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ABSTRACT

Large-scale automatic annotation of protein
sequences remains challenging in postgenomics
era. E1DS is designed for annotating enzyme
sequences based on a repository of 1D signatures.
The employed sequence signatures are derived
using a novel patternmining approach that discovers
long motifs consisted of several sequential blocks
(conserved segments). Each of the sequential blocks
is considerably conserved among the protein mem-
bers of an EC group. Moreover, a signature includes
at least three sequential blocks that are concurrently
conserved, i.e. frequently observed together in
sequences. In other words, a sequence signature is
consisted of residues from multiple regions of the
protein sequence, which echoes the observation that
an enzyme catalytic site is usually constituted of
residues that are largely separated in the sequence.
E1DS currently contains 5421 sequence signatures
that in total cover 932 4-digital EC numbers. E1DS is
evaluated based on a collection of enzymes with
catalytic sites annotated in Catalytic Site Atlas.When
compared to the famous pattern database PROSITE,
predictions based on E1DS signatures are consid-
ered more sensitive in identifying catalytic sites and
the involved residues. E1DS is available at http://
e1ds.ee.ncku.edu.tw/ and a mirror site can be found
at http://e1ds.csbb.ntu.edu.tw/.

INTRODUCTION

Recent large-scale genome projects have accumulated
abundant sequence and structure data with unknown
functions, which raises a large demand of automated
function inference using computational tools (1–3).

Identifying important residues of protein sequences is one
of the most important steps in function inference, since
many studies have shown that functionally important
residues can usually serve as good signatures for function
prediction (4–8). There has been many efforts on predicting
functional sites based on structural analyses (7,9–15). Jones
and Thornton (11) provided a comprehensive review of
these methods. However, computational tools that utilize
protein structural information are limited, since there is a
great quantity of protein sequences without experimentally
determined or computationally modeled structure avail-
able for learning. This emerges alternative approaches that
utilize the sequence information alone. It has been shown
that the sequence conservation property so far serves as one
of the most powerful indices for detecting functionally
important residues in proteins (16–18). Moreover, con-
servation information is found to be more effective on
predicting catalytic sites and residues near ligands than the
residues in protein–protein interfaces (18).
A widely used approach for estimating residue con-

servation is multiple sequence alignment (MSA). Many
scoring schemes have been proposed (18,19). When
incorporated with phylogenetic information, the evolu-
tionary trace (ET) method identifies sites critical to protein
functions by detecting important mutations across sub-
families (20). Another well-known method to identify
function-related residues is motif discovery based on a set
of homologous sequences (8,21,22). These motif discovery
methods usually find short amino acid stretches repre-
sented as consecutive regular expressions or profiles.
However, short patterns are considered less complete
and not specific enough in characterizing the protein
function (1) and tend to result in false positives when they
are used to detect important residues on sequences (16).
Nevertheless, it is favorable if we can find longer
sequence motifs that cover the binding sites as complete
as possible.
Several databases have been proposed for characterizing

important residues of enzymes, most based on sequence
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and structure conservation and some from literatures
(10,13,23). E1DS provides an alternative way to derive
useful information about enzyme binding regions by a
novel pattern mining algorithm that discovers long
sequence motifs (24). The performance evaluation con-
ducted in this study shows that E1DS is capable of
delivering favorable sensitivity rates in detecting catalytic
sites and residues without using structure information.

METHODS

Figure 1 shows the workflow of E1DS. In ‘Signature
Construction’, a signature database is constructed to
expedite the prediction process when a protein is sub-
mitted. Then the most appropriate signature is chosen for
function inference. E1DS reports the positions of the
query sequence that are matched by the signature as the
functionally important residues. In this section, we will
first describe how the signature database is constructed,
including the data collection process and the employed
pattern mining algorithm. After that, we illustrate the
signature matching procedure that aims at predicting the
catalytic sites of the query protein.

Data collection for signature construction

E1DS signatures are constructed based on the protein
sequences from Swiss-Prot database (25) release 52.0.
A protein is selected as training data of E1DS if it is
annotated with exactly one 4-digital EC number. Such
sequences are grouped by their EC numbers. The sequence
signatures of each EC group are generated using the
pattern mining method described as below.

Pattern mining for generating 1D signatures

Sequential pattern mining has been widely used in
identifying sequence motifs from biological data (26–28).
The derived patterns usually highlight important positions
that are conserved either for structural or for functional
purposes. For proteins, conserved residues with respect to
protein functions are often scattered in the primary
structures. This challenges the mining algorithms to
distinguish signals (true motifs) from noises. It is observed

that insertion and deletion of residues are often found in
loose loops, but seldom in the regions close to functional
sites of proteins. In this regard, we recently proposed
a mining algorithm that considers two types of gap
constraints for efficiently discovering conserved regions.
These regions are simultaneously conserved during evolu-
tion but separated by large wildcard regions with irregular
lengths (24). The proposed algorithm, named WildSpan,
employs a two-phase mining strategy, where the first step
grows sequential blocks and the second step concatenates
these conserved blocks with flexible gaps, i.e. successive
wildcards of different lengths. WildSpan was first used in
the web server MAGIIC-PRO for detecting functional
signatures of a query protein along with its homologs (27).

When constructing the signature database of E1DS, the
WildSpan package is employed by an iteratively mining
strategy that aims at collecting a set of satisfied signatures
to serve as diagnostic patterns for each EC group. This is
denoted as the ‘Signature Mining’ procedure in Figure 1.
In the first run of WildSpan, the sequence with median
length is selected from all the members of the target EC
group as the reference protein. At the end of the first
mining stage, the signature that matches the most member
sequences is picked. If the picked signature is observed in
all the members of the target EC, the mining process
stops. Otherwise, another median-length sequence is
selected from the excluded member sequences as the
reference protein for the next call of WildSpan. Here the
excluded sequences are those EC members that are not
matched by the picked signature (i.e. the picked signature
is not present in each of the excluded sequences). In the
second run, the signature that matches the most excluded
sequences derived in the first run will be picked. This
procedure is repeated until the set of picked signatures
cover all the members of the target EC or no more
signatures can be found.

Prediction of catalytic sites

Given an amino acid sequence, E1DS first tries to identify
the possible EC group to which it belongs. This is achieved
by invoking three iterations of PSI-BLAST (29) on the
query protein against all the training sequences of E1DS.
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Figure 1. Workflow of the analysis procedures incorporated in E1DS. In this figure, procedures in the ‘Signature Construction’ are performed only
once, while other procedures are performed every time when a new query comes.
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The other two important parameter settings for PSI-
BLAST, the cutting threshold for output (e) and the
threshold for inclusion in multipass model (h), are set to
e-values of 10�3 and 2� 10�3, respectively, following the
suggestions of a previous study (30). Among the
homology list found by PSI-BLAST, the 4-digital EC
number of the training enzyme with the highest bit score is
chosen. Since each training sequence has exactly one
4-digital EC number as have been described, one and only
one EC number, called the target EC, can be chosen
without ambiguity for further signature matching and
prediction process.

For each signature in the target EC, ClustalW (31) is
employed to align the query sequence with the reference
sequence of the signature. This is denoted as the ‘Signature
Matching’ procedure in Figure 1. Figure 2 shows an
example of the alignment delivered by ClustalW, in which
‘�’ indicates identical matches, ‘:’ indicates conserved
substitutions and ‘.’ indicates semiconserved substitutions
in the alignment. On the reference sequence of the
signature, we define that one residue is ‘covered’ by the
signature as long as it can be matched by the sequential
blocks in the signature. In Figure 2, the signature shown
has two blocks written in regular expression form, ‘S-x-H-
K-x-x-x-P-x-G-x-G’ and ‘A-x-x-x-G-x-x-C’. These two
blocks are two conserved regions commonly shared by
the member sequences of EC 2.8.1.7, where the capital
letters stand for residues that are highly conserved and the
symbol ‘x’ is the location where mutations are observed
within the EC group. The positions matched by ‘x’ are
weighted equally as those matched with a capital letter,
since sometimes important residues are specific only to
subfamilies. In Figure 2, the segments of the reference
sequence covered by the signature are highlighted in yellow.
For the query sequence, a residue is covered by a signature
if (i) it is aligned to a residue of the reference sequence with
a ‘�’, ‘:’ or ‘.’ symbol in the consensus line of ClustalW;
(ii) the aligned residue of the reference sequence is covered
by the signature and (iii) it is not an Ala, Ile, Leu, Pro or
Val. Finally, the signature in the target EC that covers the
most residues of the query sequence is chosen to make the
prediction, and the covered residues of the query sequence
by the chosen signature are the predicted residues. In
Figure 2, the residues colored in green are reported as
functionally important residues in this example.

In case the suggested EC number does not fit the
expectation of the users, they can manually select other
EC numbers through a candidate list collected from the
other homologs found by PSI-BLAST. When a different
EC number is specified, E1DS will reperform the
prediction process described to adapt the prediction
results. This option is, in particular, useful when multiple
functions are investigated.

WEB INTERFACE

To use E1DS, the user needs to input the amino acid
sequence of the query protein in one-letter codes (FASTA
format). Alternatively, UniProt (32) accession numbers
and entry names or PDB IDs with chain numbers specified
are allowed. After the ‘Signature Matching’ process, the
users can take a look at the predicted catalytic residues
highlighted on the query sequence in the region of
‘Sequence Panel’. In addition, E1DS will try to collect
PDB structures that are similar to the query sequence.
This is denoted as the ‘Structure Search’ procedure in
Figure 1. If there are available PDB structures that are
similar to the query sequence, a structure panel will be
activated automatically as shown in Figure 3. There are
two subregions in the E1DS structure panel. The left side
is a Jmol plug-in (available at http://www.jmol.org/) for
rendering a selected PDB structure. The right side lists
available PDB structures and provides an interactive
interface for selecting the PDB chain rendered in Jmol.

PERFORMANCE

We evaluate the performance of E1DS using a collection of
known catalytic sites. The performance of E1DS is reported
in terms of the number of catalytic sites and the number
of catalytic residues that can be predicted. The E1DS
signatures are compared with existing PROSITE patterns
(8) which are designed for characterizing protein functions.
Furthermore, we compare the performance of E1DS with
a structure-based approach, THEMATICS (15).

Datasets

The catalytic site information is obtained from the
Catalytic Site Atlas (CSA) (23), a manually curated
database documenting enzyme active sites and catalytic

Figure 2. An example to demonstrate the ‘Signature Matching’ procedure adopted by E1DS. Yellow residues on the reference sequence are ‘covered’
by the signature. On the query sequence, green residues are those residues aligned with the covered residues of the reference sequence and are not an
Ala, Ile, Leu, Pro or Val. The residues marked as green are predicted as functionally important residues of the query sequence based on the signature
shown.
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residues derived from literatures. In the CSA version of
2.2.8, there are 1882 hand-annotated entries as well as
67 731 homologous entries found by PSI-BLAST align-
ment (e-value <0.00005 to one of the hand-annotated
entries). Here, we consider only the hand-annotated
entries, since the prediction performance of E1DS on
homologous entries of CSA can significantly be affected
by a large amount of homologies originated from a small
proportion of hand-annotated entries. Sites associated
with multiple 4-digital EC numbers or with an obsolete
PDB ID (in the PDB release of 19 June 2007) are also
excluded.
In this way, a dataset of 831 catalytic sites is created,

named CSA831 in the following descriptions. The CSA831
dataset contains 2573 catalytic residues and spans 362
4-digital EC numbers. We observe that for some ECs we
do not have E1DS signatures due to lacking sufficient
homologs in the pattern mining stage. In the CSA831
dataset, there are 570 sites from 237 ECs that have E1DS
signatures and 413 sites from 186 ECs that have
PROSITE patterns. To alleviate the interference owing
to lack of signatures/patterns, we define the 346 sites that
have both E1DS signatures and PROSITE patterns as the
second test set, CSA346. The CSA346 dataset spans 146
4-digital EC numbers.
The third test set is extracted from CatRes database

(33), containing 178 proteins. The one with PDB code
1A6F is excluded because it has no annotated catalytic

residue in CatRes. The resultant set contains 612 catalytic
residues and is named CatRes177 that spans 173 4-digital
EC numbers. Again, to investigate the performance of
E1DS when sequence signatures are available, CatRes177
is refined as set CatRes121 that contains test cases from
ECs with at least one E1DS signature. The CatRes121
dataset spans 117 4-digital EC numbers.

Evaluation

We follow some measures employed in previous studies to
evaluate the performance of catalytic site and catalytic
residue prediction. For catalytic site prediction, we adopt
three measures defined in THEMATICS. One prediction
is considered as ‘correct’ if �50% residues of the target
site have been captured by the predictor. One prediction is
considered as ‘partially correct’ if at least one catalytic
residue but <50% residues of the target site have been
captured by the predictor. The total success rate is the
number of ‘correct’ plus ‘partially correct’ predictions
divided by the number of test sites. For catalytic residue
prediction, two commonly used measures, sensitivity and
specificity, are reported along with the average number of
residues predicted. The sensitivity is defined as the number
of true positives (catalytic residue that is correctly
predicted) over all catalytic residues, while the specificity
is defined as the number of true negatives (non-catalytic
residue that is not predicted as a catalytic residue) over all
non-catalytic residues.

Figure 3. The structure panel of E1DS that provides 3D view of the signature. The list control sitting at the right side provides an interactive
interface to select the protein structure for rendering.
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As shown in Table 1, E1DS delivers the total success
rate of 49.6%, �16% higher than PROSITE on the
CSA831 dataset. Moreover, >70% (35.5% divided by
49.6%) of successful predictions of E1DS are correct. This
ratio is much higher than the predictions of PROSITE in
which correct predictions account for �56%. It suggests
that E1DS signatures are capable of not only identifying
more catalytic sites but also providing more comprehen-
sive information of predicted catalytic sites. Similarly for
all 2573 catalytic residues in the CSA831 dataset, E1DS
successfully captures 30.0% while PROSITE only cap-
tures 16.3% catalytic residues. However, PROSITE has
slight advantage over E1DS (98.6% versus 96.7%) in
terms of specificity. This result is reasonable since E1DS
signatures are constructed to characterize the function
regions as complete as possible, while PROSITE patterns
are designed for function inference to achieve both high
sensitivity and specificity when performing function
prediction. For a single chain, E1DS reports 12.7 putative
catalytic residues while PROSITE reports 5.6 putative
catalytic residues in average.

As described in the previous section, the CSA831
dataset contain sites that have no E1DS signatures
associated with the desired 4-digital EC number. The
CSA346 column in Table 1 focuses on those catalytic sites
that have both E1DS signatures and PROSITE patterns.
In this subset, both E1DS and PROSITE improve the
performance in a significant degree. The comparison
indicates that the better performance of E1DS in total
success rate on the CSA831 dataset might be due to its
higher signature coverage of ECs.

Table 2 shows the performance of E1DS on CatRes177.
E1DS delivers 41.8% correct and 15.2% partially correct
predictions at the site level and 32.9% sensitivity and
96.9% specificity at the residue level. These statistics are
similar to the performance on the CSA831 dataset.
THEMATICS was evaluated using the same 178 proteins
from CatRes database (15). However, nine sites were
excluded because of poor structure quality and/or other
structural issues. According to records reported in the
paper of THEMATICS, it achieves 48.5% correct and
29.0% partially correct predictions at the site level and
41.1% sensitivity at the residue level, when the Z-score
cutoff was set to 1.0. Among the 177 tested catalytic sites,
E1DS only made predictions on 121 sites. E1DS failed

to produce predictions on the remaining sites due to
lacking of signatures for those EC groups to which those
catalytic sites belong. This is one of the limitations of
homology-based approaches, and it is expected to be
alleviated as the number of homologs increases in
sequence databases. With respect to the 121 catalytic
sites for which E1DS can find applicable signatures to
make predictions, 45.0% correct and 19.2% partially
correct predictions at the site level and 39.8% specificity
and 95.8% sensitivity at the residue level can be achieved.
In summary, the results shown in Tables 1 and 2 reveal
that E1DS signatures provide useful information in the
analysis of functionally important residues as long as some
homologs of the query sequences are available.

CONCLUSION AND FUTURE PERSPECTIVES

In this article, we propose the E1DS server that aims at
predicting catalytic residues of enzymes from sequence
information alone. The experimental results reveal that the
precalculated E1DS signatures are capable of providing
useful information in the analysis of functional important
residues as long as some homologs of the query sequences
are available. E1DS will be regularly updated based on
the newest release of Swiss-Prot and PDB databases.
Furthermore, we would exploit more sequence databases to
construct sequence signatures in the future.
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