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Abstract

Functional connectivity is the statistical association of neuronal activity time courses across distinct brain regions, supporting
specific cognitive processes. This coordination of activity is likely to be highly important for complex aspects of cognition, such as
the communication of fluctuating task goals from higher-order control regions to lower-order, functionally specific regions. Some of
these functional connections are identifiable even when relevant cognitive tasks are not being performed (i.e. at rest). We used
magnetoencephalographic recordings projected into source space to demonstrate that resting state networks in childhood have
electrophysiological underpinnings that are evident in the spontaneous fluctuations of oscillatory brain activity. Using the temporal
structure of these oscillatory patterns we were able to identify a number of functional resting state networks analogous to those
reported in the adult literature. In a second analysis we fused this dynamic temporal information with the spatial information from a
functional magnetic resonance imaging analysis of functional connectivity, to demonstrate that inter-subject variability in these
electrophysiological measures of functional connectivity is correlated with individual differences in cognitive ability: the strength of
connectivity between a fronto-parietal network and lower-level processing areas in inferior temporal cortex was associated with
spatial workingmemorycapacity, asmeasured outside the scannerwith educationally relevant standardized assessments. This study
represents the first exploration of the electrophysiological mechanisms underpinning resting state functional connectivity in source
space in childhood, and the extent to which the strength of particular connections is associated with cognitive ability.

Research highlights

• Magnetoencephalography (MEG) can be used to
extract neurophysiological data from typically devel-
oping children, which can be used to explore func-
tional connectivity at rest.

• At rest the temporal structure of neural oscillations
can be used to decompose the developing brain into
constituent networks.

• The temporally precise information in MEG can be
fused with the spatially precise information in fMRI
to explore electrophysiological connections with net-
works of interest.

• Across children, connections with a bilateral fronto-
parietal network at rest covary with the child’s spatial
working memory capacity as measured outside the
scanner.

Introduction

The development of methods capable of exploring neural
activity at a systems level has opened a number of new
research avenues, allowing researchers to go beyond
defining the functions of single areas to investigate how
and when activity is coordinated across brain areas. One
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such method is functional connectivity analysis, which
includes investigating the temporal correlation of endog-
enously fluctuating activity between spatially discrete
neuronal populations (Aertsen, Gerstein, Habib & Palm,
1989; Friston, Frith, Liddle & Frackowiak, 1993), with
this coordination in activity potentially providing a basis
for large-scale communication between brain areas. In
some cases these patterns of coordinated brain activity
are apparent even at rest, in the form of resting state
networks (RSNs). The fact that similar networks have
been consistently identified across studies despite differ-
ing equipment and analysis protocols speaks to the
robustness of these networks (van den Heuvel & Huls-
hoff Pol, 2010). Functional connections change exten-
sively during childhood and one assumption is that these
developing networks support the emergence of higher-
order cognitive functions (see Menon, 2013, for review).
Exactly how aspects of the neurophysiological activity
within emerging functional networks relate to cognitive
mechanisms in childhood remains largely unexplored.
In childhood, RSNs have been studied using func-

tional magnetic resonance imaging (fMRI), which mea-
sures down-stream haemodynamic processes occurring
in response to changes in neural metabolism. The RSNs
observed in children using this technique (Thomason,
Dennis, Joshi, Joshi, Dinov et al., 2011) broadly mirror
those observed in adults (Greicius, Krasnow, Reiss &
Menon, 2003; De Luca, Smith, De Stefano, Federico &
Matthews, 2005; Damoiseaux, Rombouts, Barkhof,
Scheltens, Stam et al., 2006). However, even by late
childhood, networks associated with higher-order cogni-
tive functions, such as dorsal fronto-parietal networks,
can still be fragmented, composed of separate underlying
components rather than behaving as a coordinated
system as in adulthood (de Bie, Boersma, Adriaanse,
Veltman, Wink et al., 2012).
Due to the dynamically fluctuating nature of the

activity of these networks, it is necessary to consider the
use of multiple methodologies to examine the rich
neurophysiological basis of this inter-regional coordina-
tion. One such methodology, which can be used to
complement and expand upon the findings of fMRI, is
magnetoencephalography (MEG). Like electroencepha-
lography (EEG), which measures electrical currents
conducted to the scalp and commonly used with develop-
mental populations, MEG also noninvasively measures
electrical activity. However, it does this by detecting
magnetic fields produced by underlying electrical activity,
which are not distorted to nearly the same degree by the
scalp and skull. As a result, using source reconstruction
techniques it is possible to transform the MEG sensor
recordings into an estimate of the electrical activity
of sources within the brain more reliably than with EEG

recordings. Via source reconstruction, MEG therefore
offers possibilities for exploring functional connectivity at
a neurophysiological and anatomical level in source space.
MEG offers comparable temporal resolution to EEG,
imaging functional activity onmillisecond timescales, and
provides information about the frequency content of the
neuronal oscillatory patterns. Therefore, unlike fMRI,
MEG offers the ability to constrain connectivity analyses
to particular frequencies of oscillation (the approach
taken here), and to study rapidly changing or transient
network structures (Baker, Brookes, Rezek, Smith, Beh-
rens et al., 2014). An important difference, relative to
using EEG, is that in this case we are not looking at event-
related changes in activity. Despite a number of research-
ers starting to useEEG to explore resting activity, themost
common approach in using EEG to study developmental
populations is to use its high temporal resolution to
explore event-related changes in oscillatory synchroniza-
tion or derive event-related potentials (ERPs, e.g. Astle,
Harvey, Stokes, Mohseni, Nobre et al., 2014a). Instead,
here we use spontaneous fluctuations in children’s oscil-
latory brain activity, recorded while they are not
performing any specific task (at rest) in theMEG scanner,
to explore how dynamic patterns of activity across brain
regions can become coordinated.
Because methods for non-invasively measuring elec-

trophysiological brain connectivity are in their infancy,
studies relating functional connectivity to cognitive
ability have hitherto largely relied upon functional
connectivity fMRI (fc-fMRI) methods. Evidence with
this technique suggests that in adulthood particular
functional connections at rest are related to cognitive
ability (e.g. Stevens, Tappon, Garg & Fair 2012). The
implication is that the variability across individuals in the
strength of a functional connection measured at rest
reflects intrinsic differences in the volume or efficiency of
communication across that particular connection,
thereby limiting the extent to which these regions can
coordinate their action, and that this constrains ability
during task performance. Even at rest, the organization
and efficiency of a fronto-parietal network is predictive
of adults’ working memory ability outside the scanner
(Stevens et al., 2012). There have been very few studies
exploring the relationship between RSNs and cognitive
ability in childhood, although in one case results mirror
the pattern of the adult literature: variability in connec-
tivity between frontal and parietal regions is associated
with cognitive ability, although not defined beyond IQ
(e.g. Wu, Taki, Sato, Hashizume, Sassa et al., 2013). We
can find only one study that has explored the relation-
ship between functional connectivity and cognitive
ability in childhood with MEG, and this was limited to
analyses of the connectivity between MEG sensors,
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rather than between projected sources within the cortex
(Ortiz, Stingl, Munssinger, Braun, Preissl et al., 2012). In
the current study we related MEG measures of func-
tional connectivity to short-term and working memory
performance (STM and WM, respectively) outside the
scanner. There exists a large literature using well-
validated and educationally relevant assessments of
individual differences in STM and WM in childhood
(e.g. Alloway, Gathercole, Kirkwood & Elliott, 2009).
These tasks typically recruit relatively long-range and
variable connections in adulthood, including fronto-
parietal control networks (e.g. Lepsien, Griffin, Devlin &
Nobre, 2005), generating clear predictions for plausible
associations between memory capacity and functional
connectivity in childhood.

To summarize our approach: In this study we sought
to take the first steps in using MEG to measure (a) the
electrophysiological nature of functional brain connec-
tivity in childhood, and (b) relate these new measures of
functional connectivity to measures of STM and WM
taken outside the scanner. To do this, first we tested
whether it is possible to observe RSNs using the
temporal structure of spontaneous patterns of oscillatory
brain activity within the MEG signal, as measured in
children at rest, as has recently been demonstrated in
adults (Brookes, Woolrich, Luckhoo, Price, Hale et al.,
2011). We aimed to benchmark these networks against
similar networks produced using an fc-fMRI analysis.
Second, we combined the temporal precision of MEG
with spatial information from fc-fMRI; we extracted
real-time electrophysiological information within prede-
fined canonical fMRI RSNs of interest, and identified
connections between these networks and other neural
systems. Third, we tested the hypothesis that individual
differences in RSN activity assessed via MEG source-
based analysis can predict cognitive ability. In particular
we applied a form of multiple regression (or a general
linear model, GLM) to explore whether and how these
electrophysiological connectivity measures would predict
children’s abilities in control demanding tasks, specifi-
cally those designed to tax STM/WM.

Methods

Participants

Thirty-one children, aged between 8 and 11 (mean age =
119.2 months; standard deviation (SD = 11.3 months; 12
males) were recruited via local schools. We selected this
age range as it is a phase during which complex span
WM assessment scores are reliable, but cognitive abilities
are still emerging and have yet to reach adult potential

(Astle et al., 2014a). Moreover, we know that individual
differences in children’s WM abilities at this age are
highly predictive of their educational attainment, mean-
ing that we could explore the neurophysiological corre-
lates of an ability that we can confidently describe as
educationally relevant (Gathercole, Pickering, Knight &
Stegmann, 2004). The only exclusion criterion was that
children should not have a diagnosis of a developmental
disorder or acquired neurological condition. All of the
children had normal or corrected-to-normal vision.
Parents provided written informed consent and the study
was approved by the University of Cambridge Psychol-
ogy Research Ethics Committee.

Cognitive assessments

We conducted an assessment of each child’s STM and
WM using a number of subtests from the Automated
Working Memory Assessment (AWMA; Alloway, Gath-
ercole, Kirkwood & Elliott, 2008). We assessed each
child’s verbal STM using a forward digit span procedure,
and their verbal WM using a backwards digit span. We
assessed each child’s spatial STM using a dot matrix
task, in which they had to retain a number of spatial
locations and then report them in sequence. Each child’s
spatial WM was assessed using a spatial span task, in
which they had to retain the locations of a sequence of
dots for subsequent recall, while performing a series of
mental rotations. Performance for each child on each
task was then compared to that of a normalization
sample, such that the age-independent standardized
scores could be established (with a mean of 100 and
SD of 15). These standard scores were used to charac-
terize our sample (see Results section). However, in our
MEG analysis, we used raw scores in the GLM. This is
important because the standardized scores from the
AWMA are age standardized in whole-year sections,
meaning that children with the same raw score, but who
are only a few days apart in age, could have very different
age-standardized scores. The age standardization also
alters the distribution of the scores. Instead we used the
raw scores in our GLM, but included a separate
regressor of age in months. We could then explore the
effects of memory capacity while controlling for effects
of age. In our analysis we used two composite memory
scores, one verbal and one spatial (see Results section).
We will subsequently refer to these two measures as
verbal WM and spatial WM, respectively, although it is
important to note that each contains both one STM and
one WM span measure.

The subsequent MEG analysis is described in the flow
chart shown in Figure 1. The corresponding steps are
described in detail in the following sections.
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MEG data acquisition and pre-processing

MEG data were acquired with a high-density whole-head
VectorView MEG system (Elekta-Neuromag, Helsinki,
Finland), containing a magnetometer and two orthogo-
nal planar gradiometers at 102 positions (306 sensors in
total), housed in a magnetically shielded room. Data
were sampled at 1 kHz, and signals slower than 0.01 Hz
were filtered out. A 3D digitizer (Fastrack Polhemus
Inc., Colchester, VA, USA) was used to record the
positions of five head position indicator (HPI) coils and
50–100 additional points evenly distributed over the
scalp, all relative to the nasion and left and right
preauricular points. We also attached an electrode to
each wrist to measure the pulse, and we attached bipolar
electrodes to obtain horizontal and vertical electroocu-
lograms (HEOG and VEOG). Head position was
monitored throughout the recoding using the HPI coils.
Particularly small children were seated on a booster seat
to ensure that their head was optimally positioned within
the scanner helmet. For the resting state data acquisition,
children were instructed to close their eyes, let their mind
wander and not think of anything in particular for the
duration of the scan. Data acquisition lasted 9 minutes.
All children were monitored by video camera throughout
the scan, and no child reported having fallen asleep
during the scan.
External noise was removed from the MEG data using

the signal space separation method, and adjustments in
head position within the recording were compensated for
using the MaxMove software, both implemented in

MaxFilter version 2.1 (Elekta Neuromag). The MaxFil-
ter software works by mathematically transforming the
data to a set of virtual sensors. This is possible because
the software has very accurate location measurements of
both the MEG sensor array and the subject’s head
position. Because of our continuous recording of each
child’s head position, we could check at each sample of
the MEG recording that the child’s head was accurately
transformed to the standard reference frame – thereby
controlling for any within-session head movements.
Transforming the data to a set of virtual sensors also
allows for the removal of noise emanating from outside
the scanner. This signal space separation method acts to
suppress any activity that does not stem from virtual
channels within the helmet. The data were also down-
sampled to 250 Hz at this stage. The continuous data
were visually inspected and any short sections with large
signal jumps were removed. This is important, because if
left in the data these large signal jumps could have a
detrimental influence on the time-frequency decomposi-
tion. A sensor-space temporal independent component
analysis (ICA) was then used to remove artefacts arising
from blinks, saccades and pulse-related cardiac artefacts
using a combination of metrics and manual inspection.
The temporal ICA was conducted separately for each
subject using fastICA run on the sensor space data, and
then the time course of each independent component
(IC) was correlated with the time course of the VEOG,
HEOG and cardiac channels, respectively. Components
correlating more than Pearson r = 0.1 with any of these

Figure 1 A flowchart of our analysis pipeline. The details of each step are described in the main text.
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were subsequently removed from the data. Components
dominated by 50 Hz noise were removed to reduce the
impact of interference from mains electricity.

MEG source reconstruction (beamformer)

Each subject’s MEG data were co-registered to a
standard MNI template using the digitized scalp loca-
tions and fiducials via an iterative closest point algo-
rithm using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).
Prior to beamforming the data were bandpass-filtered
to focus only on the slower frequencies (theta: 4–7 Hz;
alpha: 8–13 Hz; and beta: 14–30 Hz); previous work has
shown that these slower frequencies are better for
exploring functional connections with MEG, and
increase discrimination between spurious and genuine
connectivity (Luckhoo, Hale, Stokes, Nobre, Morris,
Brookes et al., 2012). For each subject, source space
activity was estimated at every vertex of an 8 mm grid
covering the entire brain, using a linearly constrained
minimum variance beamformer (Van Veen, van Dron-
gelen, Yuchtman & Suzuki, 1997). The beamformer
combined information from both the magnetometers
and planar gradiometers while taking into account the
reduced dimensionality of the data introduced by the
signal space separation algorithm (Woolrich, Hunt,
Groves & Barnes, 2011). Beamforming constructs a set
of spatial filters which are applied to the sensor data to
reconstruct the signal at each grid point throughout the
brain, with the aim of achieving unit bandpass response
at the grid point while minimizing the variance passed
from all other locations. The process can be repeated
across all grid locations to achieve a whole-brain source
reconstruction.

Amplitude envelope estimation, down-sampling and
concatenation

Once we had a dataset that contained source-projected
oscillatory data, the amplitudes of those oscillations were
estimated via computation of the absolute value of the
analytic signal, which was found using a Hilbert Trans-
form. In essence, this yields an estimate of instantaneous
signal amplitude at each voxel, at each of our frequencies
of interest. The envelope time series for every voxel was
then effectively low-pass filtered by dividing each enve-
lope time course into 1s windows and averaging within
those windows (Brookes et al., 2011, who also used the
same frequencies of interest as we used here). Both
beamformer-weights-normalized and non-beamformer-
weights-normalized envelopes were estimated for use in
the subsequent group-level (general linear model) analy-
sis (Luckhoo, Brookes & Woolrich, 2014). Spatial

smoothing was also applied to the down-sampled enve-
lope estimates (FWHM 5 mm).

Once we had down-sampled amplitude envelopes for
all source space voxels and all subjects, we temporally
concatenated the beamformer-weights-normalized enve-
lopes across all children to produce one continuous data
set that contained all children’s data, adjoined end-to-
end.

Following these steps, we analysed our MEG data in
two ways. First, we used a temporal ICA to explore the
presence of RSNs in our group of children, without
providing any prior spatial information as to the likely
constitution of the networks. Second, we identified three
particular networks of interest, using spatial information
from an independent fc-fMRI dataset, and extracted
electrophysiological information from those networks
using a dual regression technique. Using this combined
fc-fMRI / MEG analysis we could then explore func-
tional connections between other brain systems and
these networks on the basis of this electrophysiological
information. Finally, the whole-brain maps produced for
each child using this technique could be entered into a
GLM in order to explore whether differences in connec-
tivity at rest are associated with individual differences in
WM capacity.

Temporal ICA

Our first type of analysis, the temporal ICA, was
performed using fastICA, in which the data were reduced
to 25 dimensions using a principal component analysis
(PCA), and then divided into 25 temporally independent
time series (Luckhoo et al., 2012). An ICASSO algo-
rithm carried out 30 iterations of the fastICA (Hyv€ari-
nen, 1999) before clustering the results, in order to
overcome the issues due to random initializations in the
ICA. These 25 independent time series were each
converted into covariance spatial maps by estimating
the covariance between each independent time course
and the down-sampled amplitude envelope time course,
concatenated across subjects, associated with each voxel.
That is, the maps show the extent to which each voxel
covaries with a particular component, and therefore each
map provides the spatial distribution of each component.
In essence, this ICA method identifies brain regions with
a similar temporal structure to their oscillatory enve-
lopes, implying that their activity is coordinated at rest.

Using fc-fMRI seed networks and a general linear model
(GLM)

Here we tested whether variability in some particular
seed RSNs would relate to individual differences in
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memory capacity using a multi-subject group GLM. We
used an independent set of 20 canonical RSNs as a basis
set for this analysis from a recent fc-fMRI study of RSNs
in adulthood (Smith, Miller, Moeller, Xu, Auerbach
et al., 2012; see Figure 2). The advantage of choosing
networks a priori from this independent data set is that it
utilizes the stronger spatial information in fc-fMRI,
providing a well-identified standard set of RSNs. Within
this set of canonical RSNs we then only looked for
differences over subjects in the left and right lateral
fronto-parietal and bilateral fronto-parietal networks.
We chose these networks a priori because they represent
our best approximation of those cortical networks
particularly responsible for cognitive control in adult-
hood. It is possible that better expression of, and / or
communication with, adult end-state cognitive control
networks is associated with enhanced STM/WM in
childhood. We therefore tested whether differences in
these networks, or in the areas that communicate with
them, might explain individual differences in memory
capacity across children.
To extract subject-specific maps for each of the

fc-fMRI networks, we performed a MEG-adapted dual
regression (DRMEG) analysis (Luckhoo, 2014), analo-
gous to the dual regression approach developed for use
in fMRI data (Filippini, MacIntosh, Hough, Goodwin,
Frisoni et al., 2009). In the first stage of DRMEG, we
performed a spatial regression of the fc-fMRI network
maps on the concatenated beamformer-weights-normal-
ized envelopes to yield concatenated network time
courses. In the second stage, we broke these concatenated
time courses into subject-specific blocks. For each

subject, we performed a temporal regression of the
network time course segment from the non-beamformer-
weights-normalized downsampled envelopes. This gave a
spatial map for each RSN that is specific to each subject,
but critically has an unbiased estimate of the true
variance of activity for that RSN, which is essential for
all subsequent multi-subject statistics (Luckhoo et al.,
2014). The result of the dual regression was that for each
subject and candidate network we obtained a whole-
brain map that corresponded to each voxel’s strength
within that network.
We used our two non-standardized composite WM

scores as two subject-wise regressors. Each of these was
de-meaned and then used in a subject-wise GLM, where
they were regressed onto the subject-wise data for each
of our candidate networks. This regression was repeated
separately for every voxel. For each measure we tested
for significant effects in the raw scores over and above a
control regressor of age in months – i.e. we measured the
variance explained by each cognitive ability regressor
over and above that explained by age. We also included
gender as a regressor in the model, because previous
research has shown that this too can account for some
differences across children (Reiss, Abrams, Singer, Ross
& Denckla, 1996; Speck, Ernst, Braun, Koch, Miller
et al., 2000). In short, we used the following linear
model: connectivity at each voxel equals beta1 * Verbal
WM + beta2 * Spatial WM + beta3 * Age + beta4 *
Gender + noise. The beta values from this model were
then used to explore the neural impact of each of our
cognitive measures, while controlling for the effect of age.
The outcome was that for each of our networks we had a
whole-brain dataset in which we had estimated the linear
contribution of both spatial and verbal WM scores (as
indexed by the corresponding beta values from the
model), while controlling for age. We adopted a standard
procedure for testing the hypothesis that there are no
significant clusters of voxels. We identified clusters of
contiguous voxels where the output of the voxel-wise
GLM was greater than t = 2.3. This value is essentially
arbitrary, since it is the subsequent permutation process
that actually tests for significance. We chose this value
because it is that most routinely used in functional
imaging experiments (e.g. http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Cluster). Once we had identified the size of these
clusters we conducted a sign-flipping permutation pro-
cedure to produce a null distribution, using 5000
permutations. We were then able compare the size of
each result to this null distribution thereby identifying
the relative alpha level and producing a p-value. This
non-parametric permutation approach has a number of
advantages relative to more traditional approaches to
significance testing with electrophysiological data: first,

Figure 2 Three networks of interest selected a priori from the
adult literature. These particular spatial maps were taken from
a study using a spatial ICA with fc-fMRI (Smith et al., 2012).
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it makes no a priori assumptions about when or where
effects are likely to be apparent; second, this approach
accounts for multiple comparisons over space and time,
which can result in an uncontrolled false positive rate if
uncorrected (Kilner, 2013). To summarize: the result of
this GLM analysis is that it identifies areas within the
candidate networks whose inclusion positively or nega-
tively covaries with individual differences in WM, and
that these results are fully corrected for multiple com-
parisons at a whole-brain level.

Results

Cognitive assessments

Our sample of children had the following standardized
mean scores: Verbal STM – 113.5 (SD = 18.2); Verbal
WM – 104.9 (SD = 16.4); Spatial STM – 105.5 (SD =
17.3); Spatial WM – 111.6 (SD = 14.9). We subsequently
averaged the two spatial and two verbal measures
because they were highly correlated across the 31
children [Pearson correlations: Verbal – r(31) = 0.703,
p < .001; Spatial – r(31) = 0.473, p = .007]. We used a
dependent-samples Fisher r-to-z transform to test
whether these two correlations differed significantly,
and they did not [z(31) = 1.344, p = .1789]. These
composite verbal and spatial memory scores were later
used to explore the relationship between functional
connectivity and WM capacity.

Temporal ICA result

The temporal ICA produced 75 temporally independent
components (25 per time frequency band). These were
then converted into spatial maps, as described in the
Methods Section, and a number of these matched closely
with typically reported RSNs identified in MEG and
fMRI in adults (Brookes et al., 2011). We employed the
following procedure for identifying these matches. First
we calculated the spatial cross-correlation, using the FSL
tool fslcc, between our MEG maps within each fre-
quency band and the set of candidate MRI maps
previously derived using fc-fMRI (Smith et al., 2012).
These cross-correlations provide information about the
degree of spatial overlap between the maps derived using
standard procedures with fc-fMRI, and those derived
using the dynamic temporal structure of oscillatory brain
activity in MEG. The MEG map which best matched
the fc-fMRI counterpart was selected. The correspond-
ing cross-correlation value was then converted into a
non-standardized z statistic, such that we could calculate
a p-value for the cross-correlation.

We also tested the significance of our correlations with
a second non-parametric permutation approach, which
controlled for the effect of choosing the best match over
75 maps. In each case we selected the best matching
MEG map, and randomly shuffled the allocation of
voxel-wise values across the brain. The process was
repeated 75 times, in each case spatial smoothing was
applied (5 mm FWHM), to produce a set of 75 random
MEG maps. The spatial cross-correlation between each
of these and the candidate fc-fMRI map was then
calculated and the map with the strongest match chosen –
just as we had with our real MEG maps. This process
was repeated 5000 times in order to produce a null
distribution, which characterized the strength of spatial
cross-correlation that would be expected when having 75
random maps and selecting the best match. We could
then compare the spatial cross-correlation from our real
map to this distribution to test whether the strength of
association is greater than we would have expected by
chance (pperm < .05).

Following this approach, in the beta band we were able
to identify a component with separate nodes in the right
hemisphere frontal and parietal cortex [r = 0.35,
z = 0.3654, p < .001, pperm < .001], and another compo-
nent with a distinct node in the left hemisphere frontal
cortex [r = 0.25, z = 0.2554, p < .001, pperm < .001]. In the
alpha band we observed a component with a node in
anterior cingulate cortex [r = 0.34, z = 0.3541, p < .001,
pperm < .001]. We also observed a component in the theta
band which included a more superior portion of the
parietal and frontal lobes [r = 0.38, z = 0.4001, p < .001,
Pperm < .001]. In addition to these different components
incorporating different parts of the frontal lobe, we also
identified a cerebellar component (beta band) [r = 0.48,
z = 0.5230, p < .001, pperm < .001], an early visual
component (theta band) [r = 0.33, z = 0.3428, p < .001,
Pperm < .001] and a sensorimotor component (beta band)
[r = 0.39, z = 0.4118, p < .001, pperm < .001]. Figure 3
shows the MEG maps and their fc-fMRI counterparts.
From this we can see that some of the networks, while
present, are poorly defined in children relative to adults
(Brookes et al., 2011). This is especially the case for the
left hemisphere fronto-parietal network. There are also
notable absences – the default mode network and the
posterior parietal cortex component. In the former case
this may not be surprising given that prior fMRI work has
shown that this can be fragmented at this age (de Bie et al.,
2012). In the latter case therewere significant matches, but
these were also matches with other networks that incor-
porated portions of posterior parietal cortex, implying
that we did not have the spatial precision with this data set
to distinguish this component from others. As such the
matches that we report above represent the strongest
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unique matches. It is important to note that any apparent
differences between children and adults (Brookes et al.,
2011) would need to be tested directly with a single dataset
that contains both age groups.

Combined fc-fMRI /MEG and GLM result

In addition to exploring the presence of RSNs using the
temporal ICA, without any spatial constraint, we also
defined three a priori seed networks of interest for a
comparison across individuals. These were three fronto-
parietal networks derived using a spatial ICA in fMRI
data (Smith et al., 2012). We used the dual regression
approach described in the Methods section to fuse this
spatial information with the electrophysiological activity
from the MEG. We could then calculate whole-brain
maps for each child that expressed the degree of
connectivity with these networks. These maps were then
submitted to a GLM to test for any connectivity
differences that mirrored individual differences in WM
capacity. The connectivity pattern between a lower-level
processing area and one of these networks in the alpha
band significantly mirrored individual differences in
spatial WM. The strength of the correlation between
the nodes of the bilateral fronto-parietal network (shown
in Figure 2) and a cluster of voxels that included a

section of inferior left temporal cortex (close to area IT),
stretching to the tip of the posterior cingulate cortex,
significantly predicted a child’s spatial WM capacity, as
measured outside the scanner. This effect survived our
whole-brain correction for multiple comparisons
(pcorrected = .0280). This can be seen in Figure 4. To
illustrate the reason for this significant effect we have
plotted the correlation between connectivity and age-
standardized spatial WM capacity at two voxels, one in
posterior cingulate cortex (MNI = �2, �60, 24) and the
other in area IT (MNI = �50, �48, �14), which can be
seen in Figure 4. Another reason for plotting these
correlations is to confirm our GLM analysis, which does
not use age-standardized scores per se, but uses raw
scores and controls for age using a separate regressor of
age in months. When plotting these correlations, one
particular child was marked as an outlier because their
spatial WM score of 76.5 was more than two standard
deviations (13.44) below the mean (108.21) of the rest of
the sample. In Figure 4 the regression line is plotted both
with (solid line) and without (dashed line) this child
included. Note that the plotting of this correlation does
not affect the child’s inclusion in the actual analysis – the
temporal ICA and GLM both include this child. No
other effects survived the whole-brain correction for
multiple comparisons.

Figure 3 Spatial maps of RSNs derived from our source space-projected MEG data, alongside the associated spatial map from
fc-fMRI (Smith et al., 2012). The r-values correspond to cross-correlations between the two maps for each modality. The MEG maps
show covariance between the temporally down-sampled Hilbert envelope at each voxel and the time course of that particular
temporally independent component. These maps include an early visual component (theta band), the Anterior Cingulate Cortex
(alpha band), a right-hemisphere fronto-parietal network (beta band), a left-hemisphere fronto-parietal component (beta band), a
bilateral fronto-parietal network (theta band), a sensory motor component (beta band) and the Cerebellum (beta band). For
visualization purposes, each MEG spatial map is thresholded at 2.3. Each fc-fMRI map is thresholded at 5. Where the component
maps are of cortical areas they are depicted on cortical renderings, whereas where they include non-cortical areas (i.e. the
Cerebellum) they are shown on whole-brain images.
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An interesting issue that we return to in the Discussion
section is the lack of effect of verbal WM. This was
included in the model in just the same way as spatial
WM, but the parameter corresponding to this did not
significantly relate to individual differences in connec-
tivity in our seed networks. To check whether this
resulted from being included in a model alongside spatial
WM we repeated our analysis pipeline but including
verbal WM in a model without spatial WM. However,
this produced the same result – there was no significant
relationship between individual differences in connectiv-
ity with our three seed networks and verbal WM.

Discussion

The current study aimed to take the first steps in using
source space-projected MEG data to explore the elec-
trophysiological underpinnings of resting state func-
tional connectivity in childhood. We used the temporal
structure of the neural oscillations to parcellate the
developing brain into temporally distinct networks,
which were identifiable as a number of RSNs that are

widely reported in adults. We then combined the spatial
information from an fc-fMRI analysis with the dynamic
electrophysiological information from MEG to examine
how this connectivity was related to WM capacity in
childhood. We defined fronto-parietal networks in fc-
fMRI and used the temporal structure of the neuronal
oscillations in these networks to explore their variable
coordination with other areas in the developing brain.
Electrophysiological coordination between one particu-
lar bilateral fronto-parietal network and a set of lower-
level processing areas covaried with a child’s spatial WM
capacity, as measured outside the scanner. These findings
confirm the usefulness of MEG in extracting richly
informative neurophysiological data for functional con-
nectivity analysis, and that this information can be used
to explore the intrinsic processing limits that may be
associated with differences in WM capacity.

In this study we demonstrated the feasibility and
utility of using MEG to investigate resting state func-
tional connectivity in childhood. Methods for studying
invasive electrophysiological recording in humans and
non-human primates have demonstrated the informative
data that can be obtained by directly measuring dynamic

Figure 4 The results of the voxel-wise GLM procedure. The green area shows a region of the bilateral fronto-parietal network that
covaried significantly with a child’s spatial WM; the greater the connectivity between this region and the rest of the network, the
greater the child’s composite spatial WM score (pcorrected < .05). The green region spans a section of visual cortex, stretching from the
posterior cingulate cortex to area IT. To illustrate the relationship between connectivity in these areas this figure also shows the
correlation between connectivity (indexed by normalized T scores) in posterior cingulate cortex or area IT and age standardized
spatial WM scores (Pearson r = 0.48, and r = 0.45, respectively). In both cases one child was left out of the correlation because their
composite spatial WM score was an outlier, being more than two standard deviations below the mean. This child is the blue data
point in each scatter plot. In each scatter plot the regression line was calculated with (solid line) and without (dashed line) this child.
Note that the child was only designated as an outlier for the purposes of plotting this correlation – for the actual temporal ICA and
GLM analysis the child was included.
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patterns of neural activity across brain regions (see
Engel, Fries & Singer, 2001, for a review). However this
direct recording approach does not currently allow the
researcher to explore networks across multiple broad
systems, and is not suitable for use with most human
volunteer populations. Source-projected MEG data
obtained in this study allowed us to investigate this
spatially and temporally rich electrophysiological infor-
mation using a measure of neural activity at a systems
level. We used temporal ICA as a blind source-separation
technique, decomposing the mixture of signals into
distinct components. Importantly, we did not specify
any spatial information for this part of our analysis, with
the spatial distribution of the networks being an emer-
gent property of the underlying temporal pattern of the
electrophysiological activity. In addition to assaying the
electrophysiological nature of the underlying networks,
the method is relatively assumption-free and not at all
dependent upon a choice of regions of interest. We
demonstrated the validity of this approach in our first
analysis, using it to successfully derive RSNs similar to
those reported in the fc-fMRI literature.
The use of a beamformer in the current study, as a

means of projecting sensor-level recordings into source
space, marks another substantial difference relative to
previous developmental studies of resting state activity.
Projecting sensor data into source space allowed us to
explore RSNs at the level of cortical neuroanatomy and
investigate networks in the spatial dimension. The
beamformer acts to suppress spatially separate but
temporally correlated sources – that is, the beamformer
is biased against identifying highly temporally correlated
sources. This latter characteristic helps this analysis
pipeline mitigate a common problem in performing
connectivity analyses on electrophysiological data –
signal leakage, the mischaracterization of one source as
two connected sources (Schoffelen & Gross, 2009). This
might intuitively make beamforming seem like an
extremely conservative tool for exploring functional
connectivity. However, our analysis depended upon the
temporally down-sampled Hilbert envelope of the raw
source-projected signal, rather than the raw oscillatory
signal itself. This means that connected sources can be
out of phase with one another, ruling out signal leakage
as a cause, but their envelopes could still be highly
correlated, meaning that these connections can still be
detected using this analysis pipeline.

The electrophysiological underpinnings of RSNs in
childhood

Our MEG-based investigation identified left and right
hemisphere fronto-parietal, anterior cingulate, sensori-

motor, visual, frontal and cerebellar components in
resting state. These networks show a significant simi-
larity to RSNs previously observed in both develop-
mental and adult fc-fMRI studies. The purpose of this
exploratory analysis of the oscillatory data was to
demonstrate, for the first time, the feasibility of using
MEG to measure the electrophysiological basis of
resting state connectivity in childhood. A limitation of
the current study is that we only explore these networks
within a relatively narrow age range. While this enables
us to explore individual differences without gross
structural differences in neuroanatomy, this does limit
the conclusions that we can draw about the develop-
ment of these electrophysiological mechanisms. While
we observed apparent differences between the RSNs of
children and adults, future studies are now needed to
build upon this proof-of-concept and test directly for
these developmental differences (e.g. Cheour, Imada,
Taulu, Ahonen, Salonen et al., 2004). While there will
be further technical challenges to overcome in compar-
ing across children, adolescents and adults of large age
differences, an added benefit of this approach is that it
will enable us to tease apart developmental and
individual differences in connectivity, which is theoret-
ically very important. A second limitation is that this is
not a fully multi-modal dataset. There may be sensitiv-
ity differences between the technique that we apply and
others. To address this fully we need to acquire a full
multi-modal dataset, with both BOLD-based and MEG
measures, in order to provide a full comparison of
methods across the age span.
There are many interesting questions pertaining to the

electrophysiological basis of functional connectivity in
childhood which could now be explored using the
method described; these include the impact of develop-
ment, differences across populations of interest, and the
impact of interventions. The purpose of this part of our
analysis was to provide the first demonstration that
MEG data can be usefully applied in future to address
these questions. We then apply this approach to address-
ing one particularly relevant question – how do neuro-
physiological mechanisms of connectivity mirror
differences across children in well-validated, education-
ally relevant, measures of cognition?

Inter-subject variability in functional connectivity and
cognitive ability in childhood

As networks supporting advanced cognitive processing
are still undergoing maturation during childhood and
are highly variable between individuals, it is of interest
to investigate how this network variability might relate
to cognitive ability in childhood. Cognitive or executive
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control is responsible for the optimization and regula-
tion of cognitive processes, and is a pertinent example of
why functional connectivity is so important for typical
brain functioning. Individuals frequently encounter
tasks in daily life that demand a considerable degree
of cognitive control, such as when employing WM, and
this requires them to organize and maintain multiple
pieces of information, often while ignoring distraction
or when at the limits of their maintenance capacity
(Baddeley & Hitch, 1974; Astle, Nobre & Scerif, 2012b).
The deployment of control during these tasks depends
upon functional connections that can communicate
evolving task goals to those areas of the brain that
are processing the relevant sensory input. However,
there have been almost no studies of resting state
connectivity differences and cognition in childhood and
none using MEG in source space, a situation we sought
to redress. Our combined fc-fMRI and MEG analysis
revealed that variability in functional coordination
between a bilateral fronto-parietal network and
lower-level processing areas, including inferior temporal
cortex, covaries with spatial WM capacity. This rela-
tionship cannot be explained by differences in strategy
or motivation, since the children were at rest, nor can it
be explained by basic differences in vasculature across
the children, since we used measures directly related to
neural activity. In short, we identified a core physiolog-
ical characteristic of this network that mirrors a child’s
spatial WM ability.

The specific network implicated here includes bilateral
superior parietal cortex and middle frontal gyri (the
frontal eye fields (FEF)). These areas are typically
associated with both covert and overt spatial attention
processes (e.g. Schwartz, Vuilleumier, Hutton, Maravita,
Dolan et al., 2005; Taylor, Nobre & Rushworth, 2007),
but have also been implicated in a number of other
cognitive control mechanisms such as task-switching
(Astle, Nixon, Jackson & Jackson 2012a). Recent
research with non-human primates has shown that
electrophysiological signals in FEF can be reflected in
visual processing areas, including V4 and area IT, when
attentional control mechanisms are recruited (Grego-
riou, Gotts, Zhou & Desimone, 2009). The current study
demonstrated the utility of MEG recordings for mea-
suring these electrophysiological mechanisms in child-
hood, and moreover, that the degree of intrinsic
connectivity between this control network and these
sensory processing areas is predictive of spatial WM
capacity across children. Our findings might therefore
reflect the network dynamics that play a key role in
successful cognitive performance during a WM task; that
is, the intrinsic functional connection between frontal
and parietal regions and regions within inferior temporal

cortex at rest forms a critical pathway for communica-
tion, and stronger connectivity at rest may subsequently
result in improved communication during WM perfor-
mance. However, this final causal mechanism remains to
be tested, and a necessary complementary step would be
to combine these functional network analyses with a
task-positive dataset (e.g. Astle, Luckhoo, Woolrich,
Kuo, Nobre et al., 2014b).

It is noteworthy that we could not identify a similar
intrinsic connection predictive of children’s verbal WM.
There are several possible reasons for this. First, there
could be less consistency in the mechanisms children use
to solve verbal WM tasks. For example, some children
may rely simply upon their basic capacity for retaining
verbal material, whereas others may rely upon chunking
strategies that lend themselves well to retaining verbal
material in serial order (Burgess & Hitch 1999). This
increased variability in mechanism may make it more
difficult to identify significant relationships with intrinsic
connectivity, especially when applying a relatively con-
servative correction for multiple comparisons. Second, it
could be that we simply did not include the correct seed
networks in our analysis. We chose seed networks based
upon their consistent role in control-demanding tasks
(e.g. Lepsien et al., 2005), but it is possible that connec-
tions with other more language-specialized areas (Smith,
Jonides & Koeppe, 1996) would be more closely linked to
verbal WM. A final related possibility is that the diverse
areas responsible for language processing, which might
be recruited for verbal WM, are less detectible using
MEG.

In summary, the current study used the richly infor-
mative electrophysiological information obtained
through MEG to characterize network connectivity at
rest in children, and demonstrated that physiological
differences in communication between discrete cortical
areas and a fronto-parietal network at rest are signifi-
cantly related to individual differences in spatial WM.
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