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Abstract: The purpose of this article is to demonstrate the potential of gene expression programming
(GEP) in anticipating the compressive strength of circular CFRP confined concrete columns. A new
GEP model has been developed based on a credible and extensive database of 828 data points to date.
Numerous analyses were carried out to evaluate and validate the presented model by comparing them
with those presented previously by different researchers along with external validation comparison.
In comparison to other artificial intelligence (AI) techniques, such as Artificial Neural Networks
(ANN) and the adaptive neuro-fuzzy interface system (ANFIS), only GEP has the capability and
robustness to provide output in the form of a simple mathematical relationship that is easy to use.
The developed GEP model is also compared with linear and nonlinear regression models to evaluate
the performance. Afterwards, a detailed parametric and sensitivity analysis confirms the generalized
nature of the newly established model. Sensitivity analysis results indicate the performance of the
model by evaluating the relative contribution of explanatory variables involved in development.
Moreover, the Taylor diagram is also established to visualize how the proposed model outperformed
other existing models in terms of accuracy, efficiency, and being closer to the target. Lastly, the criteria
of external validation were also fulfilled by the GEP model much better than other conventional
models. These findings show that the presented model effectively forecasts the confined strength of
circular concrete columns significantly better than the previously established conventional regression-
based models.

Keywords: CFRP; modelling; machine learning; GEP; strength model; confinement; gene programming;
artificial intelligence

1. Introduction

Recently, an upsurge has been recorded in using fiber-reinforced polymer (FRP) as
an exterior enclosure for structural components when the interior reinforcements become
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ineffective. The retrofitting and rehabilitation of buildings and bridges affected by seismic
events can also benefit from using advanced composite materials like FRP and steel jacket-
ing as exterior confinement [1–4]. In addition to being lightweight and strong, FRPs are also
weather and electromagnetic resistant, and easy to substitute on structural components that
have been damaged. FRP composites are being used to rehabilitate and upgrade structures
affected by earthquakes, thus enhancing their resilience and stability. Fiber-reinforced
concrete structures have been the subject of several publications, including (but not limited
to) [5–10]. Several empirical models have been established so far [11–13] to anticipate the
response of FRP-wrapped concrete at axial loads. Moreover, based on explanatory variables
as the ultimate conditions for fiber reinforced concrete specimens, Fardis and Khalili in
1982 [14] evaluated the model proposed by Richart [15] and Newman [16]. These empiric
models were developed using conventional regression techniques and also by considering
limited (small numbers of data points) geometrical and mechanical properties of FRP-based
confined concrete, which cannot ensure accuracy and applicability. Subsequently, the
majority of models were gradually developed by employing a consistent set of variables
over time, principally by incorporating both the strain ratio and the lateral confinement
ratio in most cases, whereas the role of many significant contributing factors has not been
investigated using a variety of modeling approaches. Sadeghian and Fam [17] analyzed
a range of models, and chose the best fit using a regression model. Keshtegar et al. [18]
employed modified standard harmony search methods for resolving complex nonlinear
system modeling problems, whereas Keshtegar et al. [19] introduced a chaotic dynamical
management approach that maintained the polynomial mapping nonlinearity while obtain-
ing undisclosed model parameters using fresh and previous trials. As previously stated,
previous investigations were constrained by the small datasets employed, which impeded
their capacity to apply their findings to unknown data [20–22].

Mander et al. [12] developed empiric models for assessing the flexural strength and
strain of columns directly constrained with fiber-reinforced polymer (FRP) by employing
the energy balance technique. The energy balancing approach assumes that the energy
needed to burst the transversal FRP isolation is equivalent to the increased strain energy of
concrete confined with FRP. The FRP confinement model proposed by [22] were based on
the strain capacity and dilation tendency of concrete, which were incorporated by ACI [23]
in 2008 with subsequent variations. When prior models were developed in the 1990s, the
ruptured strain of FRP was ignored in favor of the maximum tensile strain specified by the
fabricator. In the last several years, investigations have shown that the true strain required
to cause an FRP to rupture is much lower than previously anticipated [1,22].

Artificial intelligence (AI) approaches are being utilized to evaluate civil engineering
phenomena worldwide [24]. For instance, researchers have employed a variety of AI
approaches, including RS (response surface technique), ANFIS (adaptive neuro-fuzzy inter-
face system), NN (neural network), RF (random forest), PSA (particle swarm algorithm),
GA (genetic algorithm), GP (genetic programming), and GEP (gene expression program-
ming) [25–30]; however, Naderpour [31] employed Artificial neural networks (ANN) to
obtain the relationships within confined concrete through fiber-reinforced polymers. El-
sanadedy et al. [32] again uses the confinement model based on the neural networks (NN)
technique. Recently, many other studies have also evolved in an attempt to better cater
to, and analyze the behavior of, confined concrete, either focusing on ultimate conditions
or by using distinctive techniques such as regression, artificial neural networks (ANN),
stepwise regression (SWR), or a support vector machine (SVM). Moreover, other types
of approaches such as the Bayesian principle or algorithms such as whale optimization
networks [33–35] have also been used. These studies employed small databases, which
makes their approach a little less mature compared with studies that make used of a vast
range of datasets. Although algorithms such as ANN, as well as ANFIS, are capable of
recognizing and generalizing subtle differences, they are also sometimes efficiently utilized
to tackle technical challenges [36]. Due to the presence of massive neurons in the hidden
layer, this makes the link development among the source and target parameters difficult.
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Even though these approaches sometimes show a good association between outputs and
inputs, they did not have an analytical expression that could be employed in practice. This
is because of the intricate architecture of ANFIS and ANN algorithms, which hinders the
widespread implementation of such approaches [37–40]. Various other researchers [41–47]
also developed different mathematical models for the evaluation of multiple complex
engineering problems.

Gene Expression Programming (GEP) is a desirable Multiphysics model, as it over-
looks preceding established associations in the development of a model [48–51]. Subse-
quently, GEP, a variant of gene programming (GP), is used in structural engineering. GEP
encodes a program on a fixed-length linear chromosome [52]. It can provide a simple
analytical expression for forecasting the behavior that can be utilized in practice [53–56]. As
per the authors’ knowledge, no study has been conducted that achieves a larger database
in studies concerning CFRP and GEP. In the literature, there are some other models that
have been identified based on neural networks, but they do not provide an equation. In
contrast to neural networks such as ANN and ANFIS, GEP offers several advantages over
these techniques. When talking about ANN algorithms, their worthlessness is impor-
tant, due to their inability to provide a working relationship or framework that can be
utilized in practice; however, the output in GEP is obtained in the form of an expression
tree which is later decoded to get a simple mathematical relationship that is easy to use
and can be applied to future predictions. Establishing frameworks is a special ability
of GEP, which demonstrates its novelty by providing simple and reliable models [57],
making this approach even more reliable in providing accurate predictions for the future,
whereas all other techniques except genetic programming are only used as predictors.
Considering these limitations, neural networks are categorized as black-box algorithms
that hinder their application; therefore, GEP as an alternative to these techniques takes
over other approaches to tackling engineering and complex issues. Cevik et al. [58] initially
attempted to utilize GEP in his work to develop a model for strength enhancement. Later,
Gandomi et al. [59] studied the complex interaction and behavior between FRP and concrete.
In [60], a similar approach was used for axial compression of confined concrete. In [60] the
author has generalized his study by incorporating distinctive natures of confinement wraps
having different mechanical properties (CFRP, GFRP, and, AFRP), along with some tube
encased specimens in the database, thus resulting in unaligned behavior. These models
make their accuracy and reliability less efficient, and sometimes inaccurate, due to limited
databases, which is an important aspect of modeling on machine learning. Moreover,
a small number of data points make it difficult for AI approaches to efficiently distribute
and randomize the sample datasets evenly in phases (i.e., training, testing, and validation).
This uneven distribution, with respect to specific data sets, sometimes leads the problem
towards overfitting, collinearity, or other similar issues that may arise when modeling.

To avoid these issues and present a model with more generalizability and reliability,
experiments on 828 specimens conceived from previous research have been used in this
study to develop a predictive model for the compressive strength of fiber reinforced
concrete with an exterior confinement. This new model was chosen after an extensive
assessment and review of the existing strength models in the database that had been set up.
The generated model was validated using validated sets and external validation criteria.
Moreover, a parametric analysis was conducted to analyze the influence of individual
variables on the strength of concrete enclosed by FRP. The findings of this research will
aid sustainable construction in its efforts to better interpret the structural performance of
fiber-reinforced concrete.

The fundamental objective of this research is to develop a strength prediction model
for FRP-confined concrete cylinders. Strength models have been studied before, but the
data used was substantially smaller or limited. Correlation coefficients (R) and mean
square errors (MSE), among other statistical indicators, were also employed to examine the
experimental results of confined cylindrical specimens enclosed with FRPs. The theoretical
models that were created based on conventional regression techniques for FRP-confined
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concrete were used to draw the comparison. As an additional authentication step, MLR and
MNLR models were also developed and compared with the newly developed AI model;
however, analysis of existing and newly developed GEP models shows that the proposed
model for the CFRP-confined concrete members outperforms the previous ones.

2. Gene Expression Programming

It was Ferreira [61] who originally introduced the genotype branch of the evolutionary
computational approach, which emphasizes the importance of biological evolution essen-
tials to transform computer programs. As the chromosomes are linear, GEP can be thought
of as an amalgamation of GA and GP, since it uses GP to encode and parse trees of various
configurations. GEP uses fixed-length chromosomes composed of one or more genes to
evolve computer programs. Functions, variables, and constants are the building blocks
of symbols in GEP, which are referred to as basic components. Parameters and constants
are known as terminals because they do not require any more information. Thus, a gene
is formed by an organized set of symbols, then an organized set of genes forms a new
chromosome. It is common in GEP systems to have between 4 to 20 symbols per gene, and
for each chromosome to normally consist of one or several genes. For each GEP gene, there
is a fixed-length structure composed of tiny subprograms with a head that mostly contains
function sets and operators such as +, −, ×, ÷, and a tail that only contains variables and
constants. For each task, a random set of fixed-length chromosomes is generated. After that,
the solution to a particular issue is appraised. For many generations, the process repeats
itself until the desired outcomes are achieved. Mutation, reproduction, and crossover are
all utilized during iterations to manipulate organisms and corresponding populations. The
workflow diagram for the proposed GEP algorithm is shown in Figure 1.
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A major advantage of the Genomic-based Operationalized Programming technique is
that genetic operators can be used at the chromosomal level to create biological variation
without requiring a complex production process or resourceful ways to conduct genetic
operations [61]. Due to its distinctive and multigenic characteristics, GEP transforms
multi-subprogram systems in much simpler ways [62,63]. When it comes to solving
complex issues, GEP uses Darwinian concepts of inherited traits, along with variability
and adaptation.

However, when the objective is to achieve forecasting models using GEP, then the
data sets need to be defined, and the major objective is to develop models connecting
them without any previous assumptions. The Karva script is used to pick gene expression
patterns and operators, which results in a random number of individuals (chromosomes)
in the GEP process. Tree expressions are created from K expression in the genome because
algorithms can assess and develop tree expressions much more smoothly than K expres-
sions. An objective function is then used to categorize the individuals in the population.
A greater percentage of the descendants of individuals with better fitness scores will be
permitted to form parents in the coming generation. Members are then randomly mutated
(recombination or crossover), transposed, or rearranged [49]. The process will continue
to evolve towards convergence, but once the convergence conditions have been met and
the fittest member has been picked up, the process could be terminated by specifying
a different criterion, such as restricting the number of generations or the amount of time
that has elapsed.

3. Research Methods
Database Establishment and Division

After a detailed assessment of the literature review, the database has been compiled.
Incomplete information and details were excluded to maintain the adherence and accuracy
of developed model datasets; however, the effect of mix design and other factors such
as curing conditions were not taken into account. These factors do not directly affect
the performance of FRP, rather, they affect the concrete strength. Thus, in the literature,
there are multiple strength models on concrete that have been developed separately in
the past by considering mix proportions and multiple other factors [64,65]. If these factors
were considered in the confinement model, then it would be too complex to deal with
and obtain a working relationship. Moreover, other confinement models in the literature
also did not account for either mix design or other curing conditions, rather, they directly
employed the unconfined concrete strength [35,66,67]. Around 830 CFRP confined concrete
tested experimental results were compiled into a large database. To date, as per the
authors’ knowledge, this is the maximum number of experimental results available in
the literature. Thus, to make an effective model, the maximum numbers that could be
employed were used in this study, in an effort to make the model more generalized and
robust. Moreover, in the literature, researchers recommended that the proportion of the
total number of data points compared with the number of explanatory variables (that
were employed for training, validation, and testing sets) needs to be greater than 5 [68].
Furthermore, with more datapoints in the model development process, the probability of
an efficient and robust model is increased; however, in light of the mentioned criteria, for
the training phase, the evaluated model has a ratio of 116, whereas in the testing stage,
the f’cc model has a ratio of 24.8. Moreover, various statistical metrics have been used to
evaluate the robustness of the strength models of these databases. It has been observed
that the elastic modulus of CFRP ranges between 10 and 612 (GPa), indicating there are
two categories of FRPs, namely, those with a low and a slightly elevated elastic modulus,
respectively. Additionally, the database has a range of values for concrete columns confined
with FRPs that are up to 812 mm tall and have an axial confined compressive strength
(f’cc) of 302.2 MPa. The marginal histogram presents the distribution of each explanatory
variable as shown in Figure 2. As can be seen in Figure 2 the data is distributed all over
its range for each explanatory variable. For diameter and height, the maximum values lie
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in the ranges of 400 mm & 800 mm respectively. Similarly thickness and elastic modulus
parameters have also well versed distribution. However, these distributions play significant
role in capturing over all behavior of model. Lastly the data for unconfined concrete is
distributed proportionally along the response variable which also provide insight regarding
relationship between response and explanatory variable.
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An issue that arises in implementing machine learning approaches is multicollinearity,
which arises due to the dependency of process variables [69]. Increasing correlation strength
and durability between variables can reduce the model’s performance. It is advised that the
correlation (R) value between two input parameters needs to be less than 0.8 [70] to address
the risk of collinearity. According to Figure 3, R is evaluated for all possible input variables.
The table in Figure 3 indicates that R, either negative or positive, falls below the stated limit
of 0.8, demonstrating that there would be no potential for collinearity during modeling.
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GEP has a distinct edge in that it does not require or play a limited part in reprocess-
ing input and output data, including data normalization. For modeling, GEP generates
computer programs or chromosomes with functions that are relevant to the problem model
and data distributions, allowing input and output variables to be readily inputted for
modeling. Algorithmic and numerical computation approaches have an issue known as
overfitting that makes it difficult to generalize their models. In this situation, the train-
ing set’s error is reduced to a very low number, but the deviation increases significantly
when fresh data is introduced to the model. As part of the selection process for training
models, validation datasets are categorized data sets. Other individuals must be tested
on a validation dataset to locate the best generalization [71] to minimize overfitting in GP
and its derivatives. Additional test data can be incorporated into models to enhance their
generalizability and thereby improve the accuracy of predictions. The accessible data sets
are therefore divided into three groups based on a random selection: (i) training subsets,
(ii) validation/check subsets, and (iii) testing subsets. There have been various published
assessments concerning the proportions of data used to build the model using artificial
intelligence (AI), ranging from 50–70%, 15–25%, and 15–25%, respectively [72–76]. As part
of the model selection criteria, a train set is employed to develop the initial model, whereas
a validation set is used to assess estimation error, and a test set is utilized to evaluate the
generalization of the model’s projected error. In this study, around 70% of data have been
used for training, and the rest of the data, at around 30%, have been used for validation
and testing the models individually.
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4. Modeling Approach
4.1. GEP Modelling

A credible database has been used to establish five explanatory variables: d (mm),
h (mm), nt (mm), fco (MPa), and E (GPa), to build a prediction model for the fcc (MPa) of
confined concrete columns through a reliable database. Dependably, GeneXpro Tools 5.0 is
employed in this work to develop the GEP model.

When using GEP models, the parameter settings might have an impact on the models’
reliability and generalizability. Consequently, several runs are therefore necessary to come
up with a reliable and stable model. When it comes to configurations, they are being
modified in each run by an iterative process, or they can be employed as sets of parameters,
as previously suggested by researchers [49,74,76]. For this study, the model creation
process has been governed by taking into account distinctive factors indicated in Table 1.
It is important to remember that increasing the number of genes itself does not lead to
a significant enhancement, but it might lead to overfitting [63,77]. As shown in Table 1, the
optimal GEP model does not necessarily contain all of the arithmetic and logical operations
that were used to demonstrate this.

Table 1. Hyper parameters configuration incorporated for modeling.

Sr. # Generalized Setting

1 â Chromosome number 120
2 â Gene number 3
3 â Size of head 8
4 â Genes’ linkage function Addition
5 â Set of functions +, /, −, ×, 3

√

Constants Configurations
6 â Constants per gene 10
7 â Data type Floating
8 â Bound range −10 to +10

GEP Operators
9 â Mutation: 0.00138
10 â Function Insertion: 0.00206
11 â Permutation: 0.00476
12 â IS Transposition: 0.00548
13 â RIS Transposition: 0.00496
14 â Inversion: 0.00548
15 â Gene Transposition: 0.00157
16 â Random Chromosomes: 0.0026
17 â Constant Insertion: 0.00123

Recombination Rates
18 â Uniform 0.00755
19 â One-Point 0.00277
20 â Two-Point 0.00189
21 â Gene 0.00277

To establish the GEP paradigm, we need to understand the structure of the genome,
genes, and expression trees. The population’s number determines the length of the program.
The chromosome is made up of genes that encode the subexpression trees. According
to the intricacy of the forecasting model, 160 points were chosen as population numbers.
Each term is determined by the number of genes and head-size, determining how difficult
each term is and how many sub-ETs make up the model’s aggregate; hence, the model
takes into account a population of 160, having 3 genes, and a head size of 8. Through
genetic operators, chromosomes are susceptible to genetic changes. Mutation occurs
when a randomly chosen element of the gene’s tail or head is swapped with a randomly
generated element in the expression tree. The transposition is responsible for the sequences’
transposition inside chromosomes, specifically two major sequences, the insertion and
root insertion sequences. The architecture framework for the proposed study has been
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employed to establish an adequate prediction model. Table 1 shows the synchronized
hyper parameter configurations used to build the analytical expression.

The optimal GEP frameworks could be derived from assessing a fitness function
following the training phase. A tree-like representation of the eventual GEP model can
be depicted in the chromosomal mode. Here, the generated tree-shaped expression is
simplified and turned into a functional representation to make it easier to utilize via hand
computations using consecutive replacements of variables. Equation (1) shows the best
GEP-based formulae for indirect determination of the CFRP confined concrete columns.
The best GEP model can be determined by taking into account the preceding modeling
challenges and issues during the preliminary phases of the GEP approach. As indicated by
a fitness function, the aptitude of the model is the criteria for choosing the most suitable
GEP model among those developed. It is important to keep in mind that developing an
effective and precise model requires more than just one criterion. Consider that statistic
regression modeling tends to be obtained by manipulating just a few prior solutions. As
a result, for each of these models, the interconnections among the explanatory and response
variables are not considered, but in GEP, an appropriate mathematical model is formed by
suppressing multiple linear and nonlinear based baseline models, mostly introduced via
genes and associated chromosomes.

fcc = A + B + C, (1)

A = (nt−15.269) ∗ (−64.1539−Ef ) ∗ 3√nt
D ,

B = 3
√

53.32 ∗ f 2
co ∗ h− E f

nt

C = 3
√

fco + (nt− 0.00793) ∗ (E f + fco) ∗ 2h,

4.2. Regression Models

Several statistical metrics are evaluated to forecast GEP accuracy and performance.
R2 is the coefficient of correlation, which is one of these. In fact, it cannot be enough to
classify a model on its own because it does not forecast the outcome of a constant’s division
or multiplication.

Regression models are initially compared with one another. Afterwards, the GEP
model results are compared with the best MLR and MNLR results. Thus, after compar-
ing the results, the multiple nonlinear regression (MNLR) model is preferred over the
MLR model.

4.2.1. Multiple Non-Linear Regression (MNLR)

Modeling the nonlinear relationship between two variables is a common practice in
statistics. It is utilized instead because linear regression could not often yield accurate
findings similar to nonlinear regression in certain cases. This happens primarily due to
the fact that the data in linear regression is considered straight. The MNLR approach uses
nonlinear relationships to collaborate with dependent and independent variables. MNLR
models can appear mathematically as:

Y = b + β1χi + β2χj + β3χi
2 + β4χj

2 + . . . + βqχiχj (2)

where b corresponds to intercept, β denotes the slope of the line, and q is the number of
instances. The relationship in Equation (2) is utilized to forecast the behavior of Y with
respect to χ.

4.2.2. Multiple Linear Regression (MLR)

MLR refers to a method in which the interaction among response and predictor
variables has a straight-line behavior. When using linear regression, we are more concerned
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with the regression coefficient (β) that has the least impact on the model’s overall inaccuracy
by dealing with the discrepancies.

Y = b + β1χj + β2χj + β3χj + . . . + βqχj (3)

In Equation (3), Y expresses the forecasted confined compressive strength of CFRP
concrete. The variable “χ” represents the explanatory variables that were used to develop
the equation.

5. Results and Discussion
5.1. Model Performance and Evaluation

It is necessary to undertake numerous supplemental processes before selecting a
suitable model, and the efficacy and correctness of the model should be thoroughly assessed.
Assessments based on statistic evaluation can facilitate this. It is recommended by [70]
that models that provide a Pearson correlation (R) value > 0.8 will be considered adequate
in terms of their ability to foresee future outcomes. Furthermore, the disadvantage of
solely using R as just a benchmark for assessing the robustness of the model is that it
is unresponsive to discrepancies in model predictions and actual values that are either
additional or proportionate. As a result, additional factors must be taken into account;
however, various metrics can be employed, such as root mean square error and mean
absolute error. Disparities between expected and actual results can have a greater impact
on such indexes, as they are more responsive to big, random deviations. RMSE is a metric
for predictive performance that combines the intensities of forecasting flaws across different
time periods into a single number. It assigns a relatively greater importance to extremely
big discrepancies. In addition, MAE indicates the average size of the variance. The superior
predictive performance will be achieved if RMSE and MAE values were relatively low. The
formulae mentioned below can be used to figure out these indices:

R =
∑n

i−1(ei − ei)(mi−mi )√
∑n

i−1(ei − ei)2 ∑n
i−1(mi −mi)2

(4)

RMSE =

√
∑n

i−1(ei −mi)
2

n
(5)

MAE =
∑n

i−1|ei −mi|
n

(6)

where n represents the size of samples and ei and mi are the averages of the measured
and estimated output for the ith indices, respectively. It is recommended that the model’s
efficacy is tested on a variety of datasets to ascertain if it overfits. The R, RMSE, and MAE
evaluation metrics could be used to accomplish this. Data sets with low levels of overfitting
in the R, MAE, and RMSE on the train and test sections support this claim. [49,71,74];
however, as a way to showcase the GEP models’ capabilities, the anticipated versus actual
values are shown in Figure 4, and it demonstrates the behavior among developed AI
models against experimental output. It can be seen that at almost every data point, the GEP
model effectively forecasts the corresponding output with maximum accuracy. Statistical
metrics of the proposed model against actual values depict that the model possesses
high generality with low discrepancy values when incorporating such a huge database.
Moreover, it is demonstrated through Figure 4 that GEP-based fcc models which have high
R and moderate RMSE and MAE indices are capable of predicting the output with adequate
precision; however, near R2, RMSE, and MAE, values on the data sets indicate that it has
both superior forecasting and heuristic capabilities, coupled with the fact that overfitting
is nullified.
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Figure 4. Forecasting via GEP against actual output.

A normalized Taylor diagram [78] in Figure 5 depicts the Pearson correlation co-
efficient, and the predicted standard deviation of presented the model for comparison
purposes. The accuracy of simulated models is assessed by comparing their distance from
the target point on a Taylor diagram. When it comes to forecasting outputs that needed to
be close to experimental data, the GEP model surpassed the other models [79–86], as shown
in Figure 5. Essentially, this is due to the large sample prediction capability and potential
prevention of localized minimal occurrences, with an improved generalization performance
of the GEP approach. It appears to be more effective in solving finite samples, complex, and
function fitting issues compared with other machine learning (ML) techniques. Thus, for
the calculation of the compressive strength of FRP-confined concrete, the newly developed
ML model surpasses previous conventional approaches.



Polymers 2022, 14, 1789 12 of 20Polymers 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 5. Taylor Diagram for performance evaluation of GEP and existing models [11,12,14–

16,20,22,79–86]. 

5.2. External Validation 

Furthermore, the GEP model findings are being evaluated in empirical or other fore-

casting models in an attempt to further examine the model’s accuracy and validity. Sev-

eral other metrics, in addition to R, MAE, and RMSE, may be taken into consideration in 

this context; however, for external validation, it is suggested that at least one regression 

line (k or k’) across the origin must have a gradient at approximately 1. [49,73,74]. Addi-

tionally, the o and p efficiency indices have to be smaller than 0.1. 

Figure 5. Taylor Diagram for performance evaluation of GEP and existing models [11,12,14–16,20,22,79–86].

5.2. External Validation

Furthermore, the GEP model findings are being evaluated in empirical or other fore-
casting models in an attempt to further examine the model’s accuracy and validity. Several
other metrics, in addition to R, MAE, and RMSE, may be taken into consideration in this
context; however, for external validation, it is suggested that at least one regression line (k
or k’) across the origin must have a gradient at approximately 1. [49,73,74]. Additionally,
the o and p efficiency indices have to be smaller than 0.1.
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Another indicator Rm has also been developed by many scholars [49,73,74] to assess
frameworks’ predictive power. The criterion is met if Rm > 0.5. Both the squared coefficient
of correlation (via the origin) among the forecasted and actual values (Ro

2), and the correla-
tion among the actual and forecasted values (Ro’2), must be near R2 and 1. As shown in
Table 2, oi and pi indicate the observed and anticipated results for the ith yield, accordingly,
and n represents the total number of observations taken. To illustrate the validity of the
validation criteria, Table 2 shows the findings produced by various approaches (AI and
Regression models) for fcc (MPa).

Table 2. External validation assessment of AI and Regression Models.

Sr. #. Equation Range Model Output Reference

1 R = ∑n
i−1(ei−ei)(mi−mi )√

∑n
i−1(ei−ei)2 ∑n

i−1(mi−mi)2 R > 0.8
GEP 0.917
MLR 0.788

MNLR 0.856

2 Rm = R2 ×
(

1−
√∣∣R2 − R2

o
∣∣) Rm > 0.5

GEP 0.528
(Roy and Roy,

2008) [87]
MLR 0.244

MNLR 0.398

where
R2

o = 1− ∑n
i=1(o−po

i )
2

∑n
i=1

(
oi−po

i

)2 , oo
i = k× pi R2

o
∼= 1

GEP 0.980
MLR 0.987

MNLR 0.977

R′2o = 1− ∑n
i=1(oi−po

i )
2

∑n
i=1(oi−oo

i )
2 , po

i = k′ × oi R′2o ∼= 1
GEP 0.998
MLR 0.997

MNLR 0.988

3 k = ∑n
i=1(oi×pi)

∑n
i=1 o2

i
0.85 < k < 1.15

GEP 0.934 (Golbraikh and
Tropsha, 2002) [88]MLR 0.965

MNLR 0.952

4 k′ = ∑n
i=1(oi×pi)

∑n
i=1 p2

i
0.85 < k′ < 1.15

GEP 1.019
MLR 0.980

MNLR 1.014

In addition, as shown in Figure 6, the effects of different requirements acquired by GEP-
based modeling for forecasting the fcc of CFRP confined concrete, indicates the resilience
and competence of the generated models in conjunction with other well-known models,
since the resulting models fulfill all of the requisite characteristics and dominate other
forecasting frameworks significantly. It can be seen that some models did not even fulfill
the requirements for external validation, as can be seen in the case of Rm, which remains
less than <0.5 for some models. In addition, it has been observed that merely using R
values, or MAE and RMSE values, cannot even comprehend the model’s applicability and
accuracy. These metrics significantly contribute towards the generalization and resilience of
the model. As presented in the comparative graph, the GEP model provides a significantly
improved performance, whereas other models even fail to fulfill some criteria for validation.
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5.3. Parametric Study

Based on the parametric analysis, the impact of different explanatory parameters
on the fcc for CFRP confined concrete has been assessed in this study; it is evident that
fcc rises in accordance with fco, nt, h, and E, but it decreases as d increases. Parametric
analysis is necessary to guarantee that the model outcomes are in agreement with actual
outcomes, and to evaluate the resulting model from an engineering perspective. The
capacity of analytical expression is to determine how well anticipated values coincide with
the underlying computing behavior of the model [49,62,73].

The parametric analysis depicts the reaction of GEP-based fcc modeling to respective
introductory variables with a certain variability. A predictor variable is changed at a time,
whereas the rest of the parameters stay unchanged at the arithmetic mean in the process.
Thus, the parametric analysis evaluation is done by creating a set of input data for each
parameter based on its distribution in the database. The proposed model is provided with
these values, and the fcc is determined. Each predictor variable’s behavior with regard to
the model is then produced by repeating this process using another variable. There are
several variables that influence the prediction models perspicuously, such as d, nt, E, and
fco, except for h. Figure 7 shows the response of the fcc prediction models to the changes
in these variables. These responses are shown to be in close agreement with the models
developed previously in the literature by accurately anticipating the fcc based on their
physical behavior.
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1 
 

 
Figure 7. Parametric analysis of input variables.

5.4. Sensitivity Analysis

A sensitivity analysis (SA) is used to determine how a model’s response is impacted
by variations in the model’s input parameters. A dependent variable’s response to varying
values of predictors can be modeled using the SA method. The SA percentage is derived by
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utilizing an expression for each input operating parameter [62,63]. The sensitivity index
(SI) is calculated by determining the percentage of every variable’s outcome discrepancy.
Accordingly, the SI value can be determined in the following manner:

SI =
Ni

∑
j=1
n Nj

× 100

Ni = fmax(xi)− fmin(xi)

where fmax and fmin are the ith input variable’s maxima and minima, other input parameters
would remain fixed at respective arithmetic mean, and n represents the number of input
parameters. Results from this study’s sensitivity analysis are demonstrated by a pie chart,
as shown in Figure 8, for the confinement model of CFRP based confined concrete.
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Figure 8. Sensitivity analysis based on the relative contribution of predictor variables.

A sensitivity analysis is conducted to evaluate the relative percentage contribution
of input parameters to the compressive strength of CFRP confined concrete. The most
important parameter is unconfined strength, as it contributes around 41% to the compres-
sive strength of the CFRP confined concrete, whereas around 43% contribution is from
confinement alone, and the rest was contributed by geometrical properties such as the
diameter and height of the specimens. Based on these percentage contributions it is clear
that the selected predictor variables have enough impact on model development, and the
same variables could be utilized for future studies. Sensitivity analysis also decides the
performance of the developed model on the basis of their contribution, If the variables do
not show a considerable contribution, then it would negatively affect the model. As per
Figure 8, the GEP framework for fcc is mostly more responsive to fco, nt, and Ef, than to other
variables. These metrics signify that the model’s output is governed by the abovementioned
parameters. In addition, the SI values for all other models are based on their dependency
on the system parameters. SA is a useful tool for future research, including identifying
the most vulnerable input factors for a realistic model’s employment, future trials, and the
development of new models; however, it should be noted that each model is distinctive
for simulation purposes, irrespective of how accurately it can forecast the target value.
Thus, engineers must be intimately conversant with the sensitivity and significance of every
parameter in the model they employ for simulation purposes. Thus, the GEP approaches
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for fcc are distinguished from other models in that all parameters are effectively implicated
in forecasting the outcome, and therefore, the design result.

6. Conclusions

This research aimed to see if the GEP methodology could be used to indirectly estimate
the confined strength fcc, for CFRP based confined concrete columns, which are fundamental
for the development and construction of concrete structures. As part of an extensive data
analysis to date, a new GEP model has been developed. The latest formulation has been
presented to forecast fcc, taking into account the most influential parameters, as per the
theoretical and experimental literature. The developed GEP models were evaluated using
a variety of statistical measures and other investigations. Considering substantial input
variables while modeling the behavior, the model can effectively capture the results that
are more accurate and closer to the actual response.

Moreover, professionals must also be well-versed regarding the impacts and effects of
input factors on models they employ for development; therefore, an SA comparison has
been carried out. The comparison findings based on SA for notable models indicated the
distinctiveness of every model’s reaction to individual input parameters. It is important
to note that the GEP models developed for the planning and design framework of CFRP
confined concrete columns encompass the effects of all impactful explanatory variables, as
per the specified independent factors in the literature. The SI values of the GEP models
for fco are 41%, which means that the GEP model is more responsive toward the strength
of unconfined concrete than other parameters, which has a significant impact on the
design results. Parametric analysis is also considered to analyze the GEP model from an
engineering and materials perspective, and the findings were confirmed via laboratory
studies in the literature. When it comes to an indirect assessment of the fcc of enclosed CFRP
columns, the presented findings for assessment and validation show that GEP models
outperformed previous frameworks in terms of scientific perspectives and performance
capability when forecasting the target. In addition to further signifying the accuracy of the
GEP model, a comparison is also drawn between the developed regression models and
GEP. For this purpose, MNLR model statistics were evaluated in contrast to the developed
AI model, and GEP dominates the former one in terms of accuracy statistics. This study
shows that the GEP technique can be used as a dependable and robust replacement for
conventional procedures for highly nonlinear and complex engineering issues.
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