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Abstract

Identifying heterogeneous cognitive impairment markers at an early stage is vital for Alzhei-

mer’s disease diagnosis. However, due to complex and uncertain brain connectivity features

in the cognitive domains, it remains challenging to quantify functional brain connectomic

changes during non-pharmacological interventions for amnestic mild cognitive impairment

(aMCI) patients. We present a quantitative method for functional brain network analysis of

fMRI data based on the multi-graph unsupervised Gaussian embedding method (MG2G).

This neural network-based model can effectively learn low-dimensional Gaussian distribu-

tions from the original high-dimensional sparse functional brain networks, quantify uncer-

tainties in link prediction, and discover the intrinsic dimensionality of brain networks. Using

the Wasserstein distance to measure probabilistic changes, we discovered that brain

regions in the default mode network and somatosensory/somatomotor hand, fronto-parietal

task control, memory retrieval, and visual and dorsal attention systems had relatively large

variations during non-pharmacological training, which might provide distinct biomarkers for

fine-grained monitoring of aMCI cognitive alteration. An important finding of our study is the

ability of the new method to capture subtle changes for individual patients before and after

short-term intervention. More broadly, the MG2G method can be used in studying multiple

brain disorders and injuries, e.g., in Parkinson’s disease or traumatic brain injury (TBI), and

hence it will be useful to the wider neuroscience community.

Author summary

There is still no cure and no effective drug treatment for Alzheimer’s disease (AD).

Hence, non-pharmacological cognitive intervention for patients at early stages of AD has

received a lot of attention due to its non-invasive manner, safety, and scalability. Multi-

domain interventions targeting memory and non-memory domains simultaneously are

urgently needed for an optimal intervention effect on amnestic mild cognitive impairment
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(aMCI) patients. However, most of the previous multi-domain cognitive intervention

studies evaluated the intervention outcomes based solely on neuropsychological assess-

ment or simple characterization of brain anatomical structural changes. This work is the

first of its kind to develop a patient-specific quantitative analysis for the underlying func-
tional brain regional activity changes during the multi-domain cognitive intervention pro-

cess. Specifically, we used fMRI data from 12 patients, who were trained for three months,

and we developed the multi-graph unsupervised Gaussian embedding method (MG2G)

to analyze these data. We obtained probabilistic changes across all the brain regions, and

we found that brain regions in the default mode network and somatosensory/somatomo-

tor hand, fronto-parietal task control, memory retrieval, and visual and dorsal attention

systems had relatively large variations during the non-pharmacological training. These

fundamental insights could provide effective new biomarkers for monitoring of aMCI

cognitive alteration.

This is a PLOS Computational Biology Methods paper.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disorder and the most common form

of dementia. However, there is still no cure and no effective drug treatment for AD [1, 2].

Hence, non-pharmacological cognitive intervention for patients at early stages of AD has

received a lot of attention due to its non-invasive manner, safety and scalability. Recent studies

show that non-pharmacological cognitive intervention can play a positive role in delaying the

process or even reducing the cognitive decline for both healthy controls [3] and amnestic mild

cognitive impairment (aMCI) patients [4]. In particular, aMCI is a vital prodromal state of AD

harboring memory impairment and has a high risk to progress into AD [5]. Multi-domain

interventions targeting memory and non-memory domains simultaneously are urgently

needed for an optimal aMCI intervention effect. However, most of the previous multi-domain

cognitive intervention studies, e.g., the Finnish Geriatric Intervention Study to Prevent Cogni-

tive Impairment and Disability (FINGER) [6], the French Multidomain Alzheimer Preventive

Trial (MAPT) [7], the Dutch Prevention of Dementia by Intensive Vascular Care (Pre-DIVA)

[8], the Drug and Alcohol Intervention Service for Youth (DAISY) [9], etc., evaluated the

intervention outcomes based solely on neuropsychological assessment or simple characteriza-

tion of brain anatomical structural changes (e.g., gray matter volume, cerebral ventricle vol-

ume) [10]. There is a critical need to develop a patient-specific quantitative analysis for the

underlying functional brain regional activity changes during the multi-domain cognitive inter-

vention process. Functional brain network analysis for AD intervention studies can offer great

qualitative and quantitative insights into the brain micro-circuits alterations for MCI patients,

and could also play an important role in the accurate prediction of the AD progression.

In this work, we develop and apply a new method based on an unsupervised Gaussian

embedding-based functional brain network analysis for resting state fMRI data. Graph embed-

ding methods have gained a lot of attention in recent years since they can effectively project

large-scale networks to a low-dimensional latent space, while preserving the intrinsic network

topological properties. The obtained graph embedding can be used for downstream graph pro-

cessing tasks—such as link prediction, node classification, and community detection—much

more effectively, easily and with high computational efficiency compared to other more classi-

cal methods.
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Recent survey studies [11, 12] divided graph embedding techniques into three main catego-

ries: (1) matrix factorization-based approaches, (2) random-walk based approaches, and (3)

deep learning-based approaches. For graph embedding methods, the primary challenge is to

preserve the first-order and high-order proximity during graph embedding implementations.

In order to tackle this problem, matrix factorization-based methods (e.g., GraRep [13] and

HOPE [14]) construct a high-order proximity matrix based on transition probabilities and fac-

torize it to obtain the node embeddings, but they are not easy to scale up for large network

embeddings. Random walk-based methods (e.g., node2vec [15] and DeepWalk [16]) utilize

different node neighbor set searching strategies through modified random walk paths to cap-

ture global and local proximities during the low dimensional point-vector embedding proce-

dure. However, the major drawback of the aforementioned embedding approaches is the lack

of capturing important “uncertainty” information for each node in the complex networks.

Nodes with low degree contain fewer network connections, hence they have larger uncertainty

than other nodes (or “entities” in the knowledge graph). Similarly, edges (relations) that link

to more entities have a relative larger uncertainty than others. For the purpose of estimating

uncertainty information for each node in the network, Gaussian embedding is uniquely posi-

tioned to derive and characterize embeddings in terms of means and variances in a space of

multivariate Gaussian distributions. For example, Vilnis et al. [17] first proposed the word2-

Gauss method, which applied Gaussian embedding to map word types into a space of Gaussian

distributions in order to model the uncertainty, entailment, and inclusion information of dif-

ferent word types in latent space. He et al. [18] proposed KG2G learning Gaussian embedding

for latent knowledge graph representation. Moreover, Zhu et al. [19] proposed to apply deep

variational network models in conjunction with the Wasserstein-2 (W2) distance and build a

hybrid loss function to obtain Gaussian embeddings that preserve the transitivity in embed-

ding space. Bojchevski et al. [20] employed a deep neural network model to learn node embed-

ding as Gaussian distributions much more efficiently and robustly in latent embedding space

for attributed and directed graphs. In particular, they developed an efficient way of predicting

the effective dimensionality of the low-dimensional space (latent dimension) by monitoring

during training the most “uncertain directions”, which are unstable and do not contribute to

the low-dimensional embedded graph.

Compared with traditional graph embedding methods that project nodes into low-dimen-

sional point vectors, deep neural network-based Gaussian embedding models, such as the

Graph2Gauss model [20] can offer a very promising and novel approach for learning graph

node representations (or “encodings”) as a latent space of Gaussian distributions in an induc-

tive and unsupervised manner. In the latent graph embedding space, each node is encoded as

Gaussian distributions with two different learned vectors (mean and variance). The mean vec-

tor reflects the position of the node while the variance, usually constructed in two different

shapes (diagonal or spherical), provides important uncertainty information. Specifically, the

learned uncertainty provides information on two critical aspects: 1) correlation with neighbor-

hood diversity, i.e., larger variance reveals more diversity in the node’s k-hop neighborhood,

2) ability to discover the intrinsic latent dimensionality of the complex graph, which is close to

the number of ground-truth communities in the graph.

In the present study, we focused on functional brain network analysis for aMCI patients,

who completed a multi-domain cognitive training (MDCT) intervention that was designed at

the PKU-sixth hospital of China. For each of 12 patients, resting-state functional MRI scans

and cognitive assessment scores (MMSE [21] and MOCA [22]) were collected before and

immediately after a 12-week intervention [4]. The new method we propose enables mapping

of brain networks into multivariate probabilistic Gaussian distributions so as to detect the

underlying link changes of functional brain connectomes after the MDCT intervention.
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Moreover, it provides uncertainty estimation for each node in the latent brain network repre-

sentational space by performing deep learning-based Gaussian embedding for the weighted

brain network computed from pre-processed fMRI data using the functional brain template

[23]. We compared the new method against other methods, e.g., node2vec [15]. Most of the

existing graph embedding methods focused only on a single and binary graph embedding.

However, the human brain network is in the form of a weighted graph. Moreover, presently

few works consider Gaussian embedding for multiple graphs, yet it is prerequisite for quantita-

tive analysis of multi-subject brain networks before and after MDCT intervention. Hence, in

our study, we propose a multi-graph Gaussian embedding (MG2G) method for the MDCT

intervention dataset of aMCI patients (more details on MG2G are presented in Material and

Methods and also in S1 Fig in S1 Appendix of Supporting Information).

Materials and methods

Ethics statement

The present study was approved by the ethics committee of Peking University Institute of

Mental Health (Sixth Hospital), Beijing, China. All participants were fully informed regarding

the study protocol and provided written informed consent.

Participants

All aMCI participants were recruited from the Dementia Care and Research Center of Peking

University Institute of Mental Health (DCRC-PKUIMH) between May 2015 and September

2015. Twelve of them met the inclusion criteria of MCI (stated below) and completed both a

standardized neuropsychological evaluation and MRI scanning at Peking University Third

Hospital. All participants were required to be 55 years old and above, right handed, and have

an education level of no less than five years. The diagnosis of MCI was made according to

Petersen et al. [24] as follows: (a) subjective memory complaint, confirmed by an informant;

(b) a mini-mental state examination (MMSE) score of no less than 24; (c) an ADL score of

no more than 26, and not diagnosed as having dementia (according to ICD-10 and NINCD-

S-ADRDA criteria). Other inclusion criteria were: a global clinical dementia rating score of 0.5

and no depressive symptoms (Hamilton Depression Scale score� 12). Exclusion criteria were:

a current or past neurological disorder or a current neuro-psychiatric disorder listed in the

DSM-IV affecting cognition; currently taking cognitive enhancers; and any physical condition

that could preclude regular participation in the intervention program.

MDCT intervention and cognitive assessment

We used a self-controlled design to investigate the effect of the MDCT program on spontane-

ous brain activity in older participants with aMCI. Every patient underwent 24 training ses-

sions delivered twice per week over approximately 12 weeks. Each session lasted 60 minutes

and included tasks that covered three different cognitive domains. The participants spent 20

minutes engaged in each task per session. The 24-session intervention targeted multiple cogni-

tive domains across the different sessions, including reasoning, memory, visuo-spatial skill,
language, calculation, and attention. Neuropsychological assessments and MRI scans were

conducted before and after the 12-week training program; details are described below.

Imaging protocol. MRI was performed using a 3T General Electric MRI 750 (Chicago,

Illinois, United States) with an 8-channel sensitivity-encoding head coil (SENSE factor = 2.4),

with parallel imaging using a Gradient-Recalled Echo-Planar Imaging (GRE-EPI), at the

Peking University Third Hospital Neuroimaging Center. Two resting state BOLD fMRI
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imaging data were collected for each of the 12 aMCI patients, one before and one after MDCT

intervention. The resting state functional MRI (rs-fMRI) data in each patient consisted of 230

functional volumes, each slice had a 64 × 64 grid, time repletion (TR) = 2000 ms, time echo

(TE) = 20 ms, flip angle = 90˚, field of view (FOV) = 240 × 240 mm2, 41 axial slices, thick-

ness = 3.0 mm, and spacing between slices = 3.3 mm.

Cognitive assessment. We applied a comprehensive cognitive test battery to evaluate the

cognition of patients at the baseline and after 12-week MDCT intervention. Global cognition

was assessed via the MMSE (range 0–30) and MOCA (Montreal Cognitive Assessment) (range

0–30), with higher MMSE scores indicating higher levels of global cognition in both tests.

Memory was evaluated via the Hopkins Verbal Learning Test-Revised, with higher MOCA

scores indicating greater levels of memory (range 0–12). The speed of processing was exam-

ined using the Trail Making Test A, with lower scores indicating greater levels of processing

speed. Visuo-spatial ability was examined using the Brief Visuospatial Memory Test-Revised,

with higher scores indicating greater levels of visuo-spatial ability (range 0–12). Language

function was examined using a verbal fluency test for animal naming, where higher scores

indicate greater levels of language. Executive function was assessed via subtests, including a

100-stimulus version of the Stroop color and word test, a digit span test, a space span test, and

a picture completion test; higher scores indicate greater levels of executive function. The com-

plete cognitive assessment took about 120 minutes and took place at DCRC-PKUIMH.

fMRI data pre-processing

The pre-processing of resting state fMRI data was carried out using Statistical Parametric Map-

ping (SPM12) [25] and Data Processing Assistant for the R-fMRI (DPARSF) toolkit [26]. The

main steps included: (1) dropping off the first ten EPI volumes; (2) temporal correction for

slice acquisition; (3) spatial normalization into the MNI space based on transformation param-

eters derived from aligning T1 images to the MNI standard template using diffeomorphic ana-

tomical registration through the exponentiated lie algebra (DARTEL) method; (4) resampling

to 3-mm isotropic voxels and spatially smoothing with a 4 mm full width at half maximum

Gaussian kernel; (5) regressing out the following nuisances from each voxel’s time series,

including 24 head motion parameters, global signal, cerebrospinal fluid, and white matter time

series and linear trend; (6) filtering the residual time series within a frequency range of 0.01–

0.1 Hz for reducing the effect of low-frequency drifts and high-frequency noise.

Functional brain network construction

Based on the pre-processed fMRI images, the overall functional brain connectivity construc-

tion process is shown in Fig 1. First, we used a sphere-based functional brain atlas (Power et al.

[23], 2011) to define 264 brain regions of interest (ROI) belonging to 14 communities (neural

systems) in total. Then, the mean signals (time-series) were computed within spheres of fixed

radius r (r = 5) around a sequence of voxels in T functional brain scans (T = 230). Finally, we

computed the Pearson’s correlation coefficient across all pairs of time series to construct the

brain connectivity matrix C and obtained the corresponding 3D visualizations for functional

brain connectomes. Here, we did not pursue any corrections due to autocorrelation of the

individual brain regions as the Durbin-Watson (DW) statistic we computed from our data has

similar values as in the work of Arbabsbirani et al. [27], who have found no impact of the auto-

correlation in functional connectivity in their study with fMRI data for schizophrenic patients.

For every patient in the pre-processed fMRI dataset, we computed the brain connectivity

matrices for fMRI data obtained at baseline (week 0) and week 12. The averaged brain connec-

tivity results before and after interventions are shown in Fig 2.
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Multi-Graph2Gauss embedding approach for functional brain network

analysis

Since functional brain networks calculated from our raw fMRI data were undirected and

weighted, in our work we extended the Graph2Gauss method [20] to a multi-graph Gaussian

embedding (MG2G) prediction model and applied it for solving the functional brain network

analysis problems in cognitive training evaluation of aMCI patients. The main purpose of the

MG2G model is to learn useful low-dimensional probabilistic graph embeddings for multiple

brain networks in complex high dimensional space to a uniform latent multivariate Gaussian

distribution space, such that the model can effectively learn inherent stochastic embeddings

through encoding both graph structure properties and node attributes from the original space.

Fig 1. Illustration of brain connectivity construction workflow based on the functional brain atlas [13].

https://doi.org/10.1371/journal.pcbi.1008186.g001

Fig 2. Functional brain connectivity matrices averaged across all 12 patients measured using the Pearson correlation. (A) Average brain

connectivity at baseline. (B) Average brain connectivity after 12-week MDCT intervention. In (A) and (B), the X/Y axes represent the brain region

indices of 264 brain regions defined in the brain atlas [13].

https://doi.org/10.1371/journal.pcbi.1008186.g002
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The obtained embeddings can be readily and efficiently used for downstream functional brain

network analysis w.r.t. diverse brain disorders. The specific schematic illustrating the MG2G

method for function brain network representation learning with a 3D neural network-based

encoder can be seen in Fig 3.

Before we start to encode the brain networks, we first generate the node context (or neigh-

bors) and node attributes based on the adjacency matrix for each brain network. In particular,

for each of the P = 24 original brain connectivity matrices (Ci, i = 1, 2, ‥, P), we obtained a thre-

sholded adjacency matrix A 2 RN�N
(N = 264 is the number of brain regions) by setting to 0

connectivity values below an empirical threshold (t = 0.1). We also tested the sensitivity of the

threshold used here by setting the value to t = 0 so that we keep more links in the brain net-

works. However, we found almost identical results for the two threshold values, hence the link

prediction performance is robust. Moreover, a value of t = 0.1 accelerated the training process.

In order to capture both local and global graph structure properties during graph embedding,

we employed the weighted-based k-hop neighborhood sampling method to measure the node

similarity and sample the corresponding node context (or neighbors) for every node in the

brain networks. Specifically, we computed the shortest distances between node pairs based on

the weighted adjacency matrices and generated k-hop neighborhoods (Nik, k = 2, 3) using

thresholds for the shortest distances. Moreover, node triplet sets (Dt) (see Eq. (3) in the S1

Appendix) were generated based on the hops extracted from different brain networks, which

was subsequently used for model training and optimization. In addition, for each node i, we

assigned as node attributes the ith row vector of A. In other words, each node had as attributes

the connectivity profile (connection weights) across all the N nodes in the network. Conse-

quently, brain networks had N-dimensional node attributes, with the aim of subsequently

compressing them to L dimensions via graph embedding.

Next, we elaborate on the method and provide some implementation details with reference

to Fig 3 and also to S1 Fig in the S1 Appendix. In order to encode multiple graph data jointly

into the same space, our model takes as an input the computed undirected and weighted func-

tional brain networks represented by the attribute matrices X ¼ fXpg
P
p¼1
;X 2 RP�N�D

. Here, N

is the number of brain regions, D is the number of attributes, which we take here equal to N as

explained above, and P is the number of subjects. We use a 3D encoder to encode node attri-

butes X into intermediate hidden representations. The hidden representation is realized

through a sequence of hidden layers, i.e.,

hk
i ¼ ReLUðhk� 1

i Wk
i þ bkÞ;Wk

i 2 R
N�M

; bk
i 2 R

M
;

where k denotes the index of hidden layer and M is the dimension of the hidden representation

that is smaller than the attribute dimension (D). Here, we used a single hidden layer (k = 1) of

Fig 3. Main architecture of the proposed MG2G model for multiple human brain networks.

https://doi.org/10.1371/journal.pcbi.1008186.g003
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size M = 128 in our 3D model implementation. The outputs of MG2G are node-wise low-

dimensional multivariate Gaussian distributions Pi ¼ N ðmi;SiÞ; i ¼ 1; 2; . . . ;N parameter-

ized by the mean vector μi and the covariance Si, where

mi ¼ hk
iWm þ bmÞ;Wm 2 R

N�L=2; bm 2 R
L=2;

the covariance matrix Si is defined as a square matrix with variance σi as its diagonal elements,

where

si ¼ eluðhk
iWs þ bsÞÞ þ 1;Ws 2 R

N�L=2; bs 2 R
L=2;

where elu is the activation function. Finally, all the parameters of our model including weights

(Wk
i ;Wm;Ws) and biases (bk, bμ, bσ) are learned by minimizing the square-exponential loss

function

L ¼
P
½E2

pos þ exp� Eneg Þ�;

where Epos and Eneg refer to the Kullback–Leibler (KL) divergence between the Gaussian

embeddings of positive node pairs and negative node pairs in the node triplet set (Dt), respec-

tively. Lastly, the neural network was optimized by using the Adam algorithm in TensorFlow

1.14.0 with initial learning rate = 1e-3, maximum number of epochs = 1000 and number of

hidden units = 128.

In comparison with the basic principles of Graph2Gauss summarized in S1 Appendix of

Supporting Information, our MG2G model for functional brain networks made three contri-

butions: i) we made use of weighted (as opposed to binary) symmetric adjacency matrix to

compute k-hop neighbors and triplet sets; ii) we added the connection weights as edge attri-

butes to provide extra information for graph embedding, and iii) we extended the method to

multiple graph data. As a metric of comparison and to capture the subtle differences before

and after MDCT intervention, we made use of the Wasserstein-2 distance in Eq (1) for quanti-

tative evaluation of ROI-specific changes between encoded probabilistic Gaussian distribu-

tions with respect to each patient‘s brain networks before and after interventions.

W2ðPi;PjÞ
2
¼W2ðN ðmi;SiÞ;N ðmj;SjÞÞ

2
¼ kmi � mjk

2

2
þ

�
�
�S

1=2

i � S
1=2

j

�
�
�

2

F
: ð1Þ

Results

Graph embedding model training and evaluation

An important application of graph embedding is link prediction that quantifies how well a

model can predict unobserved edges. In order to evaluate the representational performance of

the MG2G method, we carried out link prediction experiments on brain networks computed

from resting state fMRI data recorded from 12 aMCI patients before and after MDCT inter-

vention. The brain networks were constructed by computing the Pearson’s correlation coeffi-

cient between the fMRI time series of 264 brain regions of interest (ROI) that belong to 14

communities (neural systems) according to the Power et al., 2011 brain atlas [23]. We split the

total edges obtained from the network adjacency matrices into three sets: a training set (85%),

a validation set (10%) and a test set (5%). The performance in the validation set in terms of

AUC (area under the ROC curve) for different values of embedding size L is shown in Fig 4 for

a fixed value of K = 2; here K denotes the maximum distance we consider for finding the k-

hop neighborhoods.
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MG2G achieved high AUC performance in link prediction for embedding size L equal to 4,

8, and 16. In contrast, the AUC performance was low for L = 2 because embeddings with small

size cannot sufficiently capture the representational information of the original graph data.

Performance was also low when L increased to 32 because an embedding size larger than the

latent dimension of the graph may include higher levels of noise. High values of L are also not

desirable because they increase computational cost. In addition to evaluating the sensitivity to

different embedding size values (L) in link prediction, we also evaluated the performance of

MG2G for different k-hop neighborhoods (K = 2 vs. K = 3); the results are shown in the Fig 5

indicating that K = 2 is adequate. Finally, for the test set we obtained AUC value of 0.945 in

link prediction for a fixed embedding size L = 16 and k-hop neighborhood K = 2.

Quantification of intervention-related brain network alterations using the

Wasserstein distance

By performing Graph Gaussian embedding for all patients’ brain networks, every brain region

(node) is represented by multivariate Gaussian distributions in a latent space. In order to assess

the complex functional network alteration patterns within each patient, we quantified how

each node moved in the latent space following the intervention. Specifically, we measured the

distances of each patient’s brain network embeddings (or Gaussian distributions) for each ROI

Fig 4. MG2G model performance in link prediction for different values of embedding size (L). Results are shown for the validation

dataset based on L = 2, 4, 8, 16, and 32, with K = 2 (k-hop neighborhoods).

https://doi.org/10.1371/journal.pcbi.1008186.g004
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before and after intervention. The distance measure relied on the Wasserstein-2 distance

(W2), which quantifies distances between Gaussian probability distributions. Since our dataset

lacks a control group and W2-distance is positive without a known parametric distribution,

there is no obvious parametric or non-parametric statistical procedure to apply to these results.

However, in the next section we will provide largely consistent results with an alternate group-

level analysis.

The within-subject W2 distances for each of the 12 patients are shown in Fig 6A, with the

264 ROIs and related 14 systems in the brain atlas [23] described in the Supplementary S2

Table. As a reference value, we computed the W2 distance among similar subjects before inter-

vention, e.g., subject 4 and 5, who had similar MOCA and MMSE scores. We found a mean

W2 value of 8.35, which is below the W2 distance values recorded in all subjects before and

after intervention. We observe across different patients that the ROI IDs from 112 to 138

exhibited large variations before and after intervention among most patients, and most promi-

nently for subject 3, 6 and 9. Based on the system information from S2 Table, these regions

mainly fall into three functional systems: default mode, memory retrieval, and visual systems.
Moreover, subject 0 had the greatest number of ROIs with large W2-distance between inter-

vention, and we note that this patient was also diagnosed with depression symptom. There

were also patients with smaller variations, namely subjects 4 and 8, compared to other aMCI

patients after intervention.

To better assess the overall network alteration at the subject-level, we used a “violin plot”

(combination of box-plot and density plot) to visualize the W2-distance distributions and

probability densities for different patients (Fig 6B). Each “violin” contains a box-plot (white

dot, vertical thick black box and thin black line). The white dot represents the median of W2

distances at each column in Fig 6A, the vertical thick black box indicates the inter-quartile

Fig 5. Evaluation of link prediction performance using MG2G based on different k-hop neighborhoods. AUC

values vs. number of epochs based on k = 2 (blue curve) and k = 3 (yellow curve); the embedding size (L) was equal to

16.

https://doi.org/10.1371/journal.pcbi.1008186.g005
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range, and the thin black line denotes the extensions to the maximum and minimum values.

The shaded areas surrounding the box plot show the probability density of the W2-distances

across the 264 brain regions for each patient. These results reveal that patients varied consider-

ably with respect to the network alterations, with some subjects exhibiting large W2 medians

and variability (e.g., subjects 0 and 6) and others the opposite (e.g., subjects 4 and 8), while

there are also some unique subjects with multi-modal shape of the W2 distribution (e.g., sub-

ject 7).

To more specifically quantify the ROI-level W2-distance density changes across the 12

patients, we constructed the Kernel Density Estimation (KDE) plot in Fig 7A. The brain

regions (ROIs) around the index ranges of 100-150 and 221-240 exhibited larger alterations

(in terms of the W2-distance) compared to other brain regions. As shown in S2 Table, these

regions belong to the following communities (brain systems): default mode, memory retrieval,
visual and dorsal attention. Additionally, from the KDE plot we can also distinguish three dark

blue areas (default mode, visual, frontal-parietal task control, dorsal attention and uncertain)

with high probability densities of W2-distance compared to other regions. Subsequently, we

obtained the top-15 brain regions for all patients measured by the W2-distance, and identified

the brain systems they belong to, shown in blue bars in Fig 7B. Here, the vertical axis denotes

the total number of top-15 ROIs corresponding to each community. The highest system-level

MG2G results identified with this analysis were: default mode, visual, uncertain, dorsal atten-
tion, salience, subcortical, sensory/somatomotor hand, and memory retrieval, which overlap

with the dark blue areas in Fig 7A.

To further validate these system-level results, we also performed a secondary analysis using

a different graph-embedding method, the deterministic “node2vec” [16]. The node2vec results

are shown in yellow, green and red bars in Fig 7B; here we performed a similar analysis as in

MG2G, but the metric was Euclidean distance because node2vec is deterministic and nodes are

mapped to point-vectors in the latent space. We assessed the sensitivity of the results change

Fig 6. Within-subject intervention-related brain network alterations. (A) W2-distance before and after intervention for each of the 264 ROIs across

the 12 patients (L = 16, K = 2). (B) Violin plots of the W2-distance distribution over the 264 regions for each of the 12 patients.

https://doi.org/10.1371/journal.pcbi.1008186.g006
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for different embedding size (L = 16, 32) and different hyperparameters (p and q values) in

node2vec; these values control the neighborhood exploration in node2vec. The default mode,
sensory/somatomotor hand, auditory, visual, salience, and uncertain communities exhibited

large subject-level intervention effects. Additional system-level comparisons at the single-

subject level can be found from S3 and S4 Figs in Supporting Information using both the

proposed MG2G as well as the node2vec method. We observed some variability among the

patients and the two methods (MG2G and node2vec) but overall the top-15 changes in brain

regions among the 12 patients mostly occurred in the default mode, visual, uncertain, salience,
memory retrieval, fronto-parietal task control, dorsal attention.

Statistical evaluation of intervention-related brain network alterations at

the group-level

Here we quantified the intervention-related brain network alterations by defining a new mea-

sure, the reorganization index, which captures cross-subject W2-distance intervention effects.

For every pair of different subjects, we computed the W2-distance per ROI when: i) one subject

was before and the other after intervention (between-pair), or ii) when both subjects were

paired before intervention (within-pair). The former assessed cross-subject intervention-

related effects, whereas the latter established a baseline cross-subject W2-distance. We then

defined the reorganization index RI as the averaged W2-distance of the between- minus

within-pairs. Given 12 patients, we obtained 66 between-pair W2-distances matched by an

equal number of within-pair W2 distances, allowing us to perform one-sample t-tests for sta-

tistical evaluation.

The between-pair and within-pair distances are exemplified for the ROIs belonging to

the “Sensory/Somatomotor Hand” neural system in S5 Fig of Supporting Information. The

between-pair (blue) were largely above the within-pair (red) W2 distances, demonstrating that

RI increased due to the intervention for most of the ROIs.

Fig 7. Within-subject intervention-related alterations at ROI-level and system-level. (A) Kernel Density Estimation plot of the W2-distance across

all 264 ROIs. (B) Quantification of functional/system-level changes for all 12 patients before and after MDCT intervention based on MG2G (blue) and

node2vec (yellow, green, and red, corresponding to different node2vec parameters). SSH: sensory/somatomotor hand; SSM: sensory/somatomotor

mouth; CoTC: cingulo-opercular task control; Audit: auditory; DMN: default mode; MemRt: memory retrieval; Vis: visual; FpTC: fronto-parietal task

control; Sal: salience; SubCt: subcortical; VenAtt: ventral attention; DorsAtt: dorsal attention; Cerebl: cerebellar; Uncert: uncertain.

https://doi.org/10.1371/journal.pcbi.1008186.g007
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RI results for all 264 ROIs are shown in Fig 8, with statistically significant results highlighted

with red bars (p< 0.05, one-sample t-test, false discovery rate corrected). The majority of the

ROIs had significantly positive RI, which suggests extensive fMRI brain network reorganiza-

tion following the MDCT intervention, i.e., a positive RI value for a given brain region suggests

network alterations due to the intervention. This is because the dots would tend to cluster in

the same region in the embedded space for within-intervention subjects (both no intervention,

or both intervention), but would map to distant areas for between-intervention subjects. More

details can be found in S6 Fig. In Fig 9, we counted the number of significant ROIs belonging

to each neural system. The results indicate that the most extensive brain network reorganiza-

tion encompassed the default mode, somatosensory/somatomotor hand, fronto-parietal task
control, visual, salience, dorsal attention and uncertain brain systems. These systems largely

overlap with the neural systems identified with the within-subject analysis in the previous sec-

tion. A list of the significant ROIs contained within each neural system is presented in Table 1.

Nodal uncertainty quantification

With Graph2Gauss embedding, every brain region was encoded as a multivariate Gaussian

distribution. Hence uncertainty, quantified by the variance, can also be assessed using this

graph embedding approach. Fig 10 illustrates the nodal uncertainty results of graph embed-

ding at baseline and after intervention averaged across all patients. The vertical axis shows the

Fig 8. Reorganization index for each of the 264 ROIs. A large number of ROIs had significant RI (red bars; p< 0.05, FDR corrected), suggesting

extensive intervention-related brain network reorganization. System name abbreviations same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1008186.g008
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Fig 9. Number of ROIs with significant network alterations (significant RI index) contained within different

functional brain systems. System name abbreviations same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1008186.g009

Table 1. Names of ROIs with significant network alterations (significant RI index) for each brain system.

System Significant ROI List (Quantity)

SSH Inferior Parietal Lobule(1), Medial Frontal Gyrus(3), Paracentral Lobule(1), Postcentral Gyrus(6),

Precentral Gyrus(4), undefined(1)

SSM Precentral Gyrus(2)

CoTC Cingulate Gyrus(1), Insula(2), Medial Frontal Gyrus(1), Middle Frontal Gyrus(1),Superior Temporal

Gyrus(1)

Audit Precentral Gyrus(1), Superior Temporal Gyrus(1)

DMN Angular Gyrus(1), Anterior Cingulate(1), Cingulate Gyrus(1), Inferior Frontal Gyrus(1), Medial Frontal

Gyrus(3), Middle Temporal Gyrus(6), Parahippocampa Gyrus(1), Posterior Cingulate(2), Precuneus(1),

Superior Frontal Gyrus(4)

MemRt Cingulate Gyrus(1), Precuneus(2)

Vis Cuneus(3), Inferior Occipital Gyrus(2), Lingual Gyrus(2), Middle Occipital Gyrus(2), Parahippocampa

Gyrus(1), Sub-Gyral(1)

FpTC Inferior Frontal Gyrus(2), Inferior Parietal Lobule(4), Middle Frontal Gyrus(7), Middle Temporal Gyrus

(1), Superior Parietal Lobule(1)

Sal Anterior Cingulate(2), Cingulate Gyrus(1), Extra-Nuclear(1), Inferior Frontal Gyrus(1), Middle Frontal

Gyrus(3), Sub-Gyral(1), Superior Frontal Gyrus(1), Supramarginal Gyrus(1), undefined(1)

SubCt Extra-Nuclear(3), Thalamus(1)

VenAtt Inferior Frontal Gyrus(2), Inferior Parietal Lobule(1), Superior Frontal Gyrus(1), Superior Temporal

Gyrus(2)

DorsAtt Middle Frontal Gyrus(2), Middle Temporal Gyrus(1), Sub-Gyral(1), Superior Parietal Lobule(2)

Uncert Culmen(1), Fusiform Gyrus(1), Inferior Occipital Gyrus(2), Inferior Temporal Gyrus(2), Lingual Gyrus

(2), Middle Frontal Gyrus(1), Sub-Gyral(1), Superior Frontal Gyrus(1), Uncus(2)

System name abbreviations same as in the S2 Table.

https://doi.org/10.1371/journal.pcbi.1008186.t001
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embedding variance for each of the L = 16 dimensions. Dimensions 8, 10, and 11 had consis-

tently high variance values for the majority of nodes before and after intervention. Dimensions

with high uncertainty are unstable and do not contribute to a low-dimensional embedding in

the latent space [20]. Thus, we can infer the effective latent dimension to represent our brain

network to be equal to (L—3) by excluding the highly unstable dimensions. This yields an

effective dimension of 13 (since the embedding dimension was L = 16), which is approximately

equal with the ground truth community number (14) in the brain atlas. Therefore, our pro-

posed method for fMRI data analysis not only predicted the latent representations, but also

yielded the effective dimensionality of the low-dimensional space (latent dimension) by moni-

toring (during training) the “uncertain” dimensions. More detailed uncertainty quantification

results by plotting the corresponding Gaussian distributions are shown in S2 Fig of Supporting

Information.

Discussion

The new method MG2G we introduced, and other recent graph embedding techniques, hold

great promise in diverse real-world applications. However, so far, the studies incorporating

prevalent graph embedding techniques for the analysis of complex and heterogeneous func-
tional brain network systems for brain disorders (e.g. Alzheimer’s, Parkinson’s, etc.) are scarce.

For example, Rosenthal et al. [28] first proposed to use a connectome embedding method,

Fig 10. Uncertainty quantification using the MG2G approach. Average nodal uncertainty (variance-σ2) results for 12 patients before (A) and after

intervention (B); (embedding size L = 16).

https://doi.org/10.1371/journal.pcbi.1008186.g010
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node2vec [15], for the mapping of high-order relations between brain structure and function.

As discussed earlier, this method cannot model important uncertainty information about

nodal embedding in the latent space. We have applied node2vec in our study to verify the

results of MG2G, which in addition can effectively quantify uncertainty for the learned node

representations. Therefore, Gaussian embedding can facilitate functional brain connectome

analytics by employing a stochastic quantitative analysis, which is necessary given the lack of

big data and the sensitivity and diversity of the human brain connectomes. To this end, we

proposed a new functional brain network analysis framework based on multiple brain connec-

tome Gaussian embeddings via deep neural networks, combined with weighted information of

the original graphs. Additionally, we adopted the Wasserstein distance (W2) to quantify the

brain region (ROI)-level differences between the multivariate embedded Gaussian distribu-

tions before and after intervention (Fig 6A). We constructed violin and KDE plots to estimate

and display the W2 distance distributions (Figs 6B and 7A) from two different perspectives

(patient-specific and ROI-specific) and developed a group-level analysis to statistically validate

our findings (Figs 8 and 9). Our results demonstrated that Gaussian embedding-based func-

tional brain network analysis can automatically and quantitatively detect the underlying

multiscale (region! system! subject) subtle changes of brain networks after non-pharmaco-

logical MDCT interventions for aMCI patients. Moreover, we demonstrated two main

advantages of the nodal embedding uncertainty in our study: i) we can obtain the intrinsic

dimensionality (L) of the brain network, and ii) we can quantify the heterogeneity (diversity)

of node’s neighbors. The latter is because the high uncertainty to some nodes is due to poten-

tial connections with neighbors of different communities with possibly contradicting underly-

ing patterns.

Furthermore, the deep neural network-based model we employed in our study enabled

learning the highly non-linear mapping from the original high-dimensional brain network

space into low-dimensional Gaussian distributions, while at the same time quantifying the

uncertainty about the node embeddings. This is in line with the recent successes of emerging

deep learning techniques in diverse fields, when compared to traditional matrix-factorization

methods (e.g. SVD [29]) and random walk-based models (e.g., node2vec [15]). Our MG2G

model can readily scale up to large-scale network applications unlike traditional methods.

To evaluate the robustness and generalization of the MG2G method, we compared with the

node2vec method employed in the work of Rosental et al. [28]. We compared the two methods

(see S3 and S4 Figs in Supporting Information for details) using the same data as in our main

study. Another alternative method is spectral embedding [30] designed to use an “informative”

eigenvector decomposition, however, it becomes inefficient and unstable for large-scale and

noisy fMRI data [31]. In contrast, the node2vec approach produced comparable results as our

proposed MG2G method (see Fig 7B and in S3 and S4 Figs in Supporting Information) but

ignored critical uncertainty information about the node embeddings and the intrinsic system

dimensionality. Such information is potentially important for the dynamic, heterogeneous and

complex functional role of different regions in the brain connectome. Our proposed deep neu-

ral network-based Gaussian embedding model can overcome the aforementioned problems

effectively, and obtain probabilistic node representations, while preserving both local and

global graph topology properties of brain networks. Furthermore, we also validated our

method both with and without global signal regression, and the corresponding results are

shown in S6 Appendix.

In addition to the within-subject analysis quantifying network alterations after intervention,

we also analyzed statistically network alterations at the group-level by defining a new measure,

the reorganization index (RI). In this case too, we found that a large number of ROIs were

affected after intervention (Fig 8), and these changes at the system/community level (Fig 9)
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were comparable to the ones we obtained with the within-subject analysis in Fig 7B. Taken

together, our results using two different approaches (MG2G and node2vec) and two different

methods of analysis (top-15 ROI and t-test) showed consistency in the regions affected by

the MDCT intervention, with details of each region presented in S2 Table in Supporting

Information.

In addition to fMRI networks, in previous work [4] we have investigated the MDCT inter-

vention effects on structural MRI data and found significant increases in gray matter volume

in the right angular gyrus and other subareas following the MDCT intervention. In the current

study, we further investigated the underlying MDCT intervention effects at both ROI-level

and community-level on the fMRI networks. Therefore, MG2G can provide a more elaborate,

cross-modality quantification of network alterations. Specifically, we quantified the differences

between probabilistic Gaussian embeddings of functional brain connectomes before and after

intervention using the W2-distance metric. The results revealed significant changes on an

extensive number of brain regions (Fig 8 and Table 1). Also, system-level changes occurred

primarily in the default mode, somatosensory/somatomotor hand, fronto-parietal task control,
memory retrieval, visual and dorsal attention brain systems (Figs 7B and 9). Moreover, network

alterations varied across patients (Fig 6), which is consistent with the heterogeneous clinical

score profiles.

The broad intervention-related alterations on the intrinsic functional networks may reflect

adaptive mechanisms of information integration among different functional systems over the

whole brain, due to putative co-activation during the multi-domain training. A previous study

that used only explicit-memory training has found increased activation and connectivity in

distributed neural networks mediating explicit-memory functions [32]. Hence, an integrated

cognitive training that targets more cognitive domains should stimulate more diverse distrib-

uted networks underlying multiple cognitive functions. A recent study using MDCT in a

healthy older population has found increased functional connectivity within three higher cog-

nitive networks that overlap with our current study: default mode, salience, and central execu-

tive network [3]. Therefore, our findings here suggest that widespread changes in functional

connectivity induced by MDCT may be due to an enhanced restoration by functional reorga-

nization that benefits brain cognition.

In the future, to better assess and validate the MG2G method on the MDCT intervention

study, we plan to extend our method to process multi-modality data (fMRI, MRI, MEG,

genetic, and PET) given the multifaceted nature of AD and high-order subgraph (or commu-

nity) level organization pattern recognition [33]. Moreover, as more subjects enroll in the

study and longitudinal data become available, we will better characterize the effectiveness of

the MDCT intervention. Specifically, it is important to complete a longitudinal study that facil-

itates dynamic brain network fluctuation modeling during intervention (i.e., temporal and

spatial patterns). Collecting data from a control group will also enable a direct comparison of

network alterations across populations for a deeper understanding of the underlying mecha-

nisms of the MDCT intervention.
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10. Valk SL, Bernhardt BC, Trautwein FM, Böckler A, Kanske P, Guizard N, et al. Structural plasticity of the

social brain: Differential change after socio-affective and cognitive mental training. Science Advances.

2017; 3(10):e1700489. https://doi.org/10.1126/sciadv.1700489 PMID: 28983507

11. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks.

arXiv preprint arXiv:190100596. 2019;1–22.

12. Cai H, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: Problems, techniques,

and applications. IEEE Transactions on Knowledge and Data Engineering. 2018; 30(9):1616–1637.

https://doi.org/10.1109/TKDE.2018.2807452

PLOS COMPUTATIONAL BIOLOGY Graph embedding for aMCI training

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008186 September 17, 2020 19 / 20

https://doi.org/10.1126/sciadv.1700669
http://www.ncbi.nlm.nih.gov/pubmed/28782028
https://doi.org/10.1001/jamaneurol.2018.0602
http://www.ncbi.nlm.nih.gov/pubmed/29710250
https://doi.org/10.3389/fnagi.2016.00070
http://www.ncbi.nlm.nih.gov/pubmed/27148042
https://doi.org/10.1038/s41398-019-0385-x
http://www.ncbi.nlm.nih.gov/pubmed/30705261
https://doi.org/10.1016/j.brainres.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29017912
https://doi.org/10.1016/S0140-6736(15)60461-5
http://www.ncbi.nlm.nih.gov/pubmed/25771249
https://doi.org/10.1016/S1474-4422(17)30040-6
http://www.ncbi.nlm.nih.gov/pubmed/28359749
https://doi.org/10.1016/S0140-6736(16)30950-3
https://doi.org/10.1016/S0140-6736(16)30950-3
http://www.ncbi.nlm.nih.gov/pubmed/27474376
https://doi.org/10.1159/000322942
http://www.ncbi.nlm.nih.gov/pubmed/21196773
https://doi.org/10.1126/sciadv.1700489
http://www.ncbi.nlm.nih.gov/pubmed/28983507
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1371/journal.pcbi.1008186


13. Cao S, Lu W, Xu Q. Grarep: Learning graph representations with global structural information. In: Pro-

ceedings of the 24th ACM international on conference on information and knowledge management.

ACM; 2015;:891–900.

14. Ou M, Cui P, Pei J, Zhang Z, Zhu W. Asymmetric transitivity preserving graph embedding. In: Proceed-

ings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM; 2016. p. 1105–1114.

15. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2016. p. 855–

864.

16. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proceedings of

the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2014.

p. 701–710.

17. Vilnis L, McCallum A. Word representations via gaussian embedding. arXiv preprint arXiv:14126623.

2014.

18. He S, Liu K, Ji G, Zhao J. Learning to represent knowledge graphs with gaussian embedding. In: Pro-

ceedings of the 24th ACM International on Conference on Information and Knowledge Management.

ACM; 2015. p. 623–632.

19. Zhu D, Cui P, Wang D, Zhu W. Deep variational network embedding in wasserstein space. In: Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM;

2018. p. 2827–2836.
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