whereas the CNN-based
method breaks the sentence into segments and processes each
segment separately. Therefore, the CNN-based method considers
the positional information of the entities results in more true
positives. If we compare the BERT-based methods with each
other, we can see the BERT_cased method obtained a higher
recall and an overall F1 score, whereas the BioBERT-based
method obtained a high precision. Since the BioBERT
embeddings are trained over biomedical research articles,
comparatively, they classifymost of the predicted instances correctly.

Each trigger word category shows the arithmetic mean for both
trigger word classes for each entity argument class. We can see the

TABLE 5 | (Continued) Precision (P), recall (R), and F1 (F) score of the EE system with trigger words identified using our BiLSTM + CRF trained with ChEMU patent
embeddings.

Method Argument Trigger Entity # Train P R F

ARGM REACTION_STEP TEMPERATURE 813 0.44 0.20 0.27
TIME 839 0.51 0.82 0.63
YIELD_OTHER 1,043 0.83 0.83 0.83
YIELD_PERCENT 937 0.84 0.92 0.88

Average 0.66 0.69 0.65

WORKUP TEMPERATURE 242 0.26 0.17 0.21
TIME 81 0.23 0.26 0.24

Average 0.25 0.22 0.23

System 0.58 0.59 0.58

BioBERT-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.04 0.02 0.02
REACTION_PRODUCT 1,101 0.84 0.82 0.83
REAGENT_CATALYST 1,272 0.53 0.45 0.49
SOLVENT 1,134 0.51 0.39 0.44
STARTING_MATERIAL 1747 0.59 0.27 0.37

Average 0.50 0.39 0.43

WORKUP OTHER_COMPOUND 4,097 0.52 0.53 0.54
REACTION_PRODUCT 11 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00

Average 0.13 0.13 0.14

ARGM REACTION_STEP TEMPERATURE 813 0.43 0.08 0.13
TIME 839 0.57 0.30 0.40
YIELD_OTHER 1,043 0.84 0.81 0.82
YIELD_PERCENT 937 0.84 0.88 0.86

Average — 0.67 0.52 0.56

WORKUP TEMPERATURE 242 0.27 0.20 0.23
TIME 81 0.17 0.02 0.04

Average 0.22 0.11 0.14

System 0.62 0.50 0.55

Bold indicates system performance of three methods.
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TABLE 6 | Error analysis for the event extraction (EE) system where trigger words are trained with ChemPatent embeddings.

Method Argument Trigger Entity tp fp fn fpm fnm

Rule-based ARG1 REACTION_STEP OTHER_COMPOUND 40 1798 23 18 11
REACTION_PRODUCT 351 75 101 10 3
REAGENT_CATALYST 177 162 328 8 8
SOLVENT 234 54 193 4 7
STARTING_MATERIAL 217 128 494 15 9

WORKUP OTHER_COMPOUND 1,501 171 249 54 73
REACTION_PRODUCT 4 375 0 9 0
REAGENT_CATALYST 0 40 0 9 0
SOLVENT 2 25 0 5 0
STARTING_MATERIAL 1 24 0 2 0

ARGM REACTION_STEP TEMPERATURE 450 131 53 29 15
TIME 386 66 27 21 10
YIELD_OTHER 350 74 85 11 3
YIELD_PERCENT 326 55 58 11 3

WORKUP TEMPERATURE 89 45 21 13 20
TIME 23 41 20 16 13

System 4,151 3,957 1,652 421 175

CNN-based ARG1 REACTION_STEP OTHER_COMPOUND 0 0 63 0 11
REACTION_PRODUCT 436 36 16 11 3
REAGENT_CATALYST 350 97 155 17 8
SOLVENT 316 179 111 16 7
STARTING_MATERIAL 305 68 406 12 9

WORKUP OTHER_COMPOUND 516 192 1,234 23 73
REACTION_PRODUCT 0 0 4 0 0
REAGENT_CATALYST — — — — —

SOLVENT 0 0 2 0 0
STARTING_MATERIAL 0 0 1 0 0

ARGM REACTION_STEP TEMPERATURE 151 30 352 15 15
TIME 300 87 113 16 10
YIELD_OTHER 418 31 17 11 3
YIELD_PERCENT 361 36 23 13 3

WORKUP TEMPERATURE 9 7 101 0 20
TIME 0 0 43 0 13

System 3,162 763 2,641 134 175

BERT-based ARG1 REACTION_STEP OTHER_COMPOUND 4 120 59 15 11
REACTION_PRODUCT 369 72 83 17 3
REAGENT_CATALYST 101 97 404 9 8
SOLVENT 266 273 161 22 7
STARTING_MATERIAL 654 531 57 54 9

WORKUP OTHER_COMPOUND 845 708 905 77 73
REACTION_PRODUCT 0 0 4 0 0
REAGENT_CATALYST — — — — —

SOLVENT 0 0 2 0 0
STARTING_MATERIAL 0 0 1 0 0

ARGM REACTION_STEP TEMPERATURE 101 131 402 15 15
TIME 338 319 75 18 3
YIELD_OTHER 360 73 75 18 3
YIELD_PERCENT 353 65 31 17 3

WORKUP TEMPERATURE 19 54 91 6 20
TIME 11 37 32 0 13

System 3,421 2,480 2,382 284 175

BioBERT-based ARG1 REACTION_STEP OTHER_COMPOUND 0 10 63 2 11
REACTION_PRODUCT 440 88 12 20 3
REAGENT_CATALYST 156 146 349 13 8
SOLVENT 256 235 171 20 7
STARTING_MATERIAL 236 169 475 23 9

(Continued on following page)
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CNN-based method performs well with the REACTION_STEP
classes and poor with WORKUP classes. This is mainly because
of the number of instances in each event class. Comparatively, most
of the REACTION_STEP classes have more instances for the CNN
to train than most WORKUP classes. This is the same reason the
rule-based method performs better with the WORKUP classes.
BERT-based method results are similar to those of the CNN-
based method; they perform well with the REACTION_STEP
classes compared to the WORKUP classes. Since both BERT-
based and CNN-based methods are supervised learning methods,
they need more instances for each class to improve the results.

5.2.1 Error Analysis
Table 6 shows a detailed error analysis our EE methods. We
report the number of true positives (tp), false positives (fp), and
false negatives (fn), and also “fpm” and “fnm,” two metrics that
represent the number of false positives and false negatives of the
trigger words predicted.

The results are consistent with the previous observations from
Table 5. We can see that REACTION_STEP classes performed
better than the WORKUP classes. It is safe to say that class
imbalance plays a significant role in the miss-annotation of the
instances. The results also show that the rule-based method
significantly over annotates given the number of false
positives. For example, the rule-based method identified 379
instances of the WORKUP-REACTION_PRODUCT event

class, with only four being true positives. Despite having
significant training instances in the REACTION_STEP classes,
we can see an equally high number of false positives as true
positives. This is mainly because extracting events is often trickier,
regardless of the sentence pattern. For example, the following
sentences show a trigger word–REACTION_PRODUCT pair in
each.

1. After cooling, the solid was collected by filtration and washed
with cold dichloromethane to give N-(4-(2-oxo-1,2,3,4-
tetrahydroquinolin-6-yl)thiazol-2-yl)oxazole-5-carboxamide
(0.121 g, 87%) as a beige solid.

2. {Methyl 4-[(6-bromo-2-phenyl-3-propylquinolin-4-yl)carbonyl]
aminobicyclo[2.2.2]octane-1-carboxylate 150 mg (0.40mmol) of
the compound from example 38 A were dissolved in 1.4 ml
(19.8 mmol) of thionyl chloride.

In the first sentence, the entity REACTION_PRODUCTN-(4-
(2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)oxazole-5-
carboxamide is related to the trigger word give, but in the
second sentence, the entity REACTION_PRODUCT {Methyl
4-[(6-bromo-2-phenyl-3-propylquinolin-4-yl)carbonyl]aminobicyclo
[2.2.2]octane-1-carboxylate is not related to the trigger word
dissolved. Despite the similar sentence structure, the results are
not similar. These kinds of instances make the EE in this dataset
quite hard.

TABLE 7 |Our best results in comparison with the top results of the ChEMU-2020 competition for event extraction (EE). Baseline is provided by the organizers of the ChEMU-
2020 challenge.

P R F

Our methods Rule-based 0.51 0.72 0.60
CNN-based 0.81 0.54 0.65
BERT-based 0.58 0.59 0.58
BioBERT-based 0.62 0.50 0.55

ChEMU_2020 teams Melaxtech Zhang and Zhang (2020) 0.96 0.95 0.95
NextMove/Minesoft Lowe and Mayfield (2020) 0.94 0.86 0.90
BOUN_REX Dönmez et al. (2020) 0.76 0.69 0.72

Baseline ChEMU organizers He et al. (2021) 0.24 0.89 0.38

Bold value results (P,R and F) of the best model from the competition.

TABLE 6 | (Continued) Error analysis for the event extraction (EE) system where trigger words are trained with ChemPatent embeddings.

Method Argument Trigger Entity tp fp fn fpm fnm

WORKUP OTHER_COMPOUND 928 790 822 73 68
REACTION_PRODUCT 0 0 4 0 0
REAGENT_CATALYST — — — — —

SOLVENT 0 0 2 0 0
STARTING_MATERIAL 0 0 1 0 0

ARGM REACTION_STEP TEMPERATURE 40 53 463 8 15
TIME 95 95 288 7 10
YIELD_OTHER 352 67 83 17 3
YIELD_PERCENT 338 65 46 17 3

WORKUP TEMPERATURE 22 59 88 4 19
TIME 1 5 42 0 13

System 2,984 1782 2,909 204 169
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TABLE 8 | Precision (P), recall (R), and F1 (F) results for our end-to-end system using our BiLSTM + CRF NER and CNN-based EE methods.

Method Argument Trigger Entity Train Exact Relax

P R F P R F

CNN-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.33 0.02 0.03 0.33 0.02 0.03
REACTION_PRODUCT 1,101 0.72 0.79 0.76 0.81 0.92 0.86
REAGENT_CATALYST 1,272 0.66 0.31 0.42 0.68 0.32 0.43
SOLVENT 1,134 0.64 0.48 0.54 0.65 0.49 0.56
STARTING_MATERIAL 1747 0.63 0.45 0.53 0.66 0.47 0.55

WORKUP OTHER_COMPOUND 4,097 0.67 0.61 0.64 0.72 0.69 0.70
REACTION_PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00

ARGM REACTION_STEP TEMPERATURE 813 0.43 0.15 0.22 0.62 0.21 0.31
TIME 839 0.68 0.73 0.70 0.76 0.82 0.79
YIELD_OTHER 1,043 0.81 0.92 0.86 0.86 0.96 0.91
YIELD_PERCENT 937 0.85 0.95 0.90 0.86 0.96 0.91

WORKUP TEMPERATURE 242 0.25 0.12 0.16 0.41 0.19 0.26
TIME 81 0.67 0.05 0.09 0.67 0.05 0.09

System 0.68 0.56 0.61 0.73 0.61 0.66

BERT-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.08 0.05 0.06 0.08 0.05 0.06
REACTION_PRODUCT 1,101 0.68 0.60 0.64 0.75 0.67 0.71
REAGENT_CATALYST 1,272 0.45 0.48 0.46 0.48 0.5 0.49
SOLVENT 1,134 0.45 0.18 0.25 0.46 0.18 0.26
STARTING_MATERIAL 1747 0.48 0.77 0.59 0.51 0.84 0.63

WORKUP OTHER_COMPOUND 4,097 0.49 0.80 0.61 0.53 0.92 0.67
REACTION_PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00

ARGM REACTION_STEP TEMPERATURE 813 0.28 0.15 0.20 0.50 0.27 0.35
TIME 839 0.43 0.38 0.40 0.49 0.44 0.46
YIELD_OTHER 1,043 0.80 0.73 0.76 0.81 0.74 0.78
YIELD_PERCENT 937 0.84 0.85 0.85 0.85 0.85 0.85

WORKUP TEMPERATURE 242 0.20 0.16 0.18 0.23 0.19 0.21
TIME 81 0.00 0.00 0.00 0.00 0.00 0.00

System 0.52 0.59 0.55 0.56 0.65 0.60

BioBERT-based ARG1 REACTION_STEP OTHER_COMPOUND 161 0.08 0.05 0.06 0.08 0.05 0.06
REACTION_PRODUCT 1,101 0.68 0.56 0.62 0.74 0.63 0.69
REAGENT_CATALYST 1,272 0.47 0.38 0.42 0.49 0.40 0.44
SOLVENT 1,134 0.49 0.40 0.44 0.50 0.41 0.45
STARTING_MATERIAL 1747 0.48 0.73 0.58 0.51 0.80 0.62

WORKUP OTHER_COMPOUND 4,097 0.48 0.62 0.54 0.52 0.71 0.60
REACTION_PRODUCT 11 0.00 0.00 0.00 0.00 0.00 0.00
SOLVENT 4 0.00 0.00 0.00 0.00 0.00 0.00
STARTING_MATERIAL 4 0.00 0.00 0.00 0.00 0.00 0.00

ARGM REACTION_STEP TEMPERATURE 813 0.28 0.08 0.12 0.50 0.14 0.22
TIME 839 0.45 0.44 0.44 0.51 0.50 0.50
YIELD_OTHER 1,043 0.80 0.87 0.83 0.81 0.89 0.85
YIELD_PERCENT 937 0.85 0.84 0.84 0.85 0.85 0.85

WORKUP TEMPERATURE 242 0.28 0.15 0.20 0.30 0.16 0.21
TIME 81 0.17 0.02 0.04 0.17 0.02 0.04

System 0.52 0.54 0.53 0.56 0.60 0.58

ChEMU_2020 teams Melaxtech Zhang and Zhang (2020) 0.92 0.91 0.92 0.93 0.93 0.93
NextMove/Minesoft Lowe and Mayfield (2020) 0.85 0.76 0.80 0.87 0.78 0.82
OntoChem He et al. (2021) 0.80 0.38 0.51 0.84 0.40 0.54

Baseline ChEMU organizers He et al. (2021) 0.21 0.73 0.33 0.21 0.75 0.33

System performance of three methods (top 3 bold lines). The last bold line shows the best performance out of the chemu teams.
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In our EE methods, we utilized the trigger words predicted from
our NER methods and the ground truth entities as the trigger words,
respectively. From the metrics “fpm” and “fnm” for a trigger
word–entity pair, we can see that when the number of “fpm” and
“fnm” of a trigger word increases, the performance of the trigger
word–entity pair decreases.We believe this is because the prediction of
the trigger word–entity pair depends on the trigger word predicted by
the biLSTM + CRF model described in Section 4.1.

5.2.2 Comparison With a Previous Work
Table 7 shows a comparison between the top results reported by the
CLEF ChEMU-2020 challenge using the CLEF-2020 dataset, the co-
occurrence baseline provided by the organizers of the challenge, and
the overall results of our EEmethods. The overall results show that all
three of our systems obtain a higher precision and F1 score than the
baseline but not recall. Since the baseline method is a rule-based
method based on the co-occurrence information, it obtains a high
recall but low precision. Here, all systems outperform the baseline in
terms of the F1 score, and Melaxtech (Zhang and Zhang, 2020)
obtained the overall best performance using a hybrid combination of
deep learning models and pattern-based rules for EE. As discussed in
Section 2, NextMove/Minesoft Lowe andMayfield (2020) proposed a
method utilizing parsing information with grammar rules, and
BOUN_REX (Dönmez et al., 2020) utilized a set of rules to
identify the events. All teams performed better than our methods,
except for the recall of Dönmez et al. (2020).

5.3 End-to-End Results
An end-to-end system addresses both NER and EE; therefore, we
combine our NER and EE methods to form a two-stage method. First,
we use our BiLSTM + CRF method with the ChEMU patent
embeddings, which produced the best results with NER to identify
the entity arguments and trigger words. Then we use our CNN-based
methodwith theChEMUpatent embeddings and the twoBERT-based
methods with the BERT contextualized embeddings to extract the
events. Fromboth theNER andEE results, we observed the precision of
the deep-learning based methods is higher than that of the rule-based
approach. Therefore,we decided to experiment onlywith deep-learning
methods for the end-to-end system. Table 8 shows the exact and relax
match precision (P), recall (R), and F1 (F) scores obtained for our three
methods and shows a comparison between the top results reported by
the ChEMU-2020 challenge participants using the CLEF-2020 dataset,
the co-occurrence baseline provided by the organizers of the challenge,
and the overall results of our end-to-end methods.

The average performance of the end-to-end system runs slightly
lower than the EE system due to the error propagation from our NER.
However, we can see the exact match performance of the methods is
consistent with the results of our EE-independent evaluation (Table 5).
Overall, the CNN-based method obtained a higher exact and relax
precision and F1 score than both the BERT-based methods; however,
the BERT_casedmethod obtained comparatively high recall.We believe
the CNN-based method obtained a higher precision than the BERT-
based method due to the word embeddings used and the input
representation format. ChEMU patent embeddings are trained over
patents specifically, and the domain-related information in the patent
embeddings provides a better representation of the terms than the
contextualized embeddings used in the BERT-based methods. Also,

BERT-based methods do not take the positional information of the
entities into account, whereas the CNN-based method does. Both
BERT-based methods obtain similar precision and F1 scores, but the
BERT_cased method obtains higher recall. The relaxed end-to-end
system results show a slight increase in recall and a slight decrease in
precision compared to the EE-independent evaluation. Relaxed
BiLSTM-CRF scores are comparatively similar to the ground truth
(precision—0.95, recall—0.99, and F-score—0.97) for the relaxed
evaluation. Hence, the borders of the relaxed NER predictions of the
BiLSTM + CRF can include the entity names within the context. We
believe these accounts for the slight increase in the recall and slight
decrease in precision from the EE evaluation. In addition, both tasks use
our BiLSTM + CRF model to identify the trigger words. Since the
performance of the trigger word prediction strongly influences the
performance of the triggerword–entity pair prediction,wewould expect
to see a similar performance for both tasks.

Comparing our results, previous works, and baseline shows that
both methods obtain a higher precision and F1 score than the
baseline, but not recall. The baseline (He et al., 2021) used a CRF-
based model for NER and a rule-based system for EE. All systems
outperform the baseline in terms of the F1 score under both relax and
exact matches. Melaxtech (Zhang and Zhang, 2020) outperformed
all other systems using a BiLSTM+CRF for NER and a BERT-based
method for EE similar to our methods. However, they performed
post-processed steps utilizing a set of pattern rules which increased
the performance. Thus, we can see that the recall in most of the
participants’ systems of the ChEMU_2020 challenge is substantially
lower than their precision. However, the recall of our methods is
higher than that of our precision.

6 CONCLUSION AND FUTURE WORK

We explored a BiLSTM + CRF and a BioBERT + CRF method to
extract entities and trigger words from the patents. Our results showed
that the BiLSTM+CRFmethod using word embeddings trained over
chemical patents obtained the highest results across all entities. We
believe utilizing domain-related, non-contextualized patent
embeddings improved the performance of utilizing the BERT-
contextualized embeddings for word representation, indicating that
additional fine-tuning of BERTmay be required. The BiLSTM +CRF
errors primarily occurred due to the models mislabeling entities
annotated as OTHER_COMPOUND for more specific labels, like
REACTION_PRODUCT or STARTING_MATERIAL. Additionally,
theway that ourmethod predicts entity labelsmay have contributed to
errorswith labeling entity spans fully. In the future, we plan to focus on
better distinguishing between different types of chemical compounds.
We explored rule-based, CNN-based, and two BERT-based methods
to extract events from chemical reactions, using our BiLSTM + CRF
method with the ChEMU patent embeddings to identify the trigger
words. Our results showed that the CNN-based method using word
embeddings trained over chemical patents obtained the highest results.
In addition, the CNN-based and BERT-based methods obtained
comparatively higher precision, especially with the
REACTION_STEP classes, as those classes have more instances to
train on. Meanwhile, as the rule-based method does not require
training, it performed better with WORKUP classes, obtaining a
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higher recall than the other two methods. In the future, we plan to
explore building a hybrid model with both CNN- and rule-based
methods to increase performance. Also, we plan to explore graph-
based CNNs to facilitate diverse input data representation to improve
performance. In addition, we treated the end-to-end system as two
independent stages where we perform first NER and then EE. In the
future, we plan to explore utilizing a joint learningmodel to learn both
entities better, and trigger words and events simultaneously.
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