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ABSTRACT The advent of high-throughput sequencing techniques has recently pro-
vided an astonishing insight into the composition and function of the human micro-
biome. Next-generation sequencing (NGS) has become the gold standard for advanced
microbiome analysis; however, 3rd generation real-time sequencing, such as Oxford
Nanopore Technologies (ONT), enables rapid sequencing from several kilobases to .2Mb
with high resolution. Despite the wide availability and the enormous potential for clinical
and translational applications, ONT is poorly standardized in terms of sampling and stor-
age conditions, DNA extraction, library creation, and bioinformatic classification. Here, we
present a comprehensive analysis pipeline with sampling, storage, DNA extraction, library
preparation, and bioinformatic evaluation for complex microbiomes sequenced with ONT.
Our findings from buccal and rectal swabs and DNA extraction experiments indicate that
methods that were approved for NGS microbiome analysis cannot be simply adapted to
ONT. We recommend using swabs and DNA extractions protocols with extended washing
steps. Both 16S rRNA and metagenomic sequencing achieved reliable and reproducible
results. Our benchmarking experiments reveal thresholds for analysis parameters that
achieved excellent precision, recall, and area under the precision recall values and is supe-
rior to existing classifiers (Kraken2, Kaiju, and MetaMaps). Hence, our workflow provides
an experimental and bioinformatic pipeline to perform a highly accurate analysis of com-
plex microbial structures from buccal and rectal swabs.

IMPORTANCE Advanced microbiome analysis relies on sequencing of short DNA frag-
ments from microorganisms like bacteria, fungi, and viruses. More recently, long
fragment DNA sequencing of 3rd generation sequencing has gained increasing im-
portance and can be rapidly conducted within a few hours due to its potential real-
time sequencing. However, the analysis and correct identification of the microbiome
relies on a multitude of factors, such as the method of sampling, DNA extraction,
sequencing, and bioinformatic analysis. Scientists have used different protocols in
the past that do not allow us to compare results across different studies and
research fields. Here, we provide a comprehensive workflow from DNA extraction,
sequencing, and bioinformatic workflow that allows rapid and accurate analysis of
human buccal and rectal swabs with reproducible protocols. This workflow can be
readily applied by many scientists from various research fields that aim to use long-
fragment microbiome sequencing.
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The advent of high-throughput sequencing techniques has recently provided an
astonishing insight into the composition and function of the human microbiome.

Disruption of the commensal microbiome, commonly referred to as dysbiosis, is linked
to several diseases, such as obesity, diabetes, chronic inflammatory disorders, and can-
cer (1–6). Next-generation sequencing (NGS) contributed vastly to the accumulating
evidence in microbiome research of the last decade and has transformed the microbial
landscape by identifying an enormous quantity of unculturable microbes (7, 8). Due to
its wide availability and decreasing sequencing costs, NGS has become the gold stand-
ard for advanced microbiome analysis (9). However, there are inherent limitations of
this method. The length of reads does not exceed 300bp in the case of Illumina MiSeq.
Although long-fragment sequencing is technically possible, it is not widely used.
Furthermore, it is limited to 10 kb, and the capability for microbiome analysis could not
yet be shown (10). Thus, the resolution of marker gene sequencing for bacteria, 16S
rRNA, only provides reliable information up to the genus level, whereas targeting of
particular hypervariable regions (V1 to V9) influences the microbial composition (9, 11,
12). To gain insight into species and strain compositions by NGS, metagenomic
sequencing is required. However, this approach is more expensive and difficult to con-
duct with low-biomass environments and/or samples with high host contamination,
e.g., tissue samples (9). In these cases, microbiome profiling must rely on marker gene
sequencing. The limitation of insufficient species resolution by 16S rRNA sequencing
can be overcome by analyzing the whole 16S rRNA gene (13, 14). The 3rd generation
of sequencing subsumes methods with two distinct benefits: long reads and the possi-
bility of real-time sequencing. Oxford Nanopore Technologies (ONT) enable the
sequencing from several kilobases to .2Mb (15, 16). Thus, it becomes possible to
assemble whole genomes of bacteria and eukaryotes or even complex repetitive parts
of the human genome using a few or even one contig (15–18). Several groups showed
the feasibility of ONT sequencing for microbiome analysis with a diverse set of sam-
ples, i.e., mock communities (14, 19–21), low-biomass microbial compositions such as
dog skin or dust (14, 22, 23), antimicrobial resistances (24), and infective pathogens
from clinical samples (25, 26).

To the best of our knowledge, few studies have focused on analyzing a complex
microbiome structure with ONT (27). Hence, the impact of sampling and storage condi-
tions, DNA extraction, bioinformatic classification, and library creation on the analysis
of more advanced biological specimens have not been investigated in depth. In con-
trast to most previous clinical studies that used stool samples, we analyzed buccal and
rectal swabs. Notably, stool samples have certain limitations for clinical studies. First,
longitudinal studies are increasingly being performed (9), and stool may not be imme-
diately available in the desired time window, e.g., in the outpatient department.
Second, there are cohorts of patients from which a standardized acquisition of stool is
not easily feasible, e.g., infants or incontinent geriatric patients. Furthermore, the differ-
ent niches of gut microbes must be taken into account (28, 29). Previous studies high-
lighted a taxonomic difference between biopsy specimen, rectal swabs, and stool sam-
ples. To this end, 16S rRNA and metagenomic sequencing studies revealed that swabs
harbor a microbiome comparable to that of stool samples but also contain bacteria
that can be found more frequently in biopsy specimens than in stool samples (28,
30–32). Therefore, rectal swabs are considered to give insight into an intestinal niche
that is located between the lumen (stool) and the gut mucosa (33). Importantly, bacte-
ria adjacent to the mucosa are crucial for the interaction with the gut immune system
(34). However, the required bowel preparation prior to colonoscopy and the invasive-
ness of the procedure are limitations. Hence, rectal swabs have become a convenient
alternative, providing more information about mucosal adherent microbes than stool
samples (33). Despite intraindividual differences regarding the collection method, pre-
vious studies give evidence of a preserved microbial signature enabling the differentia-
tion between individuals (31, 35, 36). There is growing evidence that oral microbiota
can be used as biomarkers for several diseases (1, 37, 38). Although different microbial
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niches of the oral cavity were characterized recently (39, 40), there is still a significant
lack of knowledge about the optimal sampling conditions. In past studies, patients
were requested to refrain from food, drinks, and oral hygiene between 30 min and sev-
eral hours (41–43). To our knowledge, no conclusive data exist clarifying which sam-
pling point is ideal and what transient impact food and drinking have on the oral
microbiome.

In particular, the bioinformatics remain challenging for ONT due to the combination
of the high base call error rate of ;10% and long reads (44). Previous studies provided
bioinformatics workflows (20, 25). However, these wrapper programs were designed
for the identification of single infectious microorganisms. Here, we present a customiz-
able workflow algorithm that can run on different systems due to its convenient
docker format (Github; https://github.com/microbiome-gastro-UMG/MeTaPONT/). This
program was able to reduce the false-positive rate more sufficiently than classifiers
designed for NGS.

To address these caveats, we conducted comprehensive experiments establishing a
reliable wet-bench and bioinformatic workflow for both 16S rRNA and metagenomic
sequencing, including detailed protocols that are easily adaptable for other researchers.

RESULTS
Swab reliability and storage conditions. Swabs are commonly used for analyzing

different sites of human microbiota, and their practicability is widely proven (35, 39,
40). We hypothesized that the choice of the swab and its medium will have an impact
on microbiome analysis.

eNAT and eSwab are known to preserve microbes reliably, and their feasibility for
microbiome analysis was recently shown (45–47). For reasons of comparability, one stool
batch from a volunteer was homogenized. The swabs were dipped in stool, and a small
portion was directly transferred to lysis buffer (from the MagMAX microbiome ultra nucleic
acid isolation kit). The samples were immediately extracted (day 0 [d0]) or stored for 3 or
7days under different temperature conditions (Fig. 1a). Beta diversity showed a clustering
of most storage conditions (Fig. 1b). The microbial composition at the species level
revealed a wide overlap between the majority of samples (Fig. 1c). Two outliers signifi-
cantly explained ;80% of the observed differences. These two samples were eSwabs
stored at room temperature (RT) for 3 and 7days. Facultative anaerobic genera, like
Escherichia coli, Citrobacter freundii, Enterobacter cloacae, and Klebsiella aerogenes, were
especially increased. Thus, we conclude that eSwabs must be frozen immediately after
sampling. eNATs seem to preserve the microbial composition even if samples were stored
at room temperature for 7days. Despite the same procedure, eNAT swabs showed
reduced DNA content after extraction and failed 16S PCR in some instances. A systematic
comparison of DNA concentration revealed a significantly higher concentration in both
specimens collected by eSwabs. The measured purity was also in parts significantly higher
in eSwabs compared to eNATs (Fig. 1d). Therefore, eSwabs with immediate freezing were
used for subsequent experiments.

The quantity of stool has an impact on microbial composition. Different microbes
colonize the gut at different sites (28). Following this paradigm, it could be expected
that rectal swabs with higher quantities of stool may harbor a different microbial compo-
sition. To this end, we defined three grades of stool contamination before allocating 12
rectal swabs from 2 independent people (grade 0, 3; grade 1, 4; grade 11, 5) (Fig. 2a).
Regarding the amount of microbial DNA compared to human DNA, there was a signifi-
cant increase of microbial genes in the samples with a high quantity of stool (Fig. 2b).
Despite low microbial DNA content in clean rectal swabs, metagenomic sequencing
yielded a sufficient sequencing depth, with more than 7,200 microbial reads/sample,
allowing profound microbial analysis. Interestingly, the microbial composition at the spe-
cies level revealed, among others, a higher portion of Corynebacterium species,
Corynebacterium jekeium, and Akkermansia muciniphila in swabs defined as grade 0
(Fig. 2c). Accordingly, both genera (Corynebacterium and Akkermansia) were more fre-
quently found adherent to the mucosa than in stool samples (32, 48). Besides these
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FIG 1 Swab reliability and storage conditions. (a) Experimental design. (b) Beta diversity calculated with Bray-Curtis
distance and ordinated with principal coordinate analysis. R2 score and P value explain the significant distance

(Continued on next page)
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minor differences, all swabs contained highly similar microbiota. All three mentioned
species were also identified in more feculent swab samples with lower abundance
(,2%) and were categorized in the green bar (other) (see Table S1 in the supplemental
material). To further investigate whether highly feculent swabs are more similar to stool
than to grade 0 swabs, 3 stool samples from consecutive days and 2 swabs within 7h af-
ter bowel movement were collected from one individual. Indeed, the quantity of stool
contamination has only a minor impact on microbial composition if swabs of different
contaminations were compared to stool samples (Fig. S1).

Impact of eating and drinking on the buccal microbiome. Due to thermal and
mechanical stimuli, it can be assumed that eating and drinking provoke a temporal alter-
ation of the oral microbiome. Therefore, we aimed to investigate the impact of eating
and drinking on the buccal microbiome (Fig. 3a). Unweighted UniFrac distance discov-
ered a significant modification (R2 = 0.31) of the buccal microbiome 5 and 30 min after
eating (persons 1, 2, and 4) (Fig. 3b). Drinking water did not significantly affect the buccal
bacterial composition. Importantly, despite the transient shift, the intraindividual micro-
bial signature seemed to persist due to consistent personal clusters.

Impact of DNA extraction protocol on DNA concentration, sequenced species,
and read count for 16S rRNA and metagenomic sequencing. There are several
reports about the impact of DNA extraction methods on microbiome analysis (11, 46,
49–51). In order to standardize the microbiome analysis, a protocol by International
Human Microbiome Standards (IHMS) is recommended for fecal samples (52). Therefore,
we tested four different DNA extraction kits, of which three had shown reliable results
for microbiome analysis from swabs (46) (Text S1). Two protocols achieved a significantly
higher DNA concentration (measured by Qubit) in both buccal and rectal swabs com-
pared to the other isolation methods. Invitrogen (IHMS) and Qiagen investigator kits
(original) reproducibly yielded concentrations above the required threshold (.10ng/ml,
eluted in 50ml) recommended for ONT metagenomic sequencing (dashed line) (Fig. 4a).

Despite some minor variability in A260/A280 ratio (Fig. S2a), most samples exceeded
the required 1.8 value. However, remarkable divergences were observed regarding the
NanoDrop A260/A230 ratio. Only the samples extracted by the Invitrogen (IHMS) protocol
had values around the recommended A260/A230 ratio of 2 (Fig. S2b). To examine the reli-
ability of extracted DNA methods on 16S rRNA and metagenomic sequencing
approaches, at least four samples per protocol were sequenced. Using the rarefaction
curve, a minimum required sequencing depth can be defined, where most samples
reached a saturation. For 16S rRNA sequencing, a throughput of 250,000 sequences
per sample was determined (Fig. 4b). The average alpha diversity did not show signifi-
cant variations between the DNA isolation methods (Fig. 4c). However, most samples
extracted by the Qiagen microbiome kit remained under this threshold of 250,000, and
a tendency toward a lower alpha diversity was seen. Using unweighted UniFrac dis-
tance, which is recommended for rarefied samples (53), no DNA isolation protocol clus-
tered significantly in both sample sites (Fig. S3).

Similar results were obtained by analyzing buccal and rectal swabs by metagenom-
ics. Here, all samples isolated with the Qiagen microbiome failed to reach the threshold
of 250,000 reads, and no differences regarding the alpha diversity were observed
(Fig. 4d and e). Interestingly, there was a tendency where medians of samples isolated
by IHMS protocols were higher regarding alpha diversity in metagenomic sequencing
than their original counterparts. This might be explained by different read counts
(sequencing depth). To prove whether the DNA extraction protocol has an impact on
sequencing depth, five metagenomics experiments (10 to 12 samples per flow cell)
were combined. Here, all samples were pooled equimolarly before flow cell loading. To

FIG 1 Legend (Continued)
between d3_RT and d7_RT (both eSwab, outliers) and other samples. Distance calculation was performed at
species level. (c) Microbial composition shows all species with.2% abundance, whereas the residual species were
summarized as others (violet). All samples were normalized by prevalence filtering and rarefaction (10,000 reads/
sample). (d) n= 6 buccal and rectal samples per swab were compared and purity was measured by NanoDrop.
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FIG 2 Influence of quantity of stool on microbial DNA content and composition of rectal swabs. (a) Three different quantities of stool were compared.
Twelve samples were collected and allocated by 2 people independently. (b) Average microbial DNA content of three defined grades of stool. Kruskal-
Wallis and pairwise Wilcoxon rank test were performed with a P value of ,0.05 (*). (c) Microbial composition of different stool quantities (3 samples per
group) is presented at the species level, whereas all taxa under 2% are displayed as others (green). Black arrows indicate Corynebacterium species,
Corynebacterium jekeium, and Akkermansia muciniphila, respectively. All samples were filtered for bacterial reads and rarefied to 7,200 reads/samples.
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avoid biases introduced by different flow cell pore counts, Qiagen IHMS was arbitrarily
used as a reference. All read counts of the other methods were normalized to this pro-
tocol. Despite highly similar DNA input, a variety of sequencing depths per protocol
was observed. Applied Biosystems and Qiagen investigator IHMS protocols tended to
yield more sequences than the original protocols, whereas both Invitrogen protocols
tended to yield the most profound throughput (Fig. 4f). Regarding the base call qscore,
the protocols did not differ significantly and ranged between 11 and 12 (Fig. S4a and
b). DNA extraction methods also had an impact on the average sequence length.
Interestingly, Applied Biosystem and Qiagen investigator kits with the original proto-
cols produced the longest fragments (Fig. S4c).

To summarize, we observed no biologically relevant differences regarding alpha
and beta diversity and qscore from the base call. However, we found significant differ-
ences between extraction protocols regarding DNA concentration measured by Qubit
and purity measured by NanoDrop, which has important implications for subsequent
library preparation and sequencing throughput. Consequently, we used the PureLink
microbiome DNA purification kit (Invitrogen), modified according to IHMS protocols,
for further experiments.

FIG 3 Impact of eating and drinking on the buccal microbiome. (a) Experimental design. Four healthy nonvegetarian volunteers followed the protocol for
2 days. (b) Unweighted UniFrac distance ordinated with principal coordinate analysis showing the beta diversity at species level. Squares display the buccal
swabs in the morning before eating (baseline), circles are the samples after eating (5min, 30min, and 240min), whereas stars represent samples after
drinking (5min, 30min, and 240min). Samples were rarefied to 9,000 reads/sample.
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FIG 4 Evaluation of DNA extraction protocols for 16S rRNA and metagenomic ONT sequencing. (a) Isolated DNA
concentration from buccal und rectal swabs. Dashed lines at ;10 ng/ml represent the recommended DNA

(Continued on next page)
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Classification of long noisy reads with Centrifuge. The bioinformatic workflow
applied for these experiments used three main programs (Fig. 5a): (i) Guppy for high-
accuracy base calling; (ii) Centrifuge for classification; and (iii) Minimap2 as an alignment
control (54, 55). Guppy was applied for base calling as it is currently the best-performing
and the only officially supported base caller for ONT sequencing, outperforming tradi-
tional programs like Albacore, Flappie, and Scrappie (44). Centrifuge is used by the ONT-
related platform Epi2me, which, among others, provides real-time 16S rRNA sequencing
(14). This classifier has sensitive and fast annotation that do not require high computa-
tional capacity. Using 12 rectal swabs from the stool contamination experiment, a Venn
diagram compared the read to taxonomic identification number (taxID) annotations
between centrifuge alone (taking only the taxID with the highest quality score, which
was the first in the row) and Centrifuge plus Minimap2 (Fig. 5b). More than one-quarter
of sequence to taxID classification mismatched.

Low-quality sequences were excluded by defining cutoffs for (i) Centrifuge quality
score and (ii) maximum number of annotations to a single read. Sanderson et al. postu-
lated a threshold for a quality score of 150 (25). If this threshold was increased, a lot
more sequences would be removed. With focus on the slope, defined by difference
quotients (g), the increased threshold of the score did not influence the Minimap2 con-
trolled sequences to such an extent as it did for the Centrifuge only classified reads
(Fig. 5c). In other words, Minimap2 removed a high proportion of the reads, which will
be excluded by a higher Centrifuge score. Therefore, the relatively low threshold of
150 proposed by Sanderson et al. was maintained.

For metagenomic sequencing, it is expected that highly conserved sequences or
reads with redundant base sequences [like poly(A) fragments] will be obtained, result-
ing in a multitude of potential matches (for some sequences, more than 1,000 matches
of different taxIDs per read were observed). To prove that these reads harbor low infor-
mation and can be omitted to save computational time and to decrease the false-posi-
tive rate, we calculated a hit length/query length ratio. For most sequences, Centrifuge
labeled fewer than 50 taxIDs, and the classification was based on an annotation length
(hit length) of 40% of the total sequence length (query length) (Fig. 5d). The majority
of sequences with more than 50 different taxID matches ranged below the first quartile
of this ratio (Fig. 5e). Similar findings were seen regarding the Centrifuge quality score,
which was mostly below the first quartile of all reads in the group with more than 50
matches (Fig. 5f). To investigate whether the underlying library is sufficient for micro-
biome studies, a mock community with 14 common gut bacteria, one archaeon, and 2
fungi was analyzed using metagenomic sequencing. We evaluated four different indi-
ces/libraries: 2 preformed indices supplied by Centrifuge (p 1 h 1 v and p) as well as
one library containing all NCBI Refseq complete genomes of bacteria, fungi, archaea,
virus, and human and one including all incomplete and complete genomes in the NCBI
nt database. These indices were analyzed by using three parameters: precision, recall,
and area under precision recall curve (AUPR) (details in Text S1). These three parame-
ters are commonly applied across benchmarking studies (56, 57). Preformatted indices
(pvh and p) contained only 11 and 13 species, respectively (Fig. 5g). Surprisingly, the
comprehensive library including all NCBI Refseq complete genomes still failed to iden-

FIG 4 Legend (Continued)
concentration for metagenomic experiments. N= 7 to 9 swabs were extracted per protocol and swab origin. (b)
The rarefaction curve from 16S rRNA sequencing experiments displays continuous lines for buccal samples and
dashed lines for rectal swabs. A sequencing depth cutoff at 250,000 was determined (black dashed line). (c) Alpha
diversity of 16S rRNA sequenced samples was defined by observed species for buccal (blue boxplots) and rectal
(red boxplots) swabs. At least n= 4 samples per biospecimen and DNA isolation protocol were sequenced. (d) The
rarefaction curve was derived from buccal (continuous lines) and rectal (dashed lines) swabs, which were
analyzed using a metagenomic approach. A sequencing depth cutoff at 250,000 was determined as a minimum
read count (black dashed line). (e) Alpha diversity of samples, sequenced with a metagenomic approach, was
defined by observed species for buccal (blue boxplots) and rectal (red boxplots) swabs. (f) Read counts in
percentages were compared between different protocols after combining n= 5 different metagenomic
sequencing experiments. Kruskal-Wallis and pairwise Wilcoxon rank test were applied to determine significance. *,
P , 0.05; **, P , 0.01; ***, P , 0.001.
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FIG 5 Bioinformatic workflow and establishment of Centrifuge filter and library. (a) Overview of the bioinformatic pipeline
with base calling (blue background), classification (beige background), and alignment control (red background). (b) Venn

(Continued on next page)
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tify 3 species from the mock community: Prevotella corporis, Veillonella rogosa, and
Candida albicans (Table S2). A recall of 100% and high AUPR was only achieved by the
index that includes all species from the NCBI BLAST nt database (Fig. 5g). The lowest
precision was calculated for the preformatted index pvh.

Evaluation of different Minimap2 parameters. Centrifuge showed a convincing
sensitivity, whereas the rate of false positives remained unacceptably high. Therefore,
an alignment control by Minimap2 according to Sanderson et al. was established (25).
To exclude low-quality reads and, thus, possible false-positive species, the alignment
score (AS) and coverage (Cov) were further adjusted. To investigate which combination
of these parameters kept all true-positive species and removed a maximum of false
positives, a benchmarking was conducted by calculating precision, recall, and AUPR for
each Cov and AS combination (Fig. 6a). An AS of 1,500 with a Cov of 50 obtained the
highest precision and AUPR of all combinations with a recall of 100%. If the AS is
increased to 2,000, the AUPR and precision values were still higher but also true-posi-
tive species were excluded.

To examine the impact of different Minimap2 coverages and alignment scores on
the number of sequences and alpha diversity, 12 rectal swabs (metagenomic sequenc-
ing) and 8 (16S rRNA sequencing) samples were analyzed. As expected, more reads
deriving from metagenomic sequencing were removed with an increased score and
coverage (Fig. 6b). However, a higher AS influenced 16S rRNA sequences more than
increased coverage. The same dynamics were observed for the alpha diversity (Fig. 6c).
The precisions and AUPRs of both Cov 10 and 50 are comparable. To further investi-
gate the impact of the coverage on microbial composition, 12 rectal swabs were
benchmarked. The application of a higher Cov seems reasonable to filter out high-
abundance, low-quality sequences (Fig. 6d). These reads were incorrectly annotated to
environmental bacteria, i.e., Mycobacterium branderi and species C057 (Nostoc) or
Escherichia coli, which are not usually observed with this high abundance or at all
(black arrows in Fig. 6d).

The average read length was also affected by the coverage. Interestingly, a Cov of
80 significantly favored longer reads, whereas the average sequence length did not al-
ter much between other AS and Cov thresholds (Fig. S5). To conclude, these bench-
marking experiments and the established bioinformatic workflow that was tested on a
mock community delivered highly accurate and reliable results. A diagram summarizes
the optimized workflow (Fig. 7).

Comparison of classifiers with simulated data. There exists an increasing number
of classifiers with different underlying algorithms that allow profound metagenomic
analysis of complex microbial structures (56, 57). However, most of them were
designed for NGS sequences, whereas some programs, like MetaMaps, were particu-
larly developed for long reads with high error rates (58). Our presented workflow,
Metapont, was compared to existing programs by using four simulated data sets. Deep
learning allows us to simulate ONT sequencing with long reads and a realistic error
rate (59). These simulated sequencing sets differ in their compositional complexity,
containing 10 to 77 taxa (bacteria, fungi, and archaea) (Table S3). To this end, the 10-
taxon-set contained 8 pathogenic bacteria and 2 fungi. The gut-set was similar to the
mock community used for evaluation of libraries and Minimap2 parameters. The tu-
mor-set simulated a human tumor (diverse solid tumors) with 99.9% human DNA and 8

FIG 5 Legend (Continued)
diagram with overlap between Centrifuge classification and Centrifuge 1 Minimap2 without any additional filter. (c)
Influence of Centrifuge quality score on the number of sequences. N= 4 samples were combined after metagenomic
sequencing and classified with Centrifuge and controlled with different Minimap2 filters (Cov). Differences of quotients (g)
were calculated for each line. (d) N= 12 rectal samples were classified with a Centrifuge. The sequences were arranged to
their number of matches to different taxIDs, and the classified length was divided through the total sequence length (hit
length/query length ratio). Red dots represent a single read ID. All sequences with more than 50 different taxIDs were
filtered, and their hit length/query length ratio (e) and qscore are presented (f). (g) A gut mock community was used to
evaluate four different libraries of Centrifuge. They were compared with the following parameters: precision (blue line),
area under the precision and recall curve (AUPR, green line), and recall (red line).
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FIG 6 Evaluation of different Minimap2 parameters. (a) A set of coverage (Cov) and alignment score (AS)
thresholds were evaluated using the gut mock community. The thresholds were compared with the following

(Continued on next page)
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different bacteria. This composition was based on the Nejman et al. intratumoral
microbiome study (60). The last set with 77 taxa was adapted from the Dilthey et al.
MetaMaps study (58). Metapont was compared with MetaMaps, Kraken2, and Kaiju (58,
61, 62). The last classifier is based on protein sequences, whereas the other ones are
based on DNA sequences. Subsequently, the precision, recall, and AUPR were calcu-
lated. To avoid biases introduced by different libraries, comprehensive indices were
built for Kaiju, Kraken2, and Metapont to recognize all taxa (recall of 100%).
Unfortunately, currently there is no comprehensive library available for MetaMaps that
includes all complete genomes of bacteria, fungi, and archaea (63). Therefore, this pro-
gram yielded lower recalls except for the simulated data set, which was adapted from
the programmers’ study (58) (Fig. 8).

Notably, Metapont outperformed Kaiju and Kraken2 in all simulated sets in regard
to precision, especially in the more complex microbiome sets (tumor and metamaps),

FIG 6 Legend (Continued)
parameters: precision (red line), area under the precision and recall curve (AUPR, blue line), and recall (green
line). (b and c) The sequence count, in percentage (b), and the alpha diversity (observed species) (c) decreases
with increasing coverage and scores for both metagenomic (n= 12) and 16S (n= 8) sequenced samples.
Kruskal-Wallis test were calculated. (d) Microbial composition at the species level of n= 9 rectal swabs were
displayed by applying three different filters (Minimap2 without any threshold, Minimap2 with a Cov of 10 and
AS of 1,500, and Minimap2 with a Cov of 50 and AS of 1,500). Black arrows mark taxa that were filtered out
by increased thresholds.

FIG 7 Experimental overview. A schematic overview of the experiments. Parameters highlighted in green were
set as the default and were used for the experiments if not mentioned otherwise. Parameters highlighted in
red showed measurable disadvantages compared to the green ones.
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whereas similar results for AUPR were yielded for these three classifiers. Given the link
between the false-positive rate and the precision, these results demonstrate that the
sequence of Centrifuge plus Minimap2 with adjusted AS and Cov can remove false-
positive taxa most sufficiently in ONT sequencing experiments.

DISCUSSION

Here, we present a benchmarking study for establishing a comprehensive workflow
from sampling over DNA extraction and sequencing to bioinformatic analysis of micro-
biome data for ONT sequencing of complex microbiota. Although the validity of rectal
swabs was shown several times before (33, 35, 36, 64, 65), there are several pitfalls for
swab sampling. We could demonstrate that stool contamination has an impact on mi-
crobial DNA proportion and microbial composition. Therefore, to obtain reliable
results, collecting rectal swabs with only minor stool contamination is recommended.
Another drawback of using swabs instead of stool samples is a potential lack of bio-
mass (31). However, our experiments proved that the amount of DNA isolated from
swabs was reproducibly sufficient for complex microbiome analysis on the species
level sequenced with 16S rRNA and metagenomic approaches.

Regarding the buccal swabs, our data revealed a transient alteration of the micro-
biome after food intake; nevertheless, an intraindividual microbial signature was pre-
served. Accordingly, the most reliable time point is the morning swab before tooth
brushing and breakfast. If this time point is not feasible, a couple of hours need to pass
between the last food intake and microbial sampling, whereas a small amount of drink-
ing water will not disturb the microbial composition.

It is common knowledge that the method of DNA extraction strikingly influences micro-
biome analysis (50, 51). In general, IHMS modified protocols obtained more sequences than
their original counterparts. A reason for the different sequence depths could be the portion
of guanidine and other contaminants. The first one is known to interfere with the ONT library
preparation and results in a low A260/A230 ratio by NanoDrop (66). These findings lead to the

FIG 8 Comparison of classifiers with simulated data. Four sets of simulated data were created and
classified with four different programs: Kaiju (red line), Kraken2 (green line), MetaMaps (cyan line),
and Metapont (purple line). Percentages of precision, recall, and AUPR gained by each classifier are
displayed for each simulated data set.

Ammer-Herrmenau et al.

July/August 2021 Volume 6 Issue 4 e00750-21 msystems.asm.org 14

https://msystems.asm.org


conclusion that the IHMS protocol yielded higher throughput due to additional washing
steps (see the supplemental material). The Invitrogen protocols (original and IHMS modified)
have strikingly higher A260/A230 ratio values, which likely result in more sufficient sequencing
depth due to the lower contamination (guanidine, residual salt, etc.) content of this kit.

There is growing evidence that ONT sequencing can perform accurate microbiome
analysis (14, 19, 25, 67). In line with previous studies, we show that Centrifuge achieved
a high sensitivity (19, 25). In contrast to Sanderson et al. (25) and Leidenfrost et al. (19),
a more complicated mock community was chosen containing taxa that are not fre-
quently implemented in preformatted libraries. To the best of our knowledge, all previ-
ous ONT microbiome studies classified with Centrifuge only used preformatted indi-
ces/libraries (phv or p). Interestingly, a database that was built according to official
Centrifuge instructions, and that contained a big set of complete genomes from NCBI
Refseq, failed to identify 3 species. One of them was Candida albicans, a well-known
and important pathogen. Unfortunately, only 18 fungi were downloaded and included
in this index. To this end, it is not advisable to use this library for complex microbiome
analysis that aims to focus on fungi. Therefore, the most comprehensive database that
detects all mock community species was used for all experiments if not stated other-
wise. The drawback of a library that includes all known species is the high memory
capacity and more time-consuming analyses.

Besides excellent AUPR and recall, the precision still remained low. This is explained
by the structure of the analyzed mock community, which included extremely low-
abundance species. Four species were below 0.1%, whereby the lowest-abundance
species (Clostridium perfringens) accounted for only 1� 1024%. Therefore, only all taxa
below 1� 1025% were filtered out by calculating the overall precision and recall. With
this low prevalence filter, plenty of incorrectly annotated species were included in the
analysis. If only the most abundant taxa were compared to the theoretical mock com-
munity composition, one species would be falsely classified, whereas the correct genus
(Veillonella) would be annotated. We longitudinally investigated the reliability of 16S
rRNA and metagenomic ONT sequencing for rectal and buccal swabs from the same
individual. This longitudinal observation revealed a high consistency regarding micro-
bial composition for both sequencing methods and biological specimens.

Furthermore, we simulated different sets of microbial ONT sequences and com-
pared our workflow with three classifiers. MetaMaps was exclusively developed for
long and noisy reads generated by ONT or PacBio (58). Currently, there is only one
library available for this program containing.10,000 genomes. To this end, it per-
formed best for the simulated data (metamaps-set), which was adapted from the com-
munity evaluated in the original study (58). However, it achieved insufficient AUPR and
recall values, even in simulated sets with low complexity (10-taxa). This finding empha-
sized the need for a classification tool that analyzes complex microbiome structures
sequenced by ONT with a comprehensive library. Metapont outperformed Kaiju and
Kraken 2 regarding the precision in all simulated data sets. In other words, Metapont
classified fewer false-positive reads than the other two conventional classifiers
designed for NGS sequencing due to the adjusted Minimap2 coverage and the align-
ment score parameter.

Conclusions. Here, we present a comprehensive analysis pipeline with sampling,
storage, DNA extraction, library preparation, and bioinformatic evaluation for complex
microbiomes sequenced with ONT. Our findings from the swabs and DNA extraction
experiments indicate that methods that were approved for NGS microbiome analysis
cannot be simply adapted to ONT. We recommend using swabs and DNA extraction
protocols with appropriate medium or extended washing steps. Both 16S rRNA and
metagenomic sequencing achieved reliable and reproducible results. Still, the relatively
high error rate of ONT sequences remains a bioinformatic challenge. Our benchmark-
ing experiments reveal thresholds for analysis parameters that achieved excellent pre-
cision, recall, and AUPR values and is superior to existing classifiers. Hence, with the
published bioinformatic pipeline, it is possible to achieve a highly accurate analysis of
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complex microbial structures. This workflow can be easily downloaded as a docker and
individually customized by other scientists.

MATERIALS ANDMETHODS
Swabs. For the experiments designed to define the swab with the best reliability, Copan liquid

Amies elution swabs (eSwab) containing 1ml medium and eNAT (Copan) with 2ml medium were eval-
uated. A stool sample from a nonvegetarian volunteer was homogenized with phosphate-buffered sa-
line (PBS). Both swabs were dipped in the stool. Additionally, a small stool portion was directly mixed
with lysis buffer. Subsequently, a set of three different samples were either directly extracted (d0), stored
for 3 days (d3) at room temperature (RT) or at 220°C, or stored for 7 days (d7) at RT,220°C or 280°C.

Buccal and rectal swabs for subsequent experiments were collected from a nonvegetarian volunteer
using eSwabs. Rectal swabs were collected by one physician and were not self-administered. For this
purpose, swabs were inserted 5 to 6 cm into the rectum and rotated 5 to 6 times. If not stated otherwise,
rectal swabs had a quantity of stool ranging from 0 to 1 (Fig. 2a). For buccal swabs, both sides of the
oral cavity were wiped thoroughly for at least 10 s. All samples were stored within 3 h at 280°C.

To analyze the impact of eating and drinking on the buccal microbiome, four nonvegetarian volun-
teers collected buccal swabs (eSwab) for 2 days according to the protocol (Fig. 3a). Text S1 in the supple-
mental material contains a detailed description. As a positive control, a gut mock community was pur-
chased from ZymoBIOMICS gut microbiome standard (Zymo Research), extracted, and sequenced
alongside swab samples.

All samples were derived from contributing scientists who are also listed as authors. The study was
reviewed and approved by the Ethics Committee of the University Center Goettingen (no. 11/7/19).

DNA extraction and purification. Four DNA extraction kits were evaluated. To this end, two differ-
ent protocols for three isolation kits were applied. First, the manufacturer’s protocols, referred to as
original, were used for MagMAX microbiome ultra nucleic acid isolation kit (Applied Biosystems),
PureLink microbiome DNA purification kit (Invitrogen), QIAmp DNA investigator kit (Qiagen), and
QIAmp DNA microbiome kit (Qiagen). Second, the protocols were modified according to the
International Human Microbiome Standard (IHMS) (52). For the QIAmp DNA microbiome kit (Qiagen),
a modification was not possible. If not stated otherwise, a PureLink microbiome DNA purification kit
(Invitrogen) was used for DNA isolation. The detailed protocols are listed in Text S1. All samples were
eluted with 50 ml elution buffer.

The purity and concentration of extracted DNA was measured using a Nanophotometer P330 (INTAS
Göttingen) and Qubit3 (dsDNA HS assay kit; Thermo Fisher Scientific, Waltham, MA). Samples extracted
with Qiagen kits or an Applied Biosystem kit were purified by a OneStep PCR inhibitor removal kit
(Zymo Research) prior to sequencing. DNA isolated with Invitrogen only underwent a cleaning step if
NanoDrop ratios (A260/A230 and A260/A280) were below 2 (A260/A230 ) or below 1.8 (A260/A280), respectively.

Library preparation, sequencing, and base calling. Extracted DNA samples were prepared for 16S
rRNA gene sequencing using either SQK-16S024 (ONT) or SQK-RAB204 (ONT). For metagenomic sequencing,
the ligation sequencing kit (SQK-LSK109) was applied in combination with Native Barcoding Expansion 1–12
(EXP-NBD104). Either 500ng or the maximum amount of extracted DNA per sample was prepared for metage-
nomic sequencing. All samples were sequenced with MinION (ONT) or GridION (ONT) using R9.4 flow cells. The
sequencing was controlled with the MinKNOW v. 20.06.4. The sequence duration ranged from 48 to 72h
depending on the throughput. Fast5 files were base called and demultiplexed using Guppy (ONT) version
4.0.15 running with GPU driver cuda with default parameters. All fastq files and corresponding metadata were
uploaded in Qiita (study number 13720) (68) and https://github.com/microbiome-gastro-UMG/MeTaPONT/.

Classification. The bioinformatic workflow is summarized in Fig. 5a. Centrifuge (version 1.0.4-beta)
was used for classification (55) and Minimap2 (version 2.17) for alignment control (54). A detailed
description is provided in Text S1. A threshold filtering and the benchmarking were realized with a
python script (version 3.7.7, pandas 1.1.3).

All listed tools were combined in a wrapper program. The classification analysis pipeline can be
downloaded as a docker. Detailed instruction and download information can be found at Github at
https://github.com/microbiome-gastro-UMG/MeTaPONT/.

Four different libraries/indices were tested with a gut mock community. Two were the preformatted
indices, which can be downloaded from the official Centrifuge homepage (bacteria, archaea, viruses,
human [compressed], 6 December 2016 [phv], and bacteria, archaea [compressed], 15 April 2018 [p]).
The third was built on 10 September 2020 according to the official instructions of the Centrifuge manual
containing all complete NCBI bacterial, fungi, archaea, human, and mouse RefSeq genomes (NCBI). Low-
complexity regions were masked by NCBI-tool dustmasker (version 0.1.03). The fourth library comprises
all genomes from the NCBI BLAST’s nt database and was built on 15 October 2020.

Simulated data. Four sets of simulated data were built using DeepSimulator 1.5 (59). Fasta files
were downloaded from NCBI, and steps for fast5 creation were conducted with standard parameters as
instructed previously (69). A bash script for downloading, simulating, and allocation was written and is
publicly available (https://github.com/microbiome-gastro-UMG/MeTaPONT/). Simulated data were clas-
sified with 4 programs: Kaiju, Kraken2, Metamaps, and Metapont. More details about the programs and
libraries are provided in the supplemental material.

The 10-taxa-set contains 8 bacteria and 2 fungi (abundance 10% per taxa). The gut-set included a
similar microbial composition like mock gut community (with highly divergent abundances 14% to
0.0001%), 14 bacteria, 2 fungi, and 1 archaeon. Here, Veillonella dispar and Prevotella intermedia replaced
the species from the same genus, which were found in the mock community. The tumor-set simulates a

Ammer-Herrmenau et al.

July/August 2021 Volume 6 Issue 4 e00750-21 msystems.asm.org 16

https://github.com/microbiome-gastro-UMG/MeTaPONT/
https://github.com/microbiome-gastro-UMG/MeTaPONT/
https://github.com/microbiome-gastro-UMG/MeTaPONT/
https://msystems.asm.org


human tumor microbiome. Eight bacteria constitute only 0.1% of the DNA, whereas the majority
belongs to the host (Homo sapiens). Bacteria composition is similar to that of intratumoral microbiome
(60). MetaMaps-set contained most species (77 bacteria) from the simulated data, which were analyzed
by Dilthey et al. (58). Table S3 contains all simulated species names and abundances.

Downstream analysis. All downstream analysis was conducted by R (version 3.6.3). Operational tax-
onomic unit (OTU) tables were preprocessed by prevalence filtering and rarefaction. For filtering,
PERFect was applied with the “simultaneous” approach (70). When rarefaction was performed, the figure
legends explain the normalized OTU count per sample. Alpha- and beta-diversity, taxonomic composi-
tion, and rarefaction curve was calculated from a phyloseq object (packages: phyloseq 1.30.0, ape 5.4-1,
tidyverse 1.3.0, ggplot2 3.3.2, vegan 2.5.6, pairwiseAdonis 0.0.1, data.table 1.13.0, gridExtra 2.3, ggpubr
0.4.0, car 3.0–10, reshape2 1.4.4, and rstatix 0.6.0). To generate the required taxon table, the program
taxonkit (71) was applied and all taxID from NCBI were extracted in May 2020. ReadIDs, length, quality
score, and barcode of each sequence were taken from sequencing_summary.txt, which was created dur-
ing the Guppy base call.

Statistics. Before applying statistic calculations for P values, normal distribution and homogeneity of
variance was tested, performing Shapiro-Wilk test, plotting QQ-plot, and Levene test, respectively. If
both conditions were given, t test for two groups or analysis of variance (ANOVA) and post hoc Tukey
test for data sets with more than two groups were performed. If no normality was tested, Wilcoxon rank
test for two groups and Kruskal-Wallis with additional pairwise Wilcoxon test for more than two groups
were performed. To determine the explained distance of beta diversity by certain factors, adonis and
pairwise adonis tests were applied after checking normality and homogeneity of variance using betadis-
per and permutest. Beta diversities are ordinated with principal coordinate analysis (PCoA). For each
plot, significances were visualized: *, P , 0.05; **, P, 0.01; ***, P , 0.001.

Data availability. The classification analysis pipeline can be downloaded as a docker. Detailed
instructions and download information can be found at Github (https://github.com/microbiome-gastro
-UMG/MeTaPONT).
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