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Background: Pseudo-continuous arterial spin labeling (pCASL) is widely

used to quantify cerebral blood flow (CBF) abnormalities in patients with

Alzheimer’s disease (AD). T1-mapping techniques assess microstructural

characteristics in various pathologic changes, but their application in

AD remains in the exploratory stage. We hypothesized that combining

quantitative CBF and T1 values would generate diagnostic results with higher

accuracy than using either method alone in discriminating AD patients from

cognitively normal control (NC) subjects.

Materials and methods: A total of 45 patients diagnosed with AD and

33 NC subjects were enrolled, and cognitive assessment was performed

for each participant according to the Chinese version of the Mini-Mental

State Examination (MMSE). T1-weighted magnetization-prepared 2 rapid

acquisition gradient echo (MP2RAGE) and pCASL sequence were scanned

on a 3T MR scanner. A brain morphometric analysis was integrated

into prototype sequence, providing tissue classification and morphometric

segmentation results. Quantitative CBF and T1 values of each brain region

were automatically generated inline after data acquisition. Independent

samples t-test was used to compare regional CBF and T1 values controlled by

false discovery rate correction (corrected p < 0.01). The model with combined

CBF and T1 values was compared with the individual index by performing

receiver operating characteristic curves analysis. The associations between

the MMSE score and CBF and T1 values of the brain were investigated using

partial correlations.
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Results: Cerebral blood flow of the right caudate nucleus (RCc) and left

hippocampus (LHc) was significantly lower in the AD group compared with

the NC group, while the T1 values of the right caudate nucleus (RCt) and

left hippocampus (LHt) increased in the AD group. Prediction accuracies of

73.1, 77.2, 75.9, and 81.3% were achieved for each of the above parameters,

respectively. In distinguishing patients from controls using the corresponding

optimized cut-off values, most combinations of parameters were elevated

(area under curve = 0.775–0.894). The highest area under curve value was

0.944, by combining RCc, LHc, RCt, and LHt.

Conclusion: In this preliminary study, the combined model based on pCASL

and T1-mapping improved the diagnostic performance of discriminating

AD and NC groups. T1-mapping may become a competitive technique for

quantitatively measuring pathologic changes in the brain.

KEYWORDS

Alzheimer’s disease, cerebral blood flow, T1-mapping, magnetic resonance imaging,
arterial spin labeling

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
with insidious onset and progressive development. Its main
clinical manifestations include memory loss (Jagust et al.,
2001), cognitive impairment, and behavioral abnormalities.
With the rapidly aging population, degenerative diseases of the
central nervous system have become the third most common
diseases affecting human survival after cardiovascular and
cerebrovascular diseases and cancer (Erkkinen et al., 2018).
The number of people with AD-based dementia worldwide is
expected to reach 113.4 million by 2050, and the increasing
incidence has created a challenging scenario for global public
health care systems (Knopman et al., 2021). Despite decades of
research, the exact pathogenesis of AD remains to be elucidated.
In addition to classical hypotheses, including β-amyloid peptide
aggregation leading to neuroplaque formation (Arnold et al.,
1991; Montine et al., 2012) and abnormal phosphorylation of
tau proteins causing neurogenic fiber tangles (Gallardo and
Holtzman, 2019; Dujardin et al., 2020) and early synaptic loss
(Rice et al., 2019), multiple risk factors for cerebrovascular
disease are closely associated with the development of AD
(Cortes-Canteli and Iadecola, 2020). Therefore, discovering
non-invasive, objective, quantitative, and reproducible imaging
methods that indirectly reflect the pathologic changes of AD
pathogenesis will clarify the pathologic process of AD and detect
disease progression.

Abbreviations: AD, Alzheimer’s disease; ASL, arterial spin labeling;
AUC, area under the curve; CBF, cerebral blood flow; FDR, false
discovery rate; LHc, CBF in the left hippocampus; LHt, T1 values in
the left hippocampus; MMSE, Mini-Mental State Examination; MP2RAGE,
magnetization-prepared 2 rapid acquisition gradient echo images; MRI,

Perfusion abnormality is an integral part of assessing the
pathophysiology of AD. Single-photon emission computed
tomography (SPECT) and positron emission tomography-
computed tomography (PETCT) indirectly reflect blood
perfusion through brain glucose metabolism. However, nuclear
medicine methods are invasive and involve intravenous
radioactive tracer administration, limiting clinical applications.
With the development of magnetic resonance imaging (MRI)-
based neuroradiology, arterial spin labeling (ASL) is increasingly
used as a non-invasive, inexpensive, easily accessible, and
reproducible alternative for perfusion measurement (Verfaillie
et al., 2015). ASL can quantitatively measure relative cerebral
blood flow (CBF) in different brain regions using magnetically
labeled water protons in arterial blood as a contrast agent
instead of injecting exogenous contrast agents (Chandra et al.,
2019). The accuracy of cerebral perfusion maps in AD patients
is similar to that of SPECT, whereas ASL is more sensitive to
areas with reduced cerebral perfusion (Kaneta et al., 2017).
Therefore, this technique may be an alternative to invasive
imaging and has the potential to serve as a biomarker in
the early diagnosis of preclinical dementia (Xekardaki et al.,
2015). Three kinds of ASL techniques are commonly used
according to the labeling strategy: continuous ASL, pulsed ASL,
and pseudo-continuous ASL (pCASL). Among them, pCASL
3D imaging can be acquired in multiple segments in a short
period of time, overcoming magnetic sensitivity and distortion
artifacts, and provides good image quality without the need for
high-level hardware support (Soman et al., 2021). In this study,
we used 3D pCASL to obtain CBF in different brain regions.

magnetic resonance imaging; pCASL, pseudo-continuous ASL; RCc, CBF
in the right caudate nucleus; RCt, T1 values in the right caudate nucleus.
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Quantitative MRI parameters can reveal not only
macroscopic changes in brain tissue but also microstructural
changes in the biochemical environment. Among them,
longitudinal relaxation time (T1) is the characteristic time
governing the relaxation of longitudinal magnetization
toward thermal equilibrium after excitation by an RF
pulse, and different biological tissues have specific T1
values due to differences in their cellular and interstitial
components. Previous studies have shown that an altered
T1 value is associated with increased β-amyloid load in
the brain of AD patients (House et al., 2008). Experiments
based on animal models of AD have also confirmed
such tissue alterations (Forster et al., 2013). Previous
study found that T1 in the hippocampus, thalamus
and right caudate nucleus increased significantly with
disease progression in AD patients bilaterally (Su et al.,
2016). Therefore, we introduced the T1 values to enhance
diagnostic confidence.

We hypothesized that combining CBF and T1 values would
yield diagnostic results with greater accuracy than using separate
methods in differentiating patients with AD from subjects
with normal cognition. To test this hypothesis, we aimed to
assess the efficacy of CBF, T1 values, and their combination in
discriminating between AD and normal control (NC) cohorts.

Materials and methods

Participants

From September 2020 to October 2021, we prospectively
recruited patients with AD and cognitively NC subjects from
Beijing Hospital. This study was approved by the Ethics
Committee of Beijing Hospital (batch no. 2018BJYYEC-147-
02 and 2021BJYYEC-123-01), and all participants signed an
informed consent form before the examination.

Criteria for inclusion in the AD group were as follows: (1)
The neurologists or psychiatrists diagnosed the patients
according to the National Institute of Neurological
and Communicative Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association(NINCDS-
ADRDA) criteria (McKhann et al., 1984). (2) MRI was
completed within 48 h after the clinical diagnosis of AD. (3)
Right handedness.

Normal control subjects were recruited from 20 community
social centers in four districts and were included in this study
based on the following criteria: (1) age and gender matching that
of the AD group; (2) Chinese version of the MMSE score ≥ 27;
and (3) Right handedness.

Exclusion criteria for the AD were as follows: (1) diagnosis
of central nervous system tumor (n = 1), stroke (n = 2), and
hydrocephalus (n = 1) on routine head MRI examination;
(2) dementia of vascular origin with a score of ≥4 on

the Harkinski Ischemic Index Scale (n = 2); (3) thyroid
dysfunction, depression, drug addiction, substance abuse, or
other diseases that cause abnormal cognitive function; (4) other
reasons that prevented head MRI examination or cooperation
with completion of the neuropsychologic scale, Claustrophobia
diseases (n = 1); and (5) motion and metal artifacts (n = 3).
Finally, 45 patients with AD and 33 NC individuals were
eligible for this study.

MRI protocol

Clinical information collection and neuropsychologic scale
scoring were completed at the Department of Neurology, Beijing
Hospital. MRI examinations were performed within 60 min of
clinical information collection.

All MR examinations were performed on a 3T MR
system (MAGNETOM Prisma, Siemens Healthcare,
Erlangen, Germany) with a 64-channel head coil. pCASL
was performed using a prototype 3D gradient and spin-
echo (GRASE) sequence with the following parameters:
TR/TE = 4350/20.9 ms, FOV = 220 mm × 220 mm,
matrix = 64 × 64 (interpolated to 128 × 128), bolus
duration = 1,800 ms, 16 label timesTI = 800–3800 ms
(1 = 200 ms), and acquisition time = 4 min 55 s
including a M0 calibration volume. Regional CBF maps
were automatically generated inline after data acquisition
(Buxton et al., 1998; Alsop et al., 2015). For quantification,
the following parameters were used: blood/tissue water
partition coefficient lambda = 0.9 mL/g, labeling efficiency
alpha = 60% (four background suppression pulses accounted
for), T1_blood = 1650 ms and T1_tissue = 1330 ms. T1
mapping was obtained using a prototype T1 magnetization
prepared 2 rapid acquisition gradient echoes (MP2RAGE)
sequence with the following parameters: TR/TE = 5000/3.59 ms,
TI = 700/2500 ms, FA = 4◦/5◦, FOV = 230 mm × 216 mm,
matrix = 320 × 240, and acquisition time = 3 min. MP2RAGE
sequence produced simultaneously three contrast images
(INV1, INV2, UNI) and a quantitative T1-mapping (Marques
et al., 2010).

TABLE 1 Demographic and clinical data.

AD group NC group p

Number 45 33 –

Age (years) 73.51 ± 7.51 70.51 ± 7.88 0.092

Gender (female %) 64.44 63.64 0.941

BMI 22.59 ± 2.70 23.49 ± 2.57 0.142

Educational years 10.82 ± 3.41 10.70 ± 3.50 0.874

MMSE 18.38 ± 3.07 27.12 ± 1.34 <0.001

AD, Alzheimer’s disease; BMI, body mass index; MMSE, Chinese versions Mini-mental
State Examination; NC, normal control.
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FIGURE 1

Differential cerebral blood flow between AD and NC individuals in 24 brain regions. AD, Alzheimer’s disease; CBF, cerebral blood flow; NC,
normal controls; *corrected p < 0.05; **corrected p < 0.01. (A,B) Boxplots of the CBF in different brain regions.

Image processing

A brain morphometry analysis was integrated into the
prototype MP2RAGE sequence, providing tissue classification
and morphometric segmentation results (Schmitter et al., 2014;
Boto et al., 2017). In short, MP2RAGE-UNI image was used to
segment the brain into 48 areas, among them. After registering

the perfusion-weighted images to the MP2RAGE-UNI images,
the obtained 48 brain area masks were used to extract CBF and
T1 values for regional comparison between the AD and NC
groups. Previous studies have shown that decreased CBF and
elevated T1 values in patients with AD occur in specific brain
regions (Wolk and Detre, 2012; Wang et al., 2013; Chandra et al.,
2019). Therefore, we selected the bilateral thalamus, caudate
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FIGURE 2

Axial view of cerebral blood flow (CBF). (A) Image of a typical AD patient (female; 67 years old). (B) Image of a NC subject (male; 73 years old).
(C) Image of a typical AD patient (female; 64 years old). (D) Image of a NC subject (female; 64 years old). It could be intuitively shown that (A)
views had decreased CBF in right caudate nucleus (RCc) compared to (B) views; (C) views had decreased CBF in left hippocampus (LHc)
compared to (D) views.

nucleus, putamen, pallidum, hippocampus, frontal gray matter,
parietal gray matter, occipital gray matter, temporal gray matter,
cingulate gray matter, corpus callosum white matter, and insula
as regions of interest to reduce the overfitting problem caused
by irrelevant brain regions.

Statistical analysis

All data were analyzed using SPSS (version 24.0),1 MedCalc
19.0, and MATLAB (MathWorks, Natick, MA, United States).
The Kolmogorov–Smirnov and Levene tests were used to
assess the normality and variance of CBF and T1 values.
Data conforming to a normal distribution are expressed as
x ± s, and non-conformities are denoted by M (Q1, Q3).
Normally distributed data with homogeneous variances were
compared between AD and NC groups using independent
samples t-tests, and those with non-homogeneous variances

1 http://www.spss.com

used corrected t-tests. The non-parametric Mann–Whitney U
test was used for those that were not normally distributed.
The gender difference between the two groups was tested by
chi-square. Logistic regression analysis was used to identify
brain regions associated with AD diagnosis and establish a
combined model. The diagnostic efficacy of each brain region
and the combined model for AD were assessed using receiver
operating characteristic (ROC) curves, and differences among
non-homogeneous variances the areas under the curve (AUCs)
were compared using the DeLong method. The correlation
between MMSE scores was analyzed using partial correlation
analysis, and the level of significance was set at P < 0.05.
Multiple comparisons were controlled using false discovery rate
(FDR) correction (corrected p < 0.01).

Results

Demographics of the 78 participants are shown in Table 1.
The differential CBF in different brain regions between AD and
NC individuals is shown in Figure 1. There were five brain
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FIGURE 3

Receiver operating characteristic curves based on CBF of RCc,
CBF of LHc, T1 value of RCt, and T1 value of LHt, respectively.
CBF, cerebral blood flow; LHc, left hippocampus; LHt, left
hippocampus; ROC, receiver operating characteristic; RCc, right
caudate nucleus; RCt, right caudate nucleus.

FIGURE 4

Receiver operating characteristic curves combining two
parameters. CBF, cerebral blood flow; LHc_LHt, CBF of left
hippocampus and T1 value of left hippocampus; RCc_LHc, CBF
of right caudate nucleus and CBF of left hippocampus;
RCc_RCt, CBF of right caudate nucleus and and T1 value of right
caudate nucleus; RCt_LHt, T1 value of right caudate nucleus
and T1 value of left hippocampus; ROC, receiver operating
characteristic.

regions with significantly lower CBF values in patients with AD
compared with the NC subjects, including the right caudate
nucleus, left hippocampus, right parietal gray matter, right

FIGURE 5

Receiver operating characteristic curves combining three or
more parameters. CBF, cerebral blood flow; RCc_LHc_LHt, CBF
of right caudate nucleus and, CBF of left hippocampus, and T1
value of left hippocampus; RCc_LHc_RCt, CBF of right caudate
nucleus and, CBF of left hippocampus, and T1 value of right
caudate nucleus; RCc_LHc_RCt_LHt, CBF of right caudate
nucleus and, CBF of left hippocampus, T1 value of right caudate
nucleus, and T1 value of left hippocampus; ROC, receiver
operating characteristic.

corpus callosum, and right insula. Comparing the T1 values of
the above five brain regions using the same method, the right
caudate nucleus, left hippocampus, right parietal gray matter,
and right insula were also significantly different (corrected
p < 0.01). The T1 value of the right corpus callosum was
higher in the NC group, but the difference was not statistically
significant (corrected p = 0.375).

According to logistic regression analysis, the right caudate
nucleus (odds ratio [OR] 0.959, p < 0.05) and left hippocampus
(OR 0.960, p < 0.05) were the two relevant brain regions for
perfusion abnormalities in AD, CBF of the right caudate nucleus
(RCc) and left hippocampus (LHc) were show in Figure 2. Then,
a multiple combined model was established corresponding
to the T1 values.

The highest AUC value was 0.894 (sensitivity = 0.889,
specificity = 0.818), obtained by combining CBF in the right
caudate nucleus (RCc), CBF in the left hippocampus (LHc),
T1 value in the right caudate nucleus (RCt), and T1 value in
the left hippocampus (LHt) (Figures 3–5 and Table 2). On
DeLong inspection, there was no significant difference in the
diagnostic efficacy between the four single-parameter diagnostic
models. The combined model had different degrees of increased
diagnostic efficacy compared with the single-parameter model.
RCc compared with RCc_LHc_RCt_LHt (p = 0.001); LHc
compared with RCc_LHc_RCt_LHt (p = 0.006); RCt compared
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TABLE 2 Receiver operating characteristic (ROC) curves of various parameter combinations.

Cut-off Sensitivity Specificity Youden index AUC

Mean 95% CI

RCc 59.902 0.844 0.636 0.480 0.731 0.609–0.854

LHc 76.808 0.756 0.697 0.453 0.772 0.666–0.879

RCt 1191.832 0.756 0.758 0.513 0.759 0.641–0.0877

LHt 1320.708 0.800 0.727 0.527 0.813 0.718–0.908

RCc_LHc 0.457(RCc = 63.394, LHc = 77.987) 0.933 0.606 0.539 0.775 0.664–0.886

RCt_LHt 0.557(RCt = 1309.103, LHt = 1301.550) 0.822 0.697 0.519 0.820 0.729–0.910

RCc_RCt 0.556(RCc = 60.295, RCt = 1191.832) 0.844 0.849 0.693 0.865 0.772–0.957

LHc_LHt 0.491(LHc = 85.468, LHt = 1311.493) 0.867 0.788 0.655 0.866 0.784–0.948

RCc_LHc_RCt 0.424(RCc = 65.090, LHc = 83.520, RCt = 1191.682) 0.933 0.812 0.752 0.871 0.770–0.962

RCc_LHc_LHt 0.329(RCc = 65.090, LHc = 83.520, LHt = 1281.999) 0.956 0.758 0.713 0.887 0.809–0.965

RCc_LHc_RCt_LHt 0.452(RCc = 47.451; LHc = 83.771; RCt = 979.333; LHt = 1260.170) 0.889 0.818 0.707 0.894 0.819–0.968

AUC, area under the curve; CBF, cerebral blood flow; LHc, CBF of left hippocampus; LHt, T1 value of left hippocampus; RCC, CBF of right caudate nucleus; RCt, T1 value of right
caudate nucleus.

with RCc_LHc_RCt_LHt (p = 0.023); and LHt compared with
RCc_LHc_RCt_LHt (p = 0.066).

In the entire cohort of the AD and NC groups, excluding
the interference of sex, age, years of education, and body
mass index (BMI), RCc, LHc, RCt, and LHt were statistically
significantly correlated with MMSE scores through partial
correlation analysis, and the correlation cofficient of LHc is
higher (r = 0.572, p < 0.01) (Table 3).

Discussion

This study investigated the diagnostic value of multi-
modality quantitative MRI parameters. To the best of our
knowledge, this is the first demonstration of the diagnostic
power of CBF combined with T1-mapping. Group comparison
found lower CBF values and higher T1 values in several brain
areas in patients with AD compared with the NC group. Further
ROC analysis demonstrated that a combined model based
on both quantitative parameters achieved better diagnostic
performance than either single parameter.

The present cohort included 45 AD and 33 NC subjects
and compared CBF in 24 brain regions. Apart from the right
thalamus and right pallidum, the mean perfusion values were
reduced in the remaining 22 brain regions of patients with AD.

TABLE 3 Clinically observed severity measurements.

RCc LHc RCt LHt

MMSE r 0.469 0.578 −0.236 −0.456

p <0.001 <0.001 0.043 <0.001

LHc, CBF in left hippocampus; LHt, T1 value in left hippocampus; MMSE, Chinese
versions Mini-mental State Examination; RCc, CBF in right caudate nucleus; RCt, T1
value in right caudate nucleus.

According to previous AD neuroimaging studies, the pattern of
reduced CBF in patients with AD is primarily concentrated in
the hippocampus, basal nuclei clusters, and cognitive correlation
cortical gray matter. Our study identified five brain regions
(right caudate nucleus, left hippocampus, right parietal gray
matter, right corpus callosum, and right insula) with significant
differences when corrected by multiple comparisons (FDR
correction, p < 0.01), consistent with findings from previous
studies (Wolk and Detre, 2012; Wang et al., 2013; Wang, 2016;
Camargo et al., 2021; Duan et al., 2021). These regions are
closely associated with the development of AD. The caudate
nucleus is a gray matter mass embedded in the medulla,
buried deep in the base of the brain, responsible for the
fine-tuning and coordination of movements (Valera-Bermejo
et al., 2021). The hippocampus is a memory and cognitive
center and is related to the occurrence and progression of
AD (Dautricourt et al., 2021). The association between the
corpus callosum and insula in AD is unclear, and some theories
remain controversial and contradictory (Kamal et al., 2021;
Giacomucci et al., 2022). However, the mean CBF values in
the right thalamus and pallidum were elevated in the AD
group, but these differences were not significant (p > 0.05).
This result is similar to the previous finding of increased
CBF in the basal nucleus cluster in the pre-AD period (Hays
et al., 2018). Although the brain regions found in the Hays
et al. study are not consistent with previous studies, the
authors suggest that the reason for this change is suggestive
of neurodegeneration leading to CBF dysregulation and the
existence of a neural compensatory mechanism for cognitive
decline in some brain regions.

T1-mapping has been used to study many central nervous
system disorders such as epilepsy (Massire et al., 2021), multiple
sclerosis (Massire et al., 2021; Thaler et al., 2021) and depression
(Li et al., 2019). However, the findings of AD research are
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controversial (Tang et al., 2018). Su et al. found that T1 values
in patients with AD at baseline were reduced in temporal and
parietal lobes, which is contrary to our results. Interestingly, in
the original study, as the disease worsened, T1 values increased
significantly in the right caudate, bilateral hippocampus, and
other regions instead of decreasing, indirectly complementing
our findings (Su et al., 2016). An earlier classical low-magnetic
field MRI-based study showed an overall trend in T1 values
that was consistent with our results, but they did not precisely
stage the brain (Besson et al., 1989). The application of high
field strength in our study increased the image signal-to-noise
ratio, making the image segmentation more detailed and study
results more reliable. Pelkmans et al. reported that myelin
determines the conduction of neuronal signals along axonal
connections in brain networks, and loss of myelin integrity
might result in cognitive decline in AD. Changes in T1 values
can reflect myelin content, and myelin is generally associated
with increased T1 values (Pelkmans et al., 2019). Future
research should further investigate the predicted value of T1-
mapping.

In our study, T1 values in the right caudate nucleus and
left hippocampus demonstrated good diagnostic performance
(AUC = 0.759 and 0.813, respectively). We also combined
CBF and T1 values, which improved the diagnostic efficacy
compared with that of each single parameter. The highest
achievable AUC of 0.894 (sensitivity = 0.889, specificity = 0.818)
was obtained using a combination of four parameters. The
combination of CBF and T1 values also improved the
diagnostic rate (AUC = 0.775–0.865). Our multiparametric MRI
measurements improved the results for AD discrimination from
NC. Furthermore, several previous studies determined cutoff
values in a relatively subjective manner (e.g., less than twice the
standard deviation of the control group mean) (Raji et al., 2010).
In this study, we used the Jorden index, which together reflects
sensitivity and specificity, as a scientific measure to derive the
optimal cutoff value for our local cohort.

Like previous studies (Duan et al., 2021; Giacomucci
et al., 2022), in our cohort, the severity of neuropsychologic
impairment was strongly associated with brain scan
measurements. A previous study confirmed that gender,
age, education level, and BMI affected cognitive decline (Nebel
et al., 2018); therefore, we performed a partial correlation
analysis to exclude multiple confounding factors. RCc, LHc,
and LHt were found to be powerful predictors of the clinically
observed severity measurements.

There are several limitations of this study. First and most
importantly, multiple stages of progressive diseases such as
subjective cognitive decline and mild cognitive impairment,
were not included. Second, we only performed cross-sectional
diagnosis in all patients; future longitudinal analysis is needed.
Long-term clinical follow-up may improve the diagnostic
accuracy for AD. Third, the superiority of temporal lobe
diagnosis was not demonstrated in our cohort (Alexopoulos

et al., 2012). The temporal lobe, especially the medial temporal
lobe, is associated with memory consolidation. This discrepancy
may be due to the small amount of data we had and possibly
to the fact that the pCASL scanning technique still needs
to be refined. Future large-scale clinical studies to validate
the diagnostic accuracy and robustness of the CBF and T1
values are imperative.

Conclusion

In conclusion, combining the pCASL and T1-mapping
methods is superior to using a single measure in discriminating
AD and NC cohorts. T1-mapping is a competitive technique
that provides quantitative measurements of pathologic changes
in the brain. A “one-stop-shop” study of multimodal parameters
in the future is essential for diagnosing and monitoring AD.
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