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Background: Mitophagy is closely related to cancer initiation and progression.

However, heterogeneity with reference to mitophagy remains unexplored in

pancreatic adenocarcinoma (PAAD).

Materials and methods: We used Reactome database to download the

mitophagy-related, glycolysis-related and cholesterol biosynthesis-related

signaling pathways. Unsupervised clustering using the

“ConsensusClusterPlus” R package was performed to identify molecular

subtypes related to mitophagy and metabolism. Prognosis-related

mitophagy regulators were identified by univariate Cox regression analysis.

Receiver operating characteristics (ROC) and Kaplan-Meier (K-M) survival

analyses were used to assess the diagnostic and prognostic role of the hub

genes and prognosis risk model. Weighted gene co-expression network

analysis (WGCNA) was utilized for screening the mitophagy subtype-related

hub genes. Metascape was utilized to carry out functional enrichment analysis.

The “glmnet” R package was utilised for LASSO, and the “e1071” R package was

utilised for SVM. Chemotherapeutic drug sensitivity was estimated using the R

package “pRRophetic” and Genomics of Drug Sensitivity in Cancer (GDSC)

database. The nomogram was established by the “rms” R package.

Results: Three distinct mitophagy subtypes (low, high and intermediate) of

PAADwere identified based on the landscape ofmitophagy regulators. The high

mitophagy subtype had the worst prognosis, highest mRNA expression-based

stemness index scores and most hypoxic environment compared to the other

subtypes. Additionally, glycolysis and cholesterol biosynthesis were significantly

elevated. Three mitophagy subtype-specific gene signatures (CAST, CCDC6,

and ERLIN1) were extracted using WGCNA and machine learning. Moreover,

PAAD tumours were insensitive to Erlotinib, Sunitinib and Imatinib in the high

mitophagy subtype and high CAST, CCDC6, and ERLIN1 expressed subtypes.

Furthermore, CAST, CCDC6, and ERLIN1 affected immune cell infiltration

(M1 and CD8Tcm), resulting in the altered prognosis of patients with PAAD.
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A nomogram was constructed to screen patients with the low mitophagy

subtype, which showed a higher sensitivity to chemotherapeutic agents.

Conclusion: Based on various bioinformatics tools and databases, the PAAD

heterogeneity regarding mitophagy was systematically examined. Three

different PAAD subtypes having different outcomes, metabolism patterns

and chemosensitivity were observed. Moreover, three novel biomarkers that

are closely associated with mitophagy and have the potential to guide

individualised treatment regimens in PAAD were obtained.

KEYWORDS

pancreatic adenocarcinoma, mitophagy, metabolism, ICGC data portal, the cancer
genome atlas program

Introduction

Pancreatic Adenocarcinoma (PAAD) is the deadliest form of

digestive system cancer, with a 5-years survival rate of less than

10%. PAAD is an aggressive disease and is often diagnosed at an

advanced stage when effective treatment options are lacking

(Ding et al., 2018). Moreover, PAAD is projected to emerge as

the second leading cause of cancer-related death by 2030 (Siegel

et al., 20182018). The treatment-refractory nature of PAAD and

limited clinically-validated biomarkers capable of predicting

treatment response hinder the efficacy of PAAD therapeutics

(Zeng et al., 2019). PAAD is heterogeneous cancer with

distinguishable molecular subtypes and characteristics.

Exploring the molecular subtypes at the transcriptome level

can greatly contribute to the identification of clinically

relevant biomarker signatures and prognostic strata (Collisson

et al., 2019). These findings can aid in the personalisation of

treatment regimens and the development of novel therapeutics.

Mitophagy is the cellular degradation of the damaged

mitochondria via the mechanism of autophagy

(Supplementary Figure S1) (Yoo and Jung, 2018). The

inactivation of mitophagy leads to the accumulation of

dysfunctional mitochondria in tumours. Studies have reported

increased autophagy or mitophagy levels in various cancer types

(Bernardini and LazarouM. Dewson, 2017). Compared to non-

tumour cells, the majority of pancreatic tumour cells

demonstrate highly fragmented mitochondria, which is closely

related to increased mitochondrial fission and mitochondrial

oxidative phosphorylation or glycolysis (Xie et al., 2021).

Therefore, exploring the heterogeneity of mitochondrial

biogenesis and turnover is important for the development of

next-generation PAAD treatments.

One of the most investigated signaling pathways in

mitophagy was PINK1/Parkin pathway. The serine/threonine

PINK1 is the pivotal factor of the PINK1/Parkin pathway.

Usually, the Translocase of the Outer Membrane and

Translocase of the Inner Membrane (TIM) complexes

transport PINK1 to the inner mitochondrial membrane

(IMM) (Rasool et al., 2022). Subsequently, the presenilin-

associated rhomboid-like (PARL) cleaves and degrades

PINK1 on the IMM to maintain low PINK1 levels.

Mitochondrial depolarization, resulting from the damaged

mitochondria, prevents PINK1 translocation, which results in

PINK1 phosphorylation by pyruvate dehydrogenase kinase

isozyme 2 (PDK2) (Shi and McQuibban, 2017). This leads to

PINK1 accumulation at the outer mitochondrial membrane

(OMM) and Parkin, a U3 ubiquitin ligase, recruitment.

PINK1 phosphorylates the serine 65 of Parkin’s ubiquitin-like

domain, promoting its E3 ubiquitin ligase activity. Meanwhile, as

key mitochondrial proteins, MFN1, MFN2, VDAC1, and

Miro1 are ubiquitinated by Parkin to clear the damaged

mitochondria (Glauser et al., 2011) (Chen and Dorn, 2013).

Additionally, PINK1 phosphorylates these ubiquitin chains and

activates Parkin, which leads to the amplification of

mitochondrial phagocytosis signaling. The polyubiquitylation

of the mitochondrial proteins leads to the interaction of the

protein fragments with LC3 to form a complex, which is

mediated by p62 and OPTN. This complex is subsequently

degraded by the autophagic machinery (Wong and Holzbaur,

2014) (Geisler et al., 2010).

Generally, mitophagy suppresses PAAD tumour cell growth

at the initial stage by limiting DNA damage or inflammation,

whereas active mitophagy in the advanced stage promotes

tumour cell survival by limiting cell death or anti-tumour

immunity (Xie et al., 2021). Furthermore, mitophagy affects

the occurrence and development of PAAD via tumour

metabolic reprogramming (Ferro et al., 2020). For example,

mitophagy induces lipid degradation and fatty acid oxidation,

which provides materials for ATP production and thereby

promotes PAAD growth. Moreover, Parkin deficiency

increases mitochondrial dysfunctions, which leads to increased

ROS production and glycolysis (Panigrahi et al., 2020). This

contributes to the Warburg effect and consequently increases

tumorigenesis.

Therefore, mitophagy holds great potential in the

development of PAAD therapeutics. Furthermore, exploring

the tumour heterogeneity of mitophagy will significantly

contributes toward PAAD prevention and treatment.
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Materials and methods

Data acquisition and processing

The clinical information, somatic mutation data and

transcriptomic profiling of the discovery cohort was

downloaded in The Cancer Genome Atlas (TCGA)-PAAD

(Tomczak et al., 2015). In TCGA-PAAD, the 182 tissue

samples were obtained from 176 patients with PAAD.

Moreover, the transcriptome data of normal pancreatic tissue

was obtained from the Genotype-Tissue Expression (GTEx)

database (GTEx Consortium, 2013). The TCGA-PAAD and

GTEx cohorts were merged to create a larger cohort (TCGA

& GTEx) with 171 normal and 179 tumour samples.

Additionally, validation cohorts were acquired from the

International Cancer Genome Consortium (ICGC) database

and Gene Expression Ominbus (GEO) database, including the

PACA-AU cohort, GSE60980, GSE71729 and GSE74629 (ICGC/

TCGA Pan-C ancer Analysis of Whole Genomes Consortium,

2020) (Barrett et al., 2013). Detailed clinical information and

transcriptomic profiles of the validation cohorts were also

downloaded.

Signaling pathway search for mitophagy was retrieved from

Reactome database using the key words: “mitophagy.” Three

pathways (R-HSA-5205647, R-HSA-5205685, R-HSA-8934903)

and 28 mitophagy regulators were obtain (Jassal et al., 2020).

Additionally, Supplementary Table S1 also presented the

information of cholesterol biosynthesis (R-HSA-191273) and

glycolysis (R-HSA-70171) signaling pathways acquired from

the Reactome database.

Identification of mitophagy subtypes

Unsupervised hierarchical clustering using the R package

“ConsensusClusterPlus” was performed to identify the

expression patterns of mitophagy regulators (Wilkerson and

Hayes, 2010). Mitophagy subtypes were acquired by the

following parameter: reps = 50, pItem = 0.8, pFeature = 1,

and distance = Euclidean. By performing unsupervised

hierarchical clustering with the same parameters for all genes

obtain from cholesterol biosynthesis and glycolysis pathways,

different metabolic subtypes in the TCGA-PAAD cohort were

obtained.

Co-expression network construction

Co-expression networks were constructed using the

weighted gene co-expression network analysis (WGCNA) R

package (Langfelder and Horvath, 2008). The transcriptional

profiles of the 9,221 differentially expressed genes between

PAAD and normal tissues were downloaded from the GEPIA

database (|Log2FC| > 1; FDR < 0.01) and used as input files for

WGCNA (Tang et al., 2017). Median Absolute Deviation

(MAD) was computed for each gene and the 50% of genes

having lower MAD were eliminated. The

“goodSamplesGenes” function in the WGCNA R package

was utilised to remove outlier samples and genes.

Subsequently, We performed WGCNA to establish a scale-

free co-expression network based on the transcriptional

profiles after screening. Initially, we used average linkage

method to establish Pearson’s correlation matrices for all

pair-wise genes. Subsequently, we utilized a power function

to build a weighted adjacency matrix. The power function was

as follows:

Aab � |Cab| ∧ β

(Cab = Pearson’s correlation between gene a and gene b; Aab =

adjacency between Gene a and Gene b).

As a soft-thresholding power, the primary role of β was to

emphasize strong correlations between the genes and penalize

weak correlations. The topological overlap matrix (TOM) was

transformed from the adjacency after we chosed the β of 12.

On selecting the power of 12, the adjacency was transformed

into a topological overlap matrix (TOM) (Shuai et al., 2021). We

utilized average linkage hierarchical clustering to partition genes

with similar expression profiles into gene modules after setting

the criterion as the a minimum size (gene group) of 30 and a

sensitivity of 3. Additionally, the modules were merged if the

distance between them was equal to or less than 0.25, which

resulted in 11 modules.

Twomethods were utilised to distinguish the modules closely

linked with the clinical features of interest. Module Eigengene

(ME) was evaluated by calculating the first principal component

of each gene module. MEs represented the expression patterns of

all the genes in module (Weiss et al., 2012). Correlations were

computed between MEs and clinical features to obtain the gene

module most related to themitophagy subtypes. Furthermore, we

performed linear regression between gene expression and clinical

features and calculated the p-value of each gene (lgp) as gene

significance (GS). Subsequently, module significance (MS) was

obtained by calculating the average GS of all genes in the

respective module. MSs were estimated to

incorporate mitophagy subtypes of interest into the co-

expression network.

Pathway and process enrichment analyses

We utilized Metascape web tool to carry out pathway

enrichment analyses (Zhou et al., 2019). Terms were

deemed to be significantly enriched by a p-value < 0.01,

minimum count of 3 and an enrichment factor >1.5. Then,
Metascape web tool estimated the membership similarities

between enriched items and classified them to diferent
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clusters. We evaluated p-value accroding to the accumulative

hypergeometric distribution, and used Benjamini–Hochberg

procedure to obtain q-value. In hierarchical clustering ,we set

the similarity metric as kappa scores = 4, and items with

similarity of >0.3 were recognized as one cluster. We next

showed the enriched terms withe with smallest p values as the

representative for each cluster.

Drug sensitivity prediction

Drug-response prediction was evaluated using the

“pRRophetic” package in R. Furthermore, Ridge regression

was performed using the “pRRophetic” algorithm, which

calculated the half-maximal inhibitory concentration (IC50) of

each patient (Geeleher et al., 2014). Internal cross validation was

carried out with ten-fold cross validation. The Genomics of Drug

Sensitivity in Cancer (GDSC) database was used for the above

calculations (Yang et al., 2013).

Machine learning for the candidate
mitophagy subtype-specific gene
signature

In TCGA-PAAD cohort, the least absolute shrinkage and

selection operator COX (LASSO-COX) and the support vector

machines-recursive feature elimination (SVM-RFE) algorithms

in R package “glmnet” and “e1071,” respectively, were used to

screen candidate MSGSs (Engebretsen and Bohlin, 2019) (Xu

et al., 2021). LASSO-COX compressed insignificant coefficients

to zero via the penalized function. Therefore, this approach

reduced the dimension of the feature space vector.

As a backward sequence selection algorithm, SVM-RFE

stems from the maximum interval principle of SVM. The ten-

fold cross-validation algorithm was used as the resampling

method for SVM-RFE. The average importance of each

feature in each iteration was considered as the final

importance of features (Sanz et al., 2018).

The intersection of the results between the two methods was

used for further analysis.

Analysis of single cell RNA-seq data

Single-cell RNA-seq data of two untreated patients with

PAAD from GSE111672 was selected for further analysis. The

single cell expression profile matrix for GSE111672 was

downloaded from the GEO database. Cell annotation in

GSE111672 was performed using the Tumour Immune Single-

cell Hub (TISCH) database (Sun et al., 2021). A total of 11 cell

types were identified, including acinar, CD8Tcm, ductal,

endothelial, fibroblasts, M1, malignant, monocyte, tprolif and

neutrophils. According to the median levels of MSGSs, samples

in GSE111672 were divided into two groups, which were

dependent on the high or low expression level of MSGSs.

PAAD tissues consist of a mixture of tumour cells and non-

malignant cells; therefore, the proportion of intratumoral non-

malignant cells was compared across different groups.

Tumour-infiltrating immune cell analysis

Based on the RNA-seq data of the TCGA-PAAD cohort, the

Immune Cell Abundance Identifier (ImmuCellAI) web tool was

employed to describe the abundance of 24 immune cell types,

including 18 T-cell subtypes and 6 other immune cells: B cell, NK

cell, monocyte cell, macrophage cell, neutrophil cell and DC cell

(Miao et al., 2020).

ImmuCellAI collected the specific gene sets from previous

studies as gene signatures and acquired the reference expression

profile from the GEO database for each cell type. Subsequently,

ImmuCellAI evaluated the total expression deviation of all

signatures in the input gene expression data matrix compared

with the reference expression profiles of the 24 immune cell

types. Single sample gene set enrichment analysis was performed

to calculate the enrichment score of the gene signature to the

corresponding immune cell type. Moreover, a compensation

matrix was introduced and the weight of the shared genes on

those immune cells was estimated using least square regression to

re-assess their abundance.

ImmuCellAI analysis can be performed on either RNA-Seq

or microarray expression data.

Protein levels of MSGSs in the human
protein atlas database

The HPA was designed to describe all human proteins in

normal or tumour tissues through the integration of various

omics technologies. The data of MSGSs in normal and PAAD

tissues at the protein level were obtained from the HPA database

(Song, Du, Gui, Zhou, Zhong, Mao, et al.).

Statistical analyses

R software (R version 4.0.4) was used for statistical analyses.

p-values were calculated by the nonparametric Wilcoxon test,

which compared between two groups, while the Kruskal–Wallis

test was used for multiple comparisons. The chi-square test was

utilized to examine categorical variables. Kaplan–Meier survival

analysis for overall survival (OS) and progression-free survival

(PFS) was performed between different subgroups, followed by

the log-rank test (Rich et al., 2010). A receiver operating

characteristic (ROC) curve was constructed to assess the
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FIGURE 1
(A) Relative expression level of the mitophagy regulators in the PAAD samples in comparison to the expression of normal pancreatic tissue (red
color represents tumor tissue, and black color represents normal tissue; red asterisk represents a p-value ≤ 0.01). (B) Chromosomal location of
mitophagy regulators. (C) TheCNV variation frequency ofmitophagy regulators in TCGA cohort. The height of the column represented the alteration
frequency (red indicates copy number gain, whereas green indicates copy number loss). (D) Waterfall (oncoplot) plot of the mitophagy
regulators in TCGA cohort.

Frontiers in Cell and Developmental Biology frontiersin.org05

Chen et al. 10.3389/fcell.2022.901207

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.901207


predictive efficacy of the prognostic prediction model

(Mandrekar, 2010). A p-value less than 0.05 was considered

statistically significant.

Results

Landscape and diagnostic role of
mitophagy regulators in pancreatic
adenocarcinoma

The RNA expression data of 179 PAAD samples and

171 normal samples from TCGA and GTEx databases were

analysed using GEPIA. Limma method with FDR <0.01 and |

log2FC| > 1 were chosen as the screening criteria for gene

differential analysis. Notably, 19 mitophagy regulators were

upregulated and one downregulated (ULK1) in PAAD

(Figure 1A).

The position of the mitophagy regulators and their copy

number variation regions are presented in Figure 1B. In the

TCGA-PAAD cohort, CSNK2B and TOMM40 showed

significantly higher CNC gain, whereas PINK1 and

ULK1 showed significantly higher CNV loss (Figure 1C). In

addition, the mutations of the mitophagy regulators were

uncommon in the TCGA-PAAD cohort (6.96%; Figure 1D).

Uniform manifold approximation and projection (UMAP)

dimensionality reduction was performed using the R package

“umap” (version 0.2.7.0) on the transcriptome profiles of the

19 mitophagy regulators that were differently expressed between

PAAD tumours and normal samples. Gene expression profiles

were reduced to two-dimensional space (UMAP1 and UMAP2)

for visualisation. The diagnostic value of UMAP1, UMAP2 in

identifying PAAD and non-tumour samples were determined

using ROC curve analysis (Figure 2). In the TCGA & GTEx

cohort, the area under the curve (AUC) of the ROC curve for

UMAP1 and UMAP2 was 0.808 and 0.963, respectively. Further

verification of the diagnostic abilities of the mitophagy regulators

on PAAD using UMAP analysis in the GSE60980, GSE71729 and

GSE74629 datasets showed similar results.

Construction of an mitophagy-related
prognostic model for pancreatic
adenocarcinoma patients

Excluding patients who had less than 3 months of follow-up

in the TCGA-PAAD cohort (n = 10), the prognostic value of

mitophagy regulators in terms of OS was evaluated using

univariate COX analysis (Supplementary Figure S2A;

Supplementary Table S2). Among the all mitophagy

regulators, three genes were risk factors (SRC, VDAC1, and

MFN1) and two were protective factors (MAP1LC3A and

ULK1) for PAAD prognosis. Based on the expression profiles

of the above 5 prognosis-related mitophagy regulators, LASSO

analysis further identified four genes (SRC, MFN1, MAP1LC3A

andULK1), which were ultimately used in the construction of the

prognostic model (Supplementary Figure S2B). The formula for

the prognostic model was:

Riskscore � ( − 0.297pMAP1LC3A exp.)

+ (−0.232pULK1 exp.) + (0.219pSRC exp.)

+ (0.075pVDAC1 exp.)

Based on this formula, the risk score of each patient in the

TCGA-PAAD cohort was computed and ranked. The patients

were classified into the high-risk or low-risk group according to

the median value. The K–M curve indicated a high level of risk

score suggesting a poor prognosis (Log rank p-value = 0.0035;

Supplementary Figure S2C). The ROC curve for 5-years OS

indicated an outstanding predictive value (AUC: 0.86) of this

prognostic model (Supplementary Figure S2D).

Description of mitophagy subtypes in
pancreatic adenocarcino

This study used unsupervised clustering to classify PAAD

into three diverse molecular subtypes (cluster A, cluster B and

cluster C) based on the mitophagy regulators via the R

package “ConsensusClusterPlus” (Figure 3A). Twenty-six

mitophagy regulators were included into unsupervised

clustering analysis after excluding the regulators that could

not be detected in the TCGA-PAAD cohort or whose

expression levels were zero in more than half of the

samples. We observed marked differences in the

transcriptional profiles of the mitophagy regulators among

the three different molecular subtypes (Figure 3B).

Furthermore, the OS and PFS of PAAD patients were

analysed performing the K–M survival curves. Survival

analyses indicated that the median survival of cluster A was

2.02 years; cluster B, 1.66 years; cluster C, 1.30 years.

Moreover, patients in cluster C had a significantly worst

prognosis than the other subtypes (log rank test; p = 0.04;

Figure 3C). Additionally, patients in cluster B had the shortest

PFS (Figure 3D ). Heatmap of the three mitophagy subtypes of

PAAD using the 26 mitophagy regulators revealed distinct

gene expression patterns (Figure 3E). Stage, age, gender and

new events were utilized as patient annotations. Chi-square

tests indicated that stage, age, gender, and new events did not

differ significantly in the three subtypes. The highest gene

expression levels of most mitophagy regulators appeared in

cluster C, followed by cluster A and then cluster B

(Supplementary Figure S3A). Therefore, the samples were

denoted as low mitophagy (cluster B), high

mitophagy (cluster C) and intermediate mitophagy (cluster

A) subtypes.
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Unsupervised clustering analysis was also performed in the

validation cohort (ICGC-PACA-AU) following the same

workflow. Similarly, samples in the validation cohort cluster were

separated into three clusters (Supplementary Figure S3B). A

significant difference was observed in prognosis among the three

clusters (Supplementary Figure S3C). The expression patterns of the

26 mitophagy regulators were similar to that of the TCGA-PAAD

cohort (Supplementary Figure S3D).

FIGURE 2
UMAP cluster representation of different mitophagy regulators expression patterns. ROC plot for diagnostic accuracy of UMAP1 and UMAP2 in
TCGA & GTEx cohort,GSE60980,GSE71729 and GSE74629.
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Characteristics of different Mitophagy Subtypes:

Hypoxia, cancer stem cells (CSCs) and Metabolic

Alterations.

To evaluate the difference in prognosis in the TCGA-PAAD

cohort, hypoxia level, CSCs and metabolic patterns were

compared among the three mitophagy subtypes.

FIGURE 3
Identify different mitophagy subtypes in TCGA-PAAD. (A) Consensus matrices of the TCGA-PAAD cohort for k = 3. (B)Complete transcriptome
profiles ofmitophagy regulators are reduced to UMAP1 and 2 for visualization in TCGA-PAAD cohort. K-M analyses of OS (C) and PFS (D) for different
mitophagy subtypes in TCGA-PAAD. (E) Heat map comparing expression levels of mitophagy regulators among the 3 mitophagy subtypes.
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The mRNA expression-based stemness index (mRNAsi)

of all patients in the TCGA-PAAD cohort was downloaded

from the study by Malta et al. mRNAsi can be used to evaluate

the dedifferentiation potential of tumour cells; therefore, it is

considered as a marker of CSCs. The median mRNAsi score

was the lowest in cluster B, with no significant difference in

mRNAsi scores between clusters A and C (Figure 4A).

Moreover, HIF1α, a hypoxia marker, expression levels

FIGURE 4
Difference in mRNAsi level (A) and HIF1A (B) gene expression level according to mitophagy subtypes. Identify different metabolic subtype. (C)
Consensusmatrices of the TCGA-PAAD cohort for k= 3. (D)Heatmap comparing expression levels of cholesterol biosynthesis and glycolysis related
genes among the 3 mitophagy subtypes. (E) The proportion of metabolic subtypes in the three mitophagy subtypes, p values were from the chi-
squared test (Intermediate subtype, blue; suppressive subtype, red; stimulatory subtype, green).
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were evaluated in the three mitophagy

subtypes, revealing a significant increase in cluster C

(Figure 4B).

We performed unsupervised hierarchical clustering based on

ninety-seven major regulators of cholesterol biosynthesis and

glycolysis. Then we identified three metabolic subtypes in the

FIGURE 5
Determination of soft-threshold power in the WGCNA. (A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of
the mean connectivity for various soft-threshold powers. (C) Clustering dendrogram of 176 samples. Identification of modules closely associated
with mitophagy subtypes. (D) Dendrogram of all differentially expressed genes clustered based on the measurement of dissimilarity (1-TOM). The
color band shows the results obtained from the automatic single-block analysis. (E) Heatmap of the correlation between the module
eigengenes and mitophagy subtype of PAAD. A scatterplot of gene significance (GS) for high mitophagy subtype (cluster C) versus module
membership (MM) in the darkturquoise module (F) and gery60 module (G).
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TCGA-PAAD cohort (intermediate, suppressive and stimulatory;

Figures 4C,D). The gene expression patterns for ninety-seven major

regulators of cholesterol biosynthesis and glycolysis in the TCGA-

PAAD cohort were presented in Figure 4D. Cluster A, the

intermediate mitophagy subtype, demonstrated a significantly

high level in the intermediate metabolic subtype (70%; Chi-

square test p-value < 0.0001). Conversely, a significantly greater

proportion of stimulatory metabolic subtype was observed in cluster

C (Chi-square test p-value < 0.0001). A large proportion of the

suppressive subtype was observed in cluster B; however, the

stimulatory metabolic subtype was not observed in cluster B

(Chi-square test p-value < 0.0001; Figure 4E).

Construction of weighted Co-expression
network construction and the
identification of key modules

The transcriptional profiles of the 9,221 genes in the 178 tumour

samples of PAADwere utilised to establish the co-expressionmodule

using the WGCNA R package. Power value is a major parameter

affecting the independence and average connectivity degree. Soft

power 12 was used as the soft threshold to construct a weighted

adjacencymatrix (Figures 5A,B). A total of 4,515 genes were assigned

to one of the 11 co-expression modules including the grey module in

the TCGA-PAAD cohort. The results of the cluster analysis on

PAAD samples are demonstrated in Figure 5C. These co-expression

modules are represented using different colours (Figure 5D). The

affiliation of genes tomodules is recorded in Supplementary Table S3.

The module–trait correlations heatmap indicate that the dark

turquoise and grey60 modules were tightly associated with the

mitophagy subtypes (correlation coefficient = 0.79, p-value <
0.0001; Figure 5E). The scatter plot of GS versus module

membership (MM) for the dark turquoise and grey60 modules

are depicted in Figures 5F,G. Correlation analysis suggested a

larger coefficient and smaller p-value for the grey60 module than

the dark turquoise module. Therefore, grey60 was identified as a

characteristic module of the mitophagy subtype.

A total of 800 unique genes comprised the grey60module. Based

on the criteria of |MM| > 0.8 and |GS| > 0.1, 218 genes in the

grey60 module were screened out as hub genes (Supplementary

Table S4).

Metascape web tool carried out the pathway enrichment analysis

based on the 218 hub genes and the top 20 clusters with their

representative enriched terms (one per cluster) are presented in detail

in Supplementary Table S5 (Figure 6A). The enriched terms included

GTPase cycles (R-HSA-9012999, GO:0051056, R-HSA-9013424,

R-HSA-9696264), membrane protein and functions (GO:0007167,

R-HSA-1500931, GO:0006897, hsa04144) and tyrosine kinases and

EGFR signaling pathways (R-HSA-9006934 and R-HSA-177929).

FIGURE 6
(A)Network of enriched terms of hub genes of gery60module by Metascape. Colored by cluster ID, where nodes that share the same cluster ID
are typically close to each other. (B)We evaluated the IC 50 of Erlotinib, Sunitinib and Imatinib, between cluster B and cluster C by performing the R
package “pRRophetic.”
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FIGURE 7
(A) Flow chart of the screening procedure. (B) Variation in gene expression levels of CAST, CCDC6, and ERLIN1 across different mitophagy
subtypes (p-values were calculated by the Kruskal Wallis test). (C) Differences in IC 50 of Erlotinib, Sunitinib and Imatinib evaluated by R package
“pRRophetic” between the high and low groups of CAST, CCDC6, and ERLIN1. Immunohistochemistry analysis of CAST (D), CCDC6 (E), and ERLIN (F)
expression in HPA database.
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Therapeutic potential of mitophagy
subtypes in pancreatic adenocarcino

Erlotinib and Sunitinib are anticancer drugs approved by the

United States Food and Drug Administration for pancreatic cancer

treatment. Erlotinib is a novel, oral, highly selective tyrosine kinase

inhibitor (TKI) of the EGFR, whereas Sunitinib is an oral, multi-

targeted TKI with low molecular weight. As a rationally designed

oral signal transduction inhibitor, Imatinib can specifically target

several tyrosine kinases. Imatinib was approved for the treatment of

chronic myeloid leukaemia and malignant gastrointestinal stromal

tumours. Metascape analysis indicated that the hub genes of the

grey60 module were enriched in the pathways involved in the

anticancer activity of Erlotinib, Sunitinib and Imatinib (R-HSA-

9006934, R-HSA-177929; Figure 6A). Therefore, these three drugs

were focused on as patients from different mitophagy subtypes may

have varied responses to these drugs. The IC50 was evaluated using

the R package “pRRophetic.” Moreover, the treatment response to

Erlotinib, Sunitinib and Imatinib in the TCGA-PAAD cohort was

predicted, wherein low mitophagy (cluster B) subtypes were more

sensitive to Erlotinib, Sunitinib and Imatinib (p-value < 0.05;

Figure 6B) than clusters A and C.

Identification of candidate MSGSs using
machine learning techniques

Two algorithms were used to screen for potential biomarkers

between the low (cluster B) and high (cluster C)mitophagy subtypes

in the TCGA-PAAD cohort. The 218 hub genes in the

grey60 module were used to dimensionality reduction analysis by

the LASSO regression algorithm. A total of 12 variables were

obtained as diagnostic biomarkers (Figure 7A). Eight features

among the 218 hub genes in the grey60 module were also

identified through the SVM-RFE algorithm (Figure 7A). Finally,

the three overlapping features (CAST, CCDC6, ERLIN1) between the

two algorithms were considered as the candidate MSGSs. The three

MSGSs were assessed using the GEPIA database and further

evaluated on their similarity to the primary characteristics of low

or high mitophagy subtypes (Supplementary Figure S4). Gene

expression levels of CAST, CCDC6 and ERLIN1 was upregulated

in PAAD tissues compared with those of the normal tissues. CAST

and CCDC6 high expression indicated a poor prognosis of PAAD.

Additionally, CAST high expression was significantly associated

with worse disease-free survival (p-value = 0.033). Kruskal–Wallis

test indicated that CAST, CCDC6, and ERLIN1 expression levels

were the highest in the high mitophagy (cluster C) subtype and

lowest in the low mitophagy (cluster C) subtype (Figure 7B).

Furthermore, the mRNA expression of CAST, CCDC6 and

ERLIN1 could potentially predict the tumour’s sensitivity to

Erlotinib, Sunitinib and Imatinib. Samples in the TCGA-

PAAD cohort were segregated into two groups according to

the median value for CAST, CCDC6, and ERLIN1. Moreover,

CAST, CCDC6 and ERLIN1 low expression are suggestive of a

lower IC50, indicating their potential as novel indicators for the

drug susceptibility of Erlotinib, Sunitinib and Imatinib

(Figure 7C).

Based on the HPA database, immunohistochemistry

suggested that CAST, CCDC6, and ERLIN1 protein

expression was lower in normal pancreatic tissues but higher

in pancreatic cancer tissues (Figures 7D–F).

Relationship between the tumour
microenvironment and MSGSs

TISCH was used to perform quality control, clustering and

cell-type annotation for the single-cell RNA-sequencing dataset

GSE111672. A total of 11 cell types were identified in GSE111672

(Figure 8A). Samples in GSE111672 were separated into two

groups according to high or low CAST, CCDC6 and

ERLIN1 expressions. Furthermore, the infiltration pattern of

non-cancerous cells between the three groups was compared.

Ductal cells were significantly higher in the high CAST

expression group than that with low CAST. Notably, a higher

percentage of men was observed in the alcohol

group. Furthermore, high percentages of M1 and central

memory CD8+T (CD8Tcm) cells were observed in the low

CAST expression group (Figure 8B). A similar infiltration

pattern of non-cancerous cells was observed in the high/low

CCDC6 expression groups (Figure 8C). Additionally, CD8Tcm

cells were significantly higher in the low ERLIN1 expression

group than that with highERLIN1 expression (Figure 8D).

For further validation of the results, the degree of immune cell

infiltration in the TCGA-PAAD cohort was assessed using the

ImmuCellAI web tool. The results indicated that the high

mitophagy (cluster C) subtype tumours had high immune cell

infiltration levels, whereas the low mitophagy (cluster B) subtype

had low immune cell infiltration levels (Figure 9A). The further

subdivision of central memory T cells could not be achieved using

the ImmuCellAI, thus, only the infiltration of centralmemory T cells

was evaluated. Among the three mitophagy groups, the infiltration

of central memory T cell was highest in the low mitophagy (cluster

B) subtype and lowest in the high mitophagy (cluster C) subtype

(Figure 9B). The high CAST expression group was characterised by

high immune cell infiltration levels and low central memory T cell

infiltration levels (Figures 9C,D). The same characteristics were also

observed in the high CCDC6 and high ERLIN1 groups

(Figures 9E–H).

Novel indicators for screening
chemosensitive patients

The IC50 of Erlotinib, Sunitinib and Imatinib was lower in

the low mitophagy subtype (Cluster B); therefore, patients in
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cluster B were indicated as those who might benefit from

chemotherapy. Other clusters (clusters A and C) were

considered as doubtful or unsuitable for the chemotherapy of

Erlotinib, Sunitinib or Imatinib. Therefore, it is crucial to

accurately triage and identify low mitophagy subtype (cluster

B) PAAD cases early in clinical treatment. Subsequently, based

FIGURE 8
(A) TISCH provides detailed cell type annotation at the single cell level of GSE111672. The proportion of different kinds of non-cancerous cells
infiltrated in the high and low groups of CAST (B), CCDC6 (C), and ERLIN (D). p values were from the chi-squared test.
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on ROC curve analysis, the potential of the three MSGSs as

diagnostic biomarkers for the low mitophagy subtype were

assessed (Figure 10A). ROC curve analyses indicated the

following diagnostic accuracies : CAST (AUC = 0.812),

CCDC6 (AUC = 0.850) and ERLIN1 (AUC = 0.851).

Moreover, a nomogram was established based on the gene

expression of CAST, CCDC6 and ERLIN1 (Figure 10B). This

nomogram was used to assess the probability of being low

FIGURE 9
Differences in the infiltrationscore (A) and the central memory infiltration (B) among the 3mitophagy subtypes (p-values were calculated by the
Kruskal Wallis test). Differences in the infiltrationscore and the central memory infiltration between the high and low groups of CAST (C,D),
CCDC6 (E,F), and ERLIN1 (G,H) (p-values were calculated by the Wilcoxon test).
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mitophagy subtype in PAAD patients. The generation of

nomogram provided a tool for estimating probability of

benefiting from chemotherapy.

Discussion

Mitophagy contributes significantly to the tumour

microenvironment, tumour metabolism and tumour

prognosis. Previous studies have mainly focused on the

associations between individual regulators and cancer

phenotypes, however, the distinct subtypes based on the

overall characterization of various mitophagy regulators

remain insufficiently identified (Zhou et al., 2011) (Sliter et al.,

2018) (Cho et al., 2020). Exploring the distinct mitophagy

alteration patterns in PAAD could aid in understanding the

occurrence and progression of PAAD, inspiring novel and

innovative strategies for its treatment and prognosis.

This study assessed the expression levels of various

mitophagy regulators in normal and PAAD tissues, revealing

that a majority of them were significantly upregulated in the

tumour samples, except ULK1. As a critical initiator of

mitophagy, ULK1 was reported to be downregulated in

various solid tumours (Li et al., 2021) (Deng et al., 2021).

Further exploration indicated that CNV alterations could be

largely responsible for the perturbations of some mitophagy

regulators, particularly ULK1, CSNK2B and

SQSTM1 expressions. Thus, the alterations of CNV in

mitophagy regulators could be a potential underlying cause of

mitophagy heterogeneity. The diagnostic capacity of the

mitophagy regulators in PAAD was evaluated using the

dimensionality reduction of gene expression patterns of

mitophagy regulators, which revealed that UMAP1 and

UMAP2 could be potential diagnostic biomarkers for PAAD

(Marquardt et al., 2021). Furthermore, three independent

datasets were used to validate these results. Some datasets

indicated that UMAP1 and UMAP2 were more valuable for

PAAD diagnosis than several traditional tumour biomarkers

(Chang and Kundranda, 2017).

Mitophagy alteration patterns were explored, which revealed

three distinct molecular subtypes based on the integrated role of

various mitophagy regulators in PAAD. Significant differences in

mitophagy accumulation among the subtypes were observed,

with patients in the high mitophagy subtype (cluster C ) having

the worst prognosis. Stage, age, gender and new events showed

no significant difference between the three subtypes, suggesting

that the poor prognosis in cluster C was not driven by the clinical

baseline. To further explain these findings, the level of mRNAsi

and HIF1A gene expression were evaluated (Zhang et al., 2020)

(de Heer and Harris, 2020). A lower mRNAsi level appeared

FIGURE 10
(A) In TCGA-PAAD cohort, ROC analysis evaluating diagnostic accuracy of CAST, CCDC6 and ERLIN1 in low mitophagy subtype (cluster B). (B)
Construction of a nomogram based on the gene expression of CAST, CCDC6 and ERLIN1 to identify PAAD patients can more benefit from
chemotherapy (cluster B).
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primarily in the low mitophagy subtype (cluster B ) than that in

the high mitophagy subtype (cluster C). Previous studies have

described mRNAsi as the indices of CSC characteristics that

apply to different tumour types. The presence of CSCs is a

leading cause of tumour recurrence, drug resistance and poor

prognosis (Nagler et al., 2011). Therefore, the better prognosis of

cluster B than cluster C could be attributed to the low level of

CSCs. Additionally, the high mitophagy subtype (cluster C )

shows high levels of HIF1A expression, indicating that the

tumour in cluster C has a strong hypoxic environment.

Hypoxia has been reported to be a tumour

microenvironmental hallmark, indicating poor prognosis in

most solid tumours (Jing et al., 2019). Liu et al. (2012)

reported that the hypoxia-induced dephosphorylation of

FUNDC1 enhanced its interaction with LC3 for selective

mitophagy. Furthermore, lactic acid produced in a hypoxic

environment lowers the pH of the tumour microenvironment,

which significantly weakens the function of normal immune

cells, such as T cells and tumour-infiltrating lymphocytes (Wang

et al., 2020). Additionally, the synthesis of hyaluronic acid by

tumour-associated fibroblasts in a high lactate environment

promotes the growth and activity of cancer cells at certain

concentrations (Stern, 2008) (Walenta and Mueller-Klieser,

2004). This phenomenon could explain the worst prognosis of

the high mitophagy subtype compared to other subtypes to a

certain extent.

Several studies have reported the impact of mitophagy on

tumour metabolic reprogramming. PAAD includes not only

KRAS and TP53 mutations but also high hypoxia levels, which

induces the glycolysis pathway in cancer (Kamisawa et al., 2016)

(Yang et al., 2020) (Lin et al., 2018) (Nagdas et al., 2019). The

conversion of the glycolytic metabolite pyruvate to lactic acid or its

transport to the mitochondria via the mitochondrial pyruvate

complex attenuates the glycolytic tumour-promoting effects

(Semenza, 2011). Pyruvate, a metabolic intermediate of the

tricarboxylic cycle, provides citric acid precursors for cholesterol

and free fatty acid biosynthesis (Park et al., 2015). High levels of

cholesterol are required to fulfil the needs of membrane biogenesis

during tumour cell proliferation (Huang et al., 2020). Therefore,

cholesterol metabolism generally promotes cancer cell proliferation,

migration and invasion (Goossens et al., 2019). Furthermore, on

exploring the tumour metabolic patterns based on glycolysis and

cholesterol biogenesis, the metabolic heterogeneity between the

three mitophagy subtypes was found to be crucial. The vast

majority of patients in the high mitophagy subtype (cluster C)

exhibited high levels of glycolysis and cholesterol biogenesis.

Additionally, the inhibition of glycolysis and cholesterol

biogenesis was observed in the low mitophagy subtype (cluster

B). The highly hypoxic microenvironment in cluster C could be

responsible for the more active glycolysis than clusters A and B.

Roca-Agujetas et al. suggested that high intracellular cholesterol

levels upregulated themitochondrial PINK1 accumulation to induce

mitophagosomes formation. Although this phenomenon was

documented in cholesterol-enriched SH-SY5Y cells and cultured

primary neurons, it partially concurs with the findings of this study.

Both glycolysis and cholesterol biogenesis have been reported as risk

factors for poor prognosis in various human tumours (Nelson, 2018)

(Munir et al., 2018) (Vander Heiden and Thompson, 2009).

Therefore, the metabolic heterogeneity contributes to the

difference in prognosis between the three mitophagy subtypes.

WGCNA algorithm was used to identify mitophagy subtype-

related gene co-expression modules. Hub genes in the module

obtained were enriched in signaling by receptor tyrosine kinases

and EGFR. The major mechanism underlying the anticancer effects

of Erlotinib, Sunitinib and Imatinib is the induction of receptor

tyrosine kinases and EGFR signaling (Abdelgalil et al., 2020) (Ferrari

et al., 2019) (Waller, 2018). Consistently, a significant difference in

drug sensitivity was observed between the high (cluster C) and low

mitophagy (cluster B) subtypes. Reddy et al. identified anti-

mitophagy as a kinase-independent function of EGFR and

revealed a new function of the mTORC2/Akt axis in promoting

mitophagy in tumour cells (Katreddy et al., 2018). A study by Lyons

et al. reported that MCF-7 cells with acquired resistance to an IGF-1

receptor TKI reduced mitochondrial biogenesis. Notably, the cells

revealed mitochondrial dysfunction, which was indicated by the

presence of reactive oxygen species expression, reduced expression

of the mitophagy mediators BNIP3 and BNIP3L and impaired

mitophagy (Lyons et al., 2017).

Furthermore, a machine learning pipeline was utilised to

identify the signature of the high mitophagy subtype (cluster C),

revealing three MSGSs (CAST, CCDC6 and ERLIN1). These

MSGSs have the potential to be diagnostic and tumour

subtyping biomarkers in PAAD. Additionally, they could be

used as, novel indicators of chemotherapeutic drug sensitivity

to Erlotinib, Sunitinib and Imatinib.

As an endogenous calpain, CAST is an important participant in

proteolysis of amyloid precursor protein and multiple membrane

fusion events. Membrane fusion is fundamental to the degradation

process that delivers cytoplasmic material to lysosomes via

autophagosomes. Thus, membrane fusion mediated by CAST

could be one of the principal mechanisms for the degradation of

the mitochondria during the mitophagy (Liu and Zhong, 2021).

CCDC6 is involved in triggering a DNA damage checkpoint

response and maintaining genomic stability. CCDC6 mutation

decreases the apoptotic response in response to DNA damage,

leading to the development of radio- and chemoresistance. In

addition, the study of Xiuli et al. demonstrated obvious

mitophagy increases with the severity of DNA damage in

primary fibroblasts, murine neurons and Caenorhabditis elegans

neurons (Cerrato et al., 2018). Therefore, CCDC6 appears to

influence mitophagy the by regulating the DNA damage repair.

As a important communication subdomains between endoplasmic

reticulum (ER) and mitochondria, mitochondria-associated

membranes (MAMs) are the primary site of interaction between

ERLIN1 and AMBRA1. A gene knock-out experiment confirmed

that ERLIN1 interacts with AMBRA1 in MAM raft-like
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microdomains and results in the formation of autophagosomes

(Manganelli et al., 2021). As described above, the obtained MSGSs

are reasonable and are closely related to mitophagy.

Increasing evidence reveals mitophagy as a crucial factor in

the maintenance of the immune system, owing to the elimination

of dysfunctional mitochondria (Song et al., 2020). Mitochondrial

antigen presentation and immune cell homeostasis can be

directly regulated by inflammatory cytokine secretion, which

is downregulated by mitophagy (Zhong et al., 2016) (Patoli

et al., 2020). Furthermore, on exploring the infiltration pattern

of immune cells in PAAD, immune cell infiltration was found to

be upregulated in the group with higher MSGS expression. Single

cell sequencing analysis indicate that CD8Tcm infiltrate is

significantly different between the low and high MSGS groups,

with similar results observed in the ImmuCellAI analysis.

Previous studies have revealed that memory T cells, including

stem cell memory (Tscm) T cells and central memory (Tcm)

T cells, exhibit superior persistence and antitumour immunity

compared to effector memory T (Tem) cells and effector T (Teff)

cells. Moreover, the Tcm/Teff ratio has been considered as an

evolving biomarker for immunotherapy response (Liu et al.,

2020). These results indicate the clinical potential of MSGSs

in screening out immunotherapy resistant populations in PAAD.

Additionally, the proportion of M1 macrophages in the high

CAST and CCDC6 groups was significantly higher than that in the

low CAST and CCDC6 groups. However, a significant difference

was observed in the M1 macrophage proportion between the high

and low ERLIN1 groups. Generally,M2 (repair-type)macrophages

are predominate in human tumours and secrete growth-

promoting molecules that stimulate tumour proliferation.

However, converting M2 macrophages to M1 (kill-type) slows

down proliferation (Charles and Harris, 2016). Although CAST,

CCDC6 and ERLIN1 are gene signatures of the high mitophagy

subtype (cluster C), Kaplan-Meier analysis suggests that CAST and

CCDC6 are risk factors for the prognosis of patients with PAAD,

while ERLIN1 does not affect the prognosis (Supplementary Figure

S4). The infiltration and differentiation of macrophage could be

responsible for the differences in prognosis (Hwang et al., 2020).

Patients in the lowmitophagy subtype (cluster B) had a better

prognosis and higher chemotherapy sensitivity than the other

subtypes. The identification of patients in cluster B could aid in

individualising treatment regimens. ROC analyses revealed that

MSGSs are a better screening factor for cluster B patients.

Additionally, three MSGSs were incorporated to construct a

nomogram, which has potential clinical applications.

This study sheds new light on potential strategies that could be

used in personalising treatment regimens for patients with PAAD.

However, this study has certain limitations. The current study

focused on bioinformatic analyses and lacks experimental and

clinical validation. Additionally, this research was retrospective

rather than prospective (Talari and Goyal., 2020). However, the

results are based on multiple independent cohorts; therefore, it

remains credible and acceptable. Hence, further exploration of

molecular mechanisms and prospective clinical trials are

warranted to validate the current results.

Conclusion

Using unsupervised clustering based on mitophagy

regulators, three distinct mitophagy subtypes with different

metabolism patterns and prognoses were obtained in PAAD.

The high mitophagy subtype had the poorest prognosis and

highest level of glycolysis and cholesterol biosynthesis. The low

mitophagy subtype displays higher sensitivity to Erlotinib,

Sunitinib and Imatinib. Then, a new mitophagy-associated

risk score system were established to provide a potential

prognostic predictor for PAAD. Additionally, using WGCNA

and machine learning, three diagnostic gene signatures (CAST,

CCDC6, and ERLIN1) for the high level mitophagy subtype were

obtained, which were closely associated with tumour immune

microenvironment and chemotherapy sensitivity in PAAD.

Futhermore, a nomogram was conducted based on the gene

expression of CAST, CCDC6, and ERLIN1. The generation of

nomogram provided a tool for estimating the probability of

benefiting from chemotherapy. This study establishes the

foundation for further investigation of mitophagy in the

tumorigenesis and tumour development of PAAD.

Furthermore, it contributes to the development of

personalised clinical management and treatment regimens

of PAAD.
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