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Abstract

The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an
important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the
expression of the estrogen and progesterone hormone receptors (ER and PR), and that of the ERBB2 in breast tumor
samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers
and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be
accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of
these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been
made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is
low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using
multiple probe sets representing these three genes and others with related expression. We used 8 independent datasets of
human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and
ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified
hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA
based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status
of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of
breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery
of new biomarkers and therapeutic targets for particular subtypes of breast cancer.
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Introduction

The accurate assessment of the expression of the estrogen and

progesterone hormone receptors (ER and PR) and that of ERBB2

is essential to select the appropriate therapy for breast cancer

patients [1,2,3,4,5]. Knowledge of the expression of the latter

biomarkers is also advantageous to develop new therapies that

may target specific subtypes of breast cancer [6,7]. ER and PR

status is routinely defined by immunohistochemistry (IHC),

whereas that of ERBB2 is determined by either IHC or by

fluorescence in-situ hybridization (FISH) [8,9]. However, despite

standardization of the methods used to define the status of the

hormone receptors and ERBB2 in clinical laboratories, there is a

level of subjectivity in these measurements, leading to variability

among results obtained by different pathologists and laboratories

[10,11,12,13]. It has been suggested that more accurate and less

subjective methods would improve the classification of human

breast tumors [14].

Global gene expression profiling is widely used to examine the

expression of thousands of genes in biological samples [15].

Indeed, this technology has been used extensively in numerous

breast cancer studies to: examine the effects of various therapies on

gene transcripts [16,17]; identify differences in gene expression

among different tumor tissues [18,19,20,21]; molecularly classify

tumors [22,23,24]; and to predict prognosis [25,26,27] and

treatment outcomes [28,29,30]. Attempts to use gene expression

profiles to identify the ER, PR and ERBB2 status of human breast

tumors have also been reported [14,31,32]. A single probe set

representative of each gene was informative to establish ER, PR

and ERBB2 expression in breast tumor samples. However, we

wondered whether the specificity and/or sensitivity of this method

could be improved by using probe sets representative of multiple

genes (gene signatures) whose expression correlated with that of

the hormone receptors and ERBB2.

Many peer-reviewed journals require authors to deposit

microarray data in public depositories, such as the Gene

Expression Omnibus [33] or ArrayExpress [34], thereby

making them publicly available for various applications [35].

However, clinical information such as hormone receptor or

ERBB2 status of breast tumor samples is not invariably

provided with their global gene expression profiles. Knowledge

of hormone receptor and ERBB2 status as well as the global

gene expression profiles of breast tumor samples may permit

more accurate prognostic tests to be developed and would

strengthen the value of the many breast tumor gene expression

profiles in public depositories.
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Here we used 8 independent datasets containing human breast

tumor samples profiled on Affymetrix GeneChips to define gene

expression signatures predictive of their ER and PR status as well

as that of ERBB2. These gene signatures reliably predicted the

status of the hormone receptors and that of ERBB2 as assessed by

protein (IHC) or DNA (FISH) based tests. Because the largest

predictive signature defined in our study comprises only 51 genes,

a qRT-PCR based format may be developed that could provide an

objective and relatively high-throughput alternative for the IHC-

based definitions of hormone receptor and ERBB2 status in

patient samples.

Results

ER status
Figure 1 shows the specificity and sensitivity values for sets of

genes predictive of ER status selected by using Spearman rank

correlation cutoffs between 0.42 and 0.48. To find the most

predictive set of genes, we selected those that yielded the highest

combination (here the sum) of specificity and sensitivity values.

The identified gene signature consisted of 35 probe sets,

representing 24 annotated genes (Table 1). Of these 24 genes,

one is the ESR1 itself, whereas 11 are related to the expression of

the ER: the latter include genes (GATA3, GFRA1, IL6ST, and

STC2) whose expression correlates positively with that of the ER

[36,37,38]; genes (CA12, CYP2B6, GREB1, LIV1, TFF1, and

KDM4B) whose expression is positively regulated by the ER

[37,39,40,41,42,43]; and a gene located in close proximity to

ESR1 (C6orf97) [44], and whose expression is therefore positively

correlated with that of the ER. Importantly, several of these genes

are represented by multiple probe sets indicating that they robustly

detect their cognate transcripts in breast tumor RNA samples

(Table 1). Twelve remaining genes (ADCY9, ANXA9, AMFR,

CELSR1, CYP2B7P1, FAM176B, GAMT, KCNK15, SCCPDH,

SCUBE2, SSH3, and TBC1D9) have not been previously associated

with ER status. Interestingly, SCUBE2 is reported to positively

correlate with PR status [45]. Because our ER signature comprises

24 genes and one probe set for an unknown gene, we refer to the

signature as the ‘‘24-gene ER signature’’. The 24-gene ER

signature separated ER-positive tumors from ER-negative tumors

with an accuracy of 88.66%, sensitivity of 91.18%, specificity of

88.26%, PPV (Positive Predictive Value) of 98.43% and NPV

(Negative Predictive Value) of 55.36% in the 247 training samples

(Table 2; p,2.2?10216, Fisher’s exact test). To determine whether

the predictive performance of a single probe set is sufficient to

determine ER status of a sample we used ‘‘205225_at’’, the probe

set with the highest Spearman rank correlation in the 24-gene ER

signature (Spearman rank correlation is 0.50; see Table S1), which

we termed ‘‘best probe set’’ for the ER predictive signature. It is of

interest, that the ‘‘best probe set’’ was the same probe set

conventionally used to determine ER status (205225_at; see Table

S1). The prediction accuracy of the ‘‘best probe set’’ was 89.07%,

sensitivity 89.67%, specificity 85.29%, PPV 97.45% and NPV

56.86% (Table 2; p,2.2?10216, Fisher’s exact test). Both the

sensitivity and specificity of prediction by using the ‘‘best probe

set’’ were lower than were the sensitivity and the specificity of the

prediction using the 24-gene ER signature, indicating that the

predictive performance of the single ‘‘best probe set’’ is not as high

as the performance of our signature.

We subsequently tested the predictive performance of the 24-

gene signature in 5 independent validation datasets (Table 2).

The first validation set (GSE2034) comprised 286 samples; the

Figure 1. Selecting gene signature predictive of ER status based on sensitivity and specificity. The cutoff is based on Spearman rank
correlation coefficients. The number of probe sets in each signature is marked by the number under the lowest curve. Black filled circles – specificity;
gray circles – sensitivity; black line – sum of specificity and sensitivity. The optimal number of probe sets was 35, with Spearman rank correlation
coefficient cutoff set at 0.43. Gray line and ‘‘*’’ indicate the sum of specificity and sensitivity of the prediction obtained by using a single ‘‘best probe
set’’ (‘‘205225_at’’).
doi:10.1371/journal.pone.0026023.g001
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prediction accuracy was 87.76%, sensitivity 87.56%, specificity

88.31%, PPV 95.31% and NPV 72.34% (Table 2; p,2.2?10216,

Fisher’s exact test). The second validation set (GSE7390)

comprised 198 samples; the prediction accuracy was 88.89%,

sensitivity 92.54%, specificity 81.25%, PPV 91.18% and NPV

83.87% (Table 2; p,2.2?10216, Fisher’s exact test). The third

validation set (GSE2603) is composed of 97 samples; the

prediction accuracy was 97.94%, sensitivity 96.43%, specificity

100%, PPV 100% and NPV 95.35% (Table 2; p,2.2?10216,

Fisher’s exact test). The fourth validation set (GSE20271)

contained 144 samples; the prediction accuracy was 79.86%,

sensitivity 79.22%, specificity 80.60%, PPV 82.43% and NPV

77.14% (Table 2; p = 4.227?10213, Fisher’s exact test). The final

validation dataset (GSE20194) comprised 278 samples; the

prediction accuracy was 89.93%, sensitivity 89.63%, specificity

90.35%, PPV 93.04% and NPV 85.83% (Table 2; p,2.2?10216,

Fisher’s exact test).

Figure 2 and Table S4 depict the sensitivity and specificity levels

obtained for the training and the validation sets using the 24-gene

ER signature, compared to those derived by using the conven-

tional method of employing a single probe set (205225_at). The

sensitivity levels obtained by using a single probe set were relatively

Table 1. Gene signature predictive of ER status.

Gene Symbol Correlation Coefficient Gene Title

ADCY9 0.44 adenylatecyclase 9

AMFR 0.44 autocrine motility factor receptor

ANXA9 0.43 annexin A9

0.45

C6orf97 0.45 chromosome 6 open reading frame 97

CA12 0.48 carbonic anhydrase XII

0.48

0.47

0.47

0.47

CELSR1 0.43 cadherin, EGF LAG seven-pass G-type receptor 1
(flamingo homolog, Drosophila)

CYP2B6 /// 0.45 cytochrome P450, family 2, subfamily B, polypeptides 6, 7

CYP2B7P1

ESR1 0.50 estrogen receptor 1

FAM176B 0.46 family with sequence similarity 176, member B

0.43

GAMT 0.45 guanidinoacetate N-methyltransferase

GATA3 0.45 GATA binding protein 3

0.48

0.47

GFRA1 0.45 GDNF family receptor alpha 1

GREB1 0.46 growth regulation by estrogen in breast cancer 1

IL6ST 0.44 interleukin 6 signal transducer (gp130, oncostatin M receptor)

0.44

KCNK15 0.44 potassium channel, subfamily K, member 15

KDM4B 0.45 lysine (K)-specific demethylase 4B

0.46

0.43

SCCPDH 0.43 saccharopine dehydrogenase (putative)

SCUBE2 0.46 signal peptide, CUB domain, EGF-like 2

LIV1 (SLC39A6) 0.46 solute carrier family 39 (zinc transporter), member 6

SSH3 0.44 slingshot homolog 3 (Drosophila)

STC2 0.44 stanniocalcin 2

TBC1D9 0.43 TBC1 domain family, member 9 (with GRAM domain)

TFF1 0.44 trefoil factor 1

Unknown 0.45 Not annotated

Each row in the coefficient column represents a probe set. Genes, whose levels of expression were previously reported to correlate with ER status are marked in bold.
The rows were sorted alphabetically according to the Gene Symbol. For detailed information on the probe sets see Table S1.
doi:10.1371/journal.pone.0026023.t001
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high, ranging between 85.71% (GSE20271) and 98.21%

(GSE2603); however, the specificity levels were significantly lower

than these obtained using the 24-gene ER signature, ranging

between 68.29% (GSE2603) and 85.96% (GSE20194; p,0.05,

t-test). Hence the 24-gene ER signature significantly improved the

specificity levels of ER status prediction (p,0.05, t-test) to range

between 80.6% and 100% without adversely affecting sensitivity

levels.

ERBB2 status
Figure 3 shows the specificity and sensitivity values for gene sets

predictive of ERBB2 status selected by using Spearman rank

correlation cutoffs between 0.34 and 0.39. For the first training set

(GSE2603; Figure 3, left panel), the sum of specificity and sensitivity

was constant for the examined range of Spearman rank correlation

cutoffs. Therefore, we used an additional set of samples for

training (GSE20271; Figure 3, right panel), which led to the highest

combination of specificity and sensitivity values at a cutoff of 0.35,

yielding a gene signature consisting of 14 annotated genes

(represented by 18 probe sets) and 1 probe set representing an

unknown sequence ( Table 3). The ERBB2 gene and 5 other genes

(CRK7, GRB7, PERLD1, PPARBP, and STARD3) are part of the

17q12-q21 amplicon and are reported to be co-amplified with the

ERBB2 locus [46]. Several of these genes are represented by a

number of probe sets indicating that they readily detect their

cognate transcripts in breast tumor RNA samples (Table 3). The

remaining 8 genes comprising the candidate ERBB2 gene

signature have not previously been reported to correlate with

ERBB2 expression. Because our signature comprises 14 genes and

one probe set representing an unannotated gene we henceforth

Table 2. Correlation of microarray–based expression profiling data with routinely established ER status.

Total
ER status defined
by predictor Clinical ER status

Negative Positive p-value*

Training GSE3494 247 Negative 31 25 ,2.2?10–16

Positive 3 188

GSE3494** 247 Negative 29 22 ,2.2?10–16

Positive 5 191

Validation GSE2034 286 Negative 68 26 ,2.2?10–16

Positive 9 183

GSE7390 198 Negative 52 10 ,2.2?10–16

Positive 12 124

GSE2603 97 Negative 41 2 ,2.2?10–16

Positive 0 54

GSE20271 144 Negative 54 16 4.227?10–13

Positive 13 61

GSE20194 278 Negative 103 17 ,2.2?10–16

Positive 11 147

*Fisher’s exact test.
**The analysis was performed by using the ‘‘best probe set’’ (‘‘205225_at’’). The rest of analyses were performed by using the 24-gene ER signature.
doi:10.1371/journal.pone.0026023.t002

Figure 2. ER status determination: sensitivity (‘+’) and specificity (‘-’) obtained with two different microarray-based methods. The
improved feature is highlighted by gray background. * Training set.
doi:10.1371/journal.pone.0026023.g002
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refer to the ERBB2 predictor as the ‘‘14-gene ERBB2 signature’’.

The 14-gene ERBB2 signature separated ERBB2-positive tumors

from ERBB2-negative tumors with an accuracy of 93.18%,

sensitivity of 77.78%, specificity of 94.94%, PPV of 63.64% and

NPV of 97.40% in the 88 training samples of the first training

set (GSE2603; Table 4; p = 1.712?1026, Fisher’s exact test).

The second training set (GSE20271) comprised 144 breast

tumor profiles: the prediction accuracy was 88.89%, sensitivity

59.09%, specificity 94.26%, PPV 65.0%% and NPV 92.74%

(Table 4; p = 2.287?1028, Fisher’s exact test). To determine

whether the predictive performance of a single probe set is sufficient

to determine ERBB2 status, we used the ‘‘203497_at’’, the probe set

with the highest Spearman rank correlation in the 14-gene ERBB2

signature (Spearman rank correlation is 0.45; see Table S2), which

we termed the ‘‘best probe set’’ for the ERBB2 predictive signature.

For the first training set (GSE2603) the predictive accuracy of the

‘‘best probe set’’ was 96.59%, sensitivity 87.5%, specificity 97.5%,

PPV 77.78% and NPV 98.73% (Table 4; p,4.4?1028 , Fisher’s

exact test). For the second training set (GSE20271) the predictive

accuracy of the ‘‘best probe set’’ was 86.11%, sensitivity 40.91%,

specificity 94.26%, PPV 56.25% and NPV 89.84% (Table 4;

p,5.2?1025, Fisher’s exact test). Although predictions by using

‘‘best probe set’’ in both training sets provided similar results, the

sensitivity of prediction by using the ‘‘best probe set’’ in the second

training set (GSE20271) was very low, reaching 40.91%. Therefore,

we suggest that the predictive performance of the 14-gene ERBB2

signature is better than that of the single ‘‘best probe set’’.

We tested the predictive performance of the 14-gene signature

in 2 validation sets (Table 4). The first validation set (GSE20194) is

composed of 278 breast tumor profiles; the prediction accuracy

was 94.60%, sensitivity 76.27%, specificity 99.54%, PPV 97.83%

and NPV 93.97% (Table 4; p,2.2?10216, Fisher’s exact test). For

the second validation set (GSE16446; 93 breast tumor profiles), the

prediction accuracy was 93.55%, sensitivity 83.07%, specificity

98.39%, PPV 96.30% and NPV 92.42% (Table 4; p,2.2?10216,

Fisher’s exact test). Importantly, the second validation set was

obtained from transcript profiles performed on a different type of

GeneChip – HG-U133 Plus 2.0. We performed this last validation

on data collected from HG-U133 Plus 2.0 GeneChips to

determine whether the candidate 14-gene ERBB2 signature was

capable of separating ERBB2-positive tumors from their ERBB2-

negative counterparts independent of the nature of the Affymetrix

arrays to which the transcripts were hybridized.

Figure 4 and Table S4 depict sensitivity and specificity levels

obtained for the training and the validation sets using the 14-gene

ERBB2 signature or using the method employing a single probe

set (216836_s_at). The specificity levels obtained by using one

probe set were relatively high, ranging between 94.94%

(GSE2603) and 99.54% (GSE20194); however, the sensitivity

levels were significantly lower, ranging between 54.55%

(GSE20271) and 77.78% (GSE2603). Whereas the specificity

levels were approximately within the same range using the 14-

gene ERBB2 signature, the sensitivity levels changed to range

between 59.09% (GSE20271) and 77.78% (GSE2603). Impor-

Figure 3. Selecting set of genes predictive of ERBB2 status based on sensitivity and specificity. Cutoff is based on Spearman rank
correlation coefficients. The number of probe sets in each signature is marked by the number under the lowest curve. Black filled circles – specificity;
gray circles – sensitivity; black line – sum of specificity and sensitivity. The optimal number of probe sets was 19, with Spearman correlation
coefficient cutoff set at 0.35. Gray line and ‘‘*’’ indicate the sum of specificity and sensitivity of the prediction obtained by using a single ‘‘best probe
set’’ (‘‘203497_at’’).
doi:10.1371/journal.pone.0026023.g003
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tantly, the sensitivity (83.07%) and specificity (98.39%) obtained

with HG-133 Plus 2 array (GSE16446) lie within the 95%

confidence interval for both sensitivity (CI95%: 45.26–96.84) and

specificity (CI95%: 89.11 – 103.4) obtained for HG-U133A

arrays, for which our 14-gene ERBB2 signature was originally

developed.

Table 4. Correlation of microarray–based expression profiling data with routinely established ERBB2 status.

Total
ERBB2 status defined
by predictor Clinical ERBB2 status

Negative Positive p-value*

Training GSE2603 88 Negative 75 2 1.712?1026

Positive 4 7

GSE2603** 88 Negative 78 1 ,4.4?1028

Positive 2 7

GSE20271 144 Negative 115 9 2.287?1028

Positive 7 13

GSE20271** 144 Negative 115 13 ,5.2?1025

Positive 7 9

Validation GSE20194 278 Negative 218 14 ,2.2?10216

Positive 1 45

GSE16446 93 Negative 61 5 ,2.2?10216

Positive 1 26

*Fisher’s exact test.
**The analysis was performed by using the ‘‘best probe set’’ (‘‘203497_at’’). The rest of analyses were performed by using the 14-gene ERBB2 signature.
doi:10.1371/journal.pone.0026023.t004

Table 3. Gene signature predictive of ERBB2 status.

Gene Symbol Correlation Coefficient Gene description

Positive Spearman correlation

CRK7 (CDK12) 0.38 cyclin-dependent kinase 12

ERBB2 0.42 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2,
neuro/glioblastoma derived oncogene homolog (avian)

0.39

F2RL1 0.35 coagulation factor II (thrombin) receptor-like 1

GRB7 0.43 growth factor receptor-bound protein 7

IDI1 0.37 isopentenyl-diphosphate delta isomerase 1

ITGB6 0.36 integrin, beta 6

0.35

PERLD1 0.37 post-GPI attachment to proteins 3

0.38

PPARBP 0.45 mediator complex subunit 1

0.39

SEC63 0.37 SEC63 homolog (S. cerevisiae)

STARD3 0.37 StAR-related lipid transfer (START) domain containing 3

TRIM26 0.36 tripartite motif-containing 26

Negative Spearman correlation

DIRAS2 -0.36 DIRAS family, GTP-binding RAS-like 2

DUSP24 -0.36 serine/threonine/tyrosine interacting-like 1

UBTF -0.36 upstream binding transcription factor, RNA polymerase I

Unknown -0.37 Not annotated

Each row in the correlation coefficient column represents a probe set. Genes, within the borders of the ERBB2 amplicon are marked in bold. The list of genes is divided
into genes with positive and negative (-) correlation coefficients. For detailed information on the probe sets see Table S2.
doi:10.1371/journal.pone.0026023.t003
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PR status
Figure 5 shows specificity and sensitivity values for genes

predictive of PR status selected by using Spearman rank

correlation cutoffs between 0.35 and 0.42. The highest combina-

tion of specificity and sensitivity values was with a cutoff of 0.38,

yielding a gene signature comprising 51 annotated genes

(represented by 61 probe sets; Table 5). The PR gene, PGR, and

3 other genes (GATA3, STC2 and GLI3) [47,48,49] are increased in

their expression, whereas the expression of 6 genes (AURKA,

BUB1, CDC20, MKI67, HJURP, and CENPA) [50,51,52,53,54] is

Figure 4. ERBB2 status determination: sensitivity (‘+’) and specificity (‘-’) obtained with two different microarray-based methods.
The improved feature is highlighted by gray background. Datasets GSE2603, GSE20271 and GSE20194 were profiled on HG-U133A GeneChips;
GSE16446 was profiled on HG-U133 Plus 2.0 GeneChips. * Training set.
doi:10.1371/journal.pone.0026023.g004

Figure 5. Selecting set of genes predictive of PR status based on sensitivity and specificity. The cutoff is based on Spearman rank
correlation coefficients. The number of probe sets in each signature is marked by the number under the lowest curve. Black filled circles – specificity;
gray circles – sensitivity; black line – sum of specificity and sensitivity. The optimal number of probe sets is 61, with Spearman correlation coefficient
cutoff set at 0.38. Gray line and ‘‘*’’ indicate the sum of specificity and sensitivity of the prediction obtained by using a single ‘‘best probe set’’
(‘‘219197_s_at’’).
doi:10.1371/journal.pone.0026023.g005
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Table 5. Gene signature predictive of PR status.

Gene Symbol Correlation Coefficient Gene Title

Positive Spearman correlation

BBS1 0.40 Bardet-Biedl syndrome 1

0.40

BCAM 0.40 basal cell adhesion molecule (Lutheran blood group)

CA12* 0.39 carbonic anhydrase XII

0.40

CASC1 0.39 cancer susceptibility candidate 1

FAM176B 0.41 family with sequence similarity 176, member B

0.44

GAMT 0.40 guanidinoacetate N-methyltransferase

GATA3* 0.39 GATA binding protein 3

0.41

GFRA1* 0.39 GDNF family receptor alpha 1

GLI3 0.39 GLI family zinc finger 3

HPN 0.39 hepsin

IL6ST* 0.40 interleukin 6 signal transducer (gp130, oncostatin M receptor)

0.41

KDM4B* 0.41 lysine (K)-specific demethylase 4B

0.42

LAMB2 0.40 laminin, beta 2 (laminin S)

LRRC17 0.39 leucine rich repeat containing 17

LZTFL1 0.39 leucine zipper transcription factor-like 1

MAGED2 0.39 melanoma antigen family D, 2

MAPT 0.39 microtubule-associated protein tau

0.40

PDE4A 0.38 phosphodiesterase 4A, cAMP-specific (phosphodiesterase E2 dunce homolog, Drosophila)

PGR 0.41 progesterone receptor

SCUBE2 0.44 signal peptide, CUB domain, EGF-like 2

LIV1 (SLC39A6)* 0.38 solute carrier family 39 (zinc transporter), member 6

STARD13 0.39 StAR-related lipid transfer (START) domain containing 13

STC2* 0.38 stanniocalcin 2

WDR19 0.40 WD repeat domain 19

Unknown 0.40 Not annotated

Negative Spearman correlation

AURKA 20.40 aurora kinase A

20.38

BUB1 20.41 budding uninhibited by benzimidazoles 1 homolog (yeast)

C16orf61 20.38 chromosome 16 open reading frame 61

CCNA2 20.40 cyclin A2

CDC20 20.40 cell division cycle 20 homolog (S. cerevisiae)

CDCA8 20.39 cell division cycle associated 8

CENPA 20.38 centromere protein A

CENPN 20.38 centromere protein N

CEP55 20.39 centrosomal protein 55 kDa

DBF4 20.44 DBF4 homolog (S. cerevisiae)

DDX39 20.39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39

DLGAP5 20.39 discs, large (Drosophila) homolog-associated protein 5

GATAD2A 20.41 GATA zinc finger domain containing 2A

GTSE1 20.38 G-2 and S-phase expressed 1

HJURP 20.39 Holliday junction recognition protein

ER, PR and ERBB2 Status in Breast Tumor Profiles
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decreased in PR-positive breast tumors. GATA3 is expressed in

normal mammary epithelial luminal progenitor cells and in the

luminal A molecular subtype (ER and/or PR positive tumors) of

human breast tumors [24,55]. Interestingly 11 of the genes

comprising the candidate PR gene signature also appeared in the

list of genes predictive of ER status (Tables 1 and 5): these genes

include CA12, FAM176B, GAMT, GATA3, GFRA1, IL6ST,

KDM4B, SCUBE2, LIV1, STC2 and an un-annotated probe set.

The expression levels of CA12, LIV1, KDM4B, STC2, GFRA1,

ILST6, and GATA3 are reported to positively correlate with that of

ER [36,37,38,39,41,42]. Our results show that all of these 11

genes appear to be up-regulated in both ER-positive and PR-

positive samples (see correlation coefficients in Tables 1 and 5).

Because our signature comprised 51 genes and one probe set for

an unannotated gene we refer to this signature as a ‘‘51-gene PR

signature’’. The candidate 51-gene PR signature contained 2

genes (HPN and MAPT) whose expression was reported to

correlate positively with ER expression [37,56]; however, these

genes did not appear in the ER-predictive signature. The

expression of 41 genes out of the 51 annotated genes constituting

the PR-predictive signature has not been previously associated

with PR status.

The candidate 51-gene PR signature separated PR-positive

tumors from PR-negative tumors with an accuracy of 81.27%,

sensitivity of 83.68%, specificity of 73.77%, PPV of 90.86% and

NPV of 59.21% in the 251 training samples (Table 6;

p = 2.3?10216, Fisher’s exact test). To determine whether the

predictive performance of a single probe set is sufficient to

determine PR status we used ‘‘219197_s_at’’, the probe set with

the highest Spearman rank correlation in the 51-gene PR

signature (Spearman rank correlation is 0.44; see Table S3),

which we termed ‘‘best probe set’’ for PR predictive signature.

The prediction accuracy of the ‘‘best probe set’’ was 80.48%,

sensitivity 91.05%, specificity 47.54%, PPV 84.39% and NPV

63.04% (Table 6; p,3.3?10210, Fisher’s exact test). Although the

sensitivity of the prediction by using the ‘‘best probe set’’ was

higher than the sensitivity of the prediction by using the 51-gene

PR signature, the specificity was very low, reaching only 47.54%.

Also the prediction accuracy and PPV were lower when using only

the ‘‘best probe set’’. These findings indicated that the predictive

performance of the single ‘‘best probe set’’ is not as high as the

performance of the signature.

We tested the predictive performance of the 51-gene PR

signature in 3 validation datasets (Table 6). The prediction

accuracy was 78.47%, sensitivity 76.92%, specificity 79.75%, PPV

75.76% and NPV 80.77% in 144 samples of the first validation set

(GSE20271; Table 6; p = 6.1?10212, Fisher’s exact test). The

prediction accuracy was 74.1%, sensitivity 81.82%, specificity

68.15%, PPV 66.44% and NPV 82.94% in 278 profiles of the

second validation set (GSE20194; Table 6; p,2.2?10216, Fisher’s

exact test); however, in the third validation set (HG-U133 Plus 2.0

GeneChip array) the prediction accuracy was 62.03%, sensitivity

62.5%, specificity 60.0%, PPV 86.96%, and NPV 27.27% in 79

samples (GSE9195; Table 6; p = 0.1484, Fisher’s exact test).

Figure 6 and Table S4 depict sensitivity and specificity levels

obtained for the training and the validation sets by using the

candidate 51-gene PR gene signature or by using a single probe set

(208305_at) to assess PR status in breast tumor specimens. The

estimation was performed in the same way as was reported

previously to establish PR status based on gene expression profiles.

The specificity levels obtained by using a single probe set were

relatively high, ranging between 77.05% (GSE3494) and 98.73%

(GSE20271); however, the sensitivity levels were lower, ranging

between 32.31% (GSE20271) and 65.79% (GSE3494). Whereas

using the 51-gene PR signature the specificity levels did not change

significantly (p = 0.134, t-test) compared to those using the single

probe set, the sensitivity levels were significantly improved

(p,0.05, t-test), to range between 76.92% (GSE20271) and

83.68% (GSE3494). The sensitivity (62.5%) obtained with HG-

133 Plus 2.0 GeneChip (GSE9195; third validation set) lies within

the 95% confidence interval for sensitivity obtained for HG-

U133A GeneChip (CI95%: 61.44 – 87.19%). However, the

specificity (60.0%) obtained with HG-133 Plus 2.0 GeneChip was

lower than the lower limit of the 95% confidence interval for

specificity established with the HG-U133A GeneChip (95%CI:

72.08–88.98%). This indicates, that whereas the candidate PR

Gene Symbol Correlation Coefficient Gene Title

KIF2C 20.41 kinesin family member 2C

20.41

KPNA2 20.41 karyopherin alpha 2 (RAG cohort 1, importin alpha 1)

LAD1 20.41 ladinin 1

LPIN1 20.40 lipin 1

MCAM 20.39 melanoma cell adhesion molecule

MELK 20.40 maternal embryonic leucine zipper kinase

MKI67 20.39 antigen identified by monoclonal antibody Ki-67

OR7E37P 20.39 olfactory receptor, family 7, subfamily E, member 37 pseudogene

PSME4 20.42 proteasome (prosome, macropain) activator subunit 4

PTTG1 20.40 pituitary tumor-transforming 1

SLC7A5 20.40 solute carrier family 7 (cationic amino acid transporter, y+system), member 5

TTK 20.40 TTK protein kinase

Each row in the correlation coefficient column represents a probe set. Genes, whose levels of expression are reported to correlate with PR are marked in bold. Genes
that occur in the signature predictive of ER status are marked in italics. Those genes whose levels of expression have been reported in literature to correlate with ER
status are marked by an asterisk. The list of genes is divided into those with positive and negative correlation (-) coefficients. For detailed information on the probe sets
see Table S3.
doi:10.1371/journal.pone.0026023.t005

Table 5. Cont.
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gene signature provides the same level of sensitivity for

determining PR status on HG-U133A and HG-U133 Plus 2.0

GeneChips, it provides a lower specificity for determining PR

status on HG-U133 Plus 2.0 arrays compared to the HG-U133A

arrays for which it was developed.

Discussion

Global gene expression profiling is widely used in cancer research

and the results of these analyses are generally accessible to the

scientific community in public repositories. However, these profiles

rarely have accessory information concerning the clinically

established status of PR, ER or that of ERBB2. Knowledge of the

expression of the aforementioned markers could be used to mine

publically available gene expression profiles for candidate molecular

targets thus aiding efforts to expand the armamentarium of

anticancer therapies targeted to these breast tumor subtypes.

Previous studies have demonstrated a correlation between

mRNA levels and clinical receptor status as established by IHC,

FISH and ligand-binding assays using breast tumor samples

[57,58,59]. Means have also been established for statistical

thresholds for ESR1, PR and ERBB2 transcript levels to assign

their expression status in profiled breast tumor samples [14,31,32].

These methods use a single probe set to predict ER, PR or ERBB2

status of breast tumor samples. Whereas the latter assays provide

good sensitivity for determining ER status and good specificity for

those of PR and ERBB2, improvements of these parameters would

be desirable to more accurately predict the status of the expression

of these genes in breast tumor gene expression profiles.

Our study sought to establish a more accurate specificity for

predicting ER status and increased sensitivity for predicting those

of PR and ERBB2 while maintaining or improving the sensitivity

to predict ER status and to similarly maintain or improve the

specificity to predict PR and ERBB2 status. Predictive signatures

were developed based on data collected from HG-U133A

GeneChips. However, additional GeneChip arrays, HG-U133

Plus 2.0, have been developed (http://media.affymetrix.com/

support/technical/datasheets/hgu133arrays_datasheet.pdf), and

Table 6. Correlation of microarray–based expression profiling data with routinely established PR status.

Total
PR status defined
by predictor Clinical PR status

Negative Positive p-value*

Training GSE3494 251 Negative 45 31 2.3?10216

Positive 16 159

GSE3494** 251 Negative 29 17 ,3.3?10210

Positive 32 173

Validation GSE20271 144 Negative 63 15 6.1?10212

Positive 16 50

GSE20194 278 Negative 107 22 ,2.2?10216

Positive 50 99

GSE9195 79 Negative 9 24 0.1484

Positive 6 40

*Fisher’s exact test.
**The analysis was performed by using the ‘‘best probe set’’ (‘‘219197_s_at’’). The rest of analyses were performed by using the 51-gene PR signature.
doi:10.1371/journal.pone.0026023.t006

Figure 6. PR status determination: sensitivity (‘+’) and specificity (‘-’) obtained with two different microarray-based methods. The
improved feature is highlighted by gray background. Datasets GSE3494, GSE20271 and GSE20194 were profiled on HG-U133A GeneChips; GSE9195
was profiled on HG-U133 Plus 2.0GeneChips. * Training set.
doi:10.1371/journal.pone.0026023.g006

ER, PR and ERBB2 Status in Breast Tumor Profiles

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e26023



are increasingly used for global gene expression profiling.

Therefore, another goal of our study was to examine the predictive

capacity of our signatures using transcript profiles performed on

both HG-U133A and HG-133 Plus 2.0 GeneChips to learn

whether our predictive signatures perform independently of the

nature of the GeneChips used to identify them.

Gene signature predictive of ER status
The gene signature reported here comprises 24 annotated

genes. One of these genes is ESR1 (estrogen receptor alpha)

whereas 11 others have been reported to correlate with the

expression of ESR1 or to be directly regulated by ER

[36,37,38,39,40,41,42,43,44]. Several of the identified genes are

represented by a number of probe sets in the gene signature

indicating that these genes have a stable correlation with ER

status. Interestingly, one additional gene was found to be reported

to positively correlate with PR status [45]. This finding is

supported by reports that ER and PR status often correspond

with each other [60]. However, this gene was not identified in our

PR-predictive gene signature. A plausible explanation for the latter

is that we used a high correlation coefficient cutoff to identify the

genes belonging to the ER-predictive signature, and hence this

gene might have been eliminated during the gene selection

process.

Because previously reported methods used a single probe set to

determine the hormone and ERBB2 status of tumors, we wished to

learn whether a single probe set from the 24-gene ER signature

performed as well as the whole signature. To this end we selected

the probe set with the highest Spearman rank correlation to the

ER status of the sample as the ‘‘best probe set’’. The best probe set

thus identified is identical to that identified in previous studies to

determine ER status [14,31]. The levels of sensitivity and

specificity of ER status prediction by using the ‘‘best probe set’’

were lower than the sensitivity of the prediction by using the 24-

gene ER signature, indicating that the signature outperformed the

‘‘best probe set’’.

Previous methods [14,31] yielded high sensitivity, but a

relatively low specificity for predicting ER status (Figure 2).

Therefore, we wondered whether we could improve the specificity

of ER status prediction by identifying a gene signature to predict

ER status. Indeed, our ER-predictive gene signature provides a

significantly higher specificity, while maintaining the level of

sensitivity. The ER-predictive gene signature we identified was

derived by analyzing gene expression data from breast tumor

RNA samples profiled on the HG-U133A GeneChip arrays.

However, we were unable to find an HG-U133 Plus 2.0 dataset

with accompanying clinical information concerning ER status.

Future studies will examine the predictive potential of the ER gene

signature on HG-U133 Plus 2.0 arrays.

Gene signature predictive of PR status
The signature predictive of PR status consists of 51 annotated

genes, which include the PGR (progesterone receptor), and 9 genes

(AURKA, BUB1, GATA3, GLI3, STC2, CDC20, CENPA, HJURP

and MKI67) that have previously been demonstrated to correlate

with PGR expression (Table 5; [47,48,49,50,51,52,61]). Interest-

ingly, 11 genes (STC2, GATA3, CA12, FAM176B, GAMT, GFRA1,

IL6ST, KDM4B, SCUBE2, LIV1, and an ‘unknown’ gene; Tables 1

and 5) out of the 51 genes constituting the PR-predictive signature

also appear in our 24-gene ER-predictive signature. These

findings are in agreement with other studies reporting that ER

and PR status often correlate with each other [60]. Notably, the

probe set for the only gene lacking annotation appears in both

signatures predictive of PR and ER status indicating a strong

connection of the gene reflected by this probe set to ER and PR

status. The PR-status predictive signature comprised 2 other genes

(HPN and MAPT) whose expression is positively correlated with

ER expression [37,56]. However, these genes were not identified

in our ER-predictive gene signature, probably due to the fact that

they had a lower correlation coefficient with ER status than the

cutoff established to identify the ER-predictive signature.

The ‘‘best probe set’’ selected from the PR predictive signature

was ‘‘219197_s_at’’ (SCUBE2). Expression of this gene has not

been reported to correlate with PR status of human, however, this

gene appears also in our 24-gene ER-predictive signature, and, as

has been mentioned earlier, there are studies showing that ER and

PR status often show correlation with each other. Specificity of

prediction using the ‘‘best probe set’’ was very low, reaching only

47.54% and prediction accuracy and PPV of the were lower than

the ones obtained with the 51-gene PR-predictive signature.

Therefore, we concluded, that the PR-predictive signature

outperformed the single ‘‘best probe set’’.

Previous method [32] yielded high specificity, but a relatively

low sensitivity for predicting PR status (Figure 6). Therefore, we

wondered whether we could improve the sensitivity of PR status

prediction by identifying a gene signature to predict PR status. By

using our gene signature predictive of PR status, we significantly

improved the level of sensitivity, while not reducing the level of

specificity, as compared to the same measures obtained with 1

probe set (Figure 6).

When tested on data obtained from HG-U133 Plus 2.0

GeneChip arrays, the results differed from the ones obtained

from datasets profiled on HG-U133A arrays (Figure 6 and

Table 6), indicating, that our candidate PR gene signature needs

to be modified to predict PR status of tumor samples profiled on

other array types. A plausible explanation for the lower level of

performance of the predictive signature on data obtained from

HG-U133 Plus 2.0 arrays could be the technical differences in the

design of the arrays belonging to HG-U133A and HG-U133 Plus

2.0 types: HG-U133 Plus 2.0 arrays belong to a newer generation

of GeneChip arrays, which contain improvements, that result in

higher resolution, sharpness, definition and signal uniformity (http:

//media.affymetrix.com/support/technical/technotes/expression_

comparison_technote.pdf). Such technical differences could affect

information obtained for the probe sets that were included in our PR

signature, among other probe sets.

Gene signature predictive of ERBB2 status
The ERBB2 predictive gene signature consists of 14 annotated

genes, including ERBB2 and 5 genes (CRK7, GRB7, PERLD1,

PPARBP, and STARD3) located within the ERBB2 17q12-q21

amplicon [46]. Several of these genes are represented by multiple

probe sets in the ERBB2-predictive gene signature indicating their

stable correlation with ERBB2 status.

The ‘‘best probe set’’ selected from the ERBB2 predictive

signature was ‘‘203497_at’’, representing PPARBP, a gene, located

within the ERBB2 17q12-q21 amplicon [46]. The performance of

this ‘‘best probe set’’ was tested on two training sets (GSE2603 and

GSE20271), that were used to derive the 14-gene ERBB2

signature. The first training set (GSE2603) could not provide us

with a clear cutoff for the Spearman rank correlation used to

determine the optimal number of genes for the signature (Figure 3).

Therefore we needed to test the second training set (GSE20271) as

well. The sensitivity of prediction by using the ‘‘best probe set’’ for

the second training set (GSE20271) was very low, reaching

40.91%. Therefore, we concluded, that the ERBB2-predictive

signature outperformed the single ‘‘best probe set’’.
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A previously described method [14] yielded high specificity

levels for predicting ERBB2 status from gene expression profiles

using a single probe set (216836_s_at); however, the sensitivity of

this method was relatively low. By contrast the specificity levels of

our 14-gene signature was unchanged from that reported

previously but the sensitivity levels were improved. Additionally,

the ERBB2-predictive gene signature also successfully predicted

ERBB2 status of gene expression profiles obtained by employing

the HG-U133 Plus 2.0 GeneChip (Figure 4 and Table 4).

In summary our findings demonstrate that small gene signatures

can be identified in patient breast tumor gene expression profiles

that accurately predict ER, PR and ERBB2 status.

Methods

Gene expression profiles
As shown in Table 7, to define ER status we used raw CEL files

from the following datasets: GSE3494 (247 samples), GSE2034

(286 samples), GSE7390 (198 samples), GSE2603 (97 samples),

GSE20271 (144 samples), and GSE20194 (278 samples); to define

ERBB2 status we used raw CEL files from GSE2603 (88 samples),

GSE20271 (144 samples), GSE20194 (278 samples), and

GSE16446 (93 samples); finally to define PR status we used

GSE3494 (251 samples), GSE20271 (144 samples), GSE20194

(278 samples), and GSE9195 (79 samples). These aforementioned

datasets were downloaded from the Gene Expression Omnibus

depository [33]. All samples were profiled on Affymetrix HG-

U133A GeneChips (Affymetrix, Santa Clara, CA, USA), with the

exception of GSE16446 and of GSE9195, which employed

Affymetrix HG-U133 Plus 2.0 GeneChips. All the samples were

pre-processed with fRMA [62].

Clinical definition of hormonal receptors status and
ERBB2 status

Table 7 shows the sources of the samples and the methods used

to obtain the clinical status of the ER and PR and that of ERBB2.

Filtering repeated samples across datasets
Samples for 2 datasets (GSE20271 and GSE20194) were

contributed by the University of Texas M. D. Anderson Cancer

Center (MDACC, Houston, TX, USA), and as a result, there were

34 samples that were present in both datasets. For all analyses

performed in the present study, these repeated samples were

removed from GSE20271, reducing the number of usable samples

from 178 to 144.

Single-probe set estimations
Comparing predictive capacity of our signatures to predictive

capacity of single probe sets reported to be used in the literature.

For all datasets obtained from HG-U133A GeneChips, the one

probe set estimation was performed by using ‘‘205225_at’’ for

determining ER status [14,31] , ‘‘216836_s_at’’ for determining

ERBB2 status [14,31], and ‘‘208305_at’’ for determining PR

status [32]. Hormone and ERBB2 status was determined by fitting

Gaussian distributions into the distribution of expression values of

the examined probe set using Expectation-Maximalization (EM)

algorithm [63], similar to the method described by Rody et al [31]

and by Lehmann et al [32]. For GSE16446 dataset, which was

obtained from HG-U133 Plus 2.0 GeneChips, we used the data on

bimodal ERBB2 status supplied with the samples.

Comparing predictive capacity of our signatures to predictive

capacity of single probe sets with the highest Spearman rank

correlation to the hormone and ERBB2 status (‘‘best probe set’’).

These comparisons were performed for the training sets used to

establish the predictive signatures. The probe set with the highest

Spearman rank correlation with ER status was ‘‘205225_at’’

(Spearman rank correlation = 0.50), the same probe set as the one

used in literature [14,31]. We used ‘‘203497_at’’ (Spearman

rank correlation = 0.45) for determining ERBB2 status and

‘‘219197_s_at’’ (Spearman rank correlation = 0.44) for determin-

ing PR status. Hormone and ERBB2 status was determined in the

same way as in the previous single-probe set estimation, by fitting

Gaussian distributions using Expectation-Maximalization algo-

rithm.

Finding gene signatures predictive of ER, PR or ERBB2
clinical status of the tumor samples

Figure 7 describes the algorithm used to find gene signatures

predictive of ER, PR or ERBB2 clinical status of the samples. First,

global gene expression profiles for the whole training dataset were

examined and for each probe set Spearman rank correlation

coefficient between its expression levels and clinical status of

interest was calculated. The probe sets were sorted by the

correlation coefficient, and several groups of genes were selected

Table 7. Sources of the samples and methods used to obtain the clinical information about the samples.

Total number of
profiled samples ER assessment PR assessment ERBB2 assessment

IHC EIA* Other assay IHC Biochemical assay IHC or FISH

GSE2034 286 9 277 - - - -

GSE3494 251 - - 247 bioche-mical
assay

251 -

GSE7390 198 198 - - - - -

GSE2603 121 97 either IHC, EIA or
Biochemical assay

- - 88 IHC

GSE20271 144 144 - - 144 - 144 either IHC or FISH

GSE20194 278 278 - - 278 - 278 either IHC or FISH

GSE16446 120 - - - - - 93 FISH

GSE9195 79 - - 79 Ligand binding

*enzymatic immunoassay – EIA [64].
doi:10.1371/journal.pone.0026023.t007
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based on varying correlation cutoff. This way a group of genes

selected by using a lower cutoff would contain all the genes

belonging to a group selected by using a higher cutoff and

additional genes that were filtered out by the higher cutoff. Each

group of genes was used for k-means clustering of the samples, in

order to define samples with positive and negative status. Then

specificity and sensitivity were calculated. Group of genes that led

to the highest combination of specificity and sensitivity was defined

as a gene signature with optimal predictive ability for the clinical

status of interest for the samples in the training set. The same

group of genes was used on validation sets, and specificity,

sensitivity, accuracy, PPV and NPV were calculated. To derive

gene signature predictive of ERBB2 status 2 training sets were

needed, since the first set provided constant specificity and

sensitivity values for multiple correlation cutoffs.

Supporting Information

Table S1 Gene signature predictive of ER status. Because

the gene signature contains only genes with positive Spearman

correlation coefficients there is no division based on the

coefficients. Genes were sorted alphabetically by their symbol.

(XLS)

Table S2 Gene signature predictive of ERBB2 status.
The list of genes is divided into those with positive and negative

correlation coefficients. Genes were sorted alphabetically by their

symbol.

(XLS)

Table S3 Gene signature predictive of PR status. The list

of genes is divided into genes with positive and negative correlation

coefficients. Genes were sorted alphabetically by their symbol.

(XLS)

Table S4 Hormone and ERBB2 receptors status deter-
mination: sensitivity (‘+’) and specificity (‘-’) obtained
with two different microarray-based methods. ‘‘One

probe set’’-by using the single probe set described in the literature.

‘‘Signature’’-by using our predictive signature.

(XLS)
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