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ERAD and ERAD tuning: disposal of cargo and of ERAD
regulators from the mammalian ER
Riccardo Bernasconi1 and Maurizio Molinari1,2
The endoplasmic reticulum (ER) is the site of maturation for

secretory and membrane proteins in eukaryotic cells.

Unsuccessful folding attempts are eventually interrupted and

most folding-defective polypeptides are dislocated across the

ER membrane and degraded by cytosolic proteasomes in a

complex series of events collectively defined as ER-associated

degradation (ERAD). Uncontrolled ERAD activity might

prematurely interrupt ongoing folding programs. At steady

state, this is prevented by ERAD tuning, that is, the removal of

select ERAD regulators from the ER and their degradation by

proteasomes and by endo-lysosomal proteases. In

Coronaviruses infected cells, the formation of LC3-I coated

vesicles containing ERAD regulators cleared from the ER lumen

is co-opted to anchor viral replication and transcription

complexes to ER-derived membranes.
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Introduction
Newly synthesized proteins emerge in the lumen of the

endoplasmic reticulum (ER) from the Sec61 translocon.

The translocon-associated protein oligosaccharyl transfer-

ase delays the folding of the nascent polypeptides to

facilitate the transfer of oligosaccharides composed of three

glucose, nine mannose and two N-acetylglucosamine resi-

dues (Figure 1) from a lipid donor in the ER membrane to

the side chain of asparagines (N) in N–X–S/T or, more

rarely, N–X–C sequons [1–4]. Protein-bound oligosacchar-

ides enhance solubility of unfolded nascent chains and

facilitate protein maturation by recruiting ER-resident

lectins and folding enzymes. Nevertheless, protein folding

may fail and occasional or inherited amino acid mutations

may substantially decrease the folding efficiency. Term-

inally misfolded polypeptides are deviated into an expand-
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ing number of specific ER-associated degradation (ERAD)

pathways whose selection depends on biophysical features

of the misfolded polypeptides such as the presence or the

absence of N-glycans or of a transmembrane anchor. In the

first part of the review, we will report on how processing of

protein-bound oligosaccharides produces glycan structures

that determine whether protein folding-attempts can be

prolonged or must eventually be interrupted. We will also

survey recent literature on the relationship between

ERAD substrate topology and selection of ERAD path-

ways. In the second part, we will present the emerging

concept of ERAD tuning. We propose that, at steady state,

the efficient maturation of nascent cargo proteins might

crucially depend on limitation of the ERAD capacity to

avoid premature interruption of ongoing folding programs.

This is obtained by segregating from the folding compart-

ment select ERAD regulators, which in unstressed cells are

characterized by much shorter half-life compared to con-

ventional ER chaperones and folding enzymes.

Optimizing glycopolypeptide maturation: the
role of ER-resident glucose processing and
glucose binding proteins
Immediately after oligosaccharide addition onto nascent

polypeptide chains, the two outermost glucose residues (n
and m in Figure 1) are removed by the sequential inter-

vention of the exoglucosidases I and II. Protein-linked

mono-glucosylated oligosaccharides recruit a sophisticated

folding device composed of the two lectin chaperones

calnexin and calreticulin and an associated oxidoreductase,

ERp57. ERp57 catalyzes a rate-determining step of gly-

coprotein folding, the formation of native intramolecular

and intermolecular covalent bonds between cysteine resi-

dues (Figure 2, step 1) [5–7]. Upon release from calnexin

and calreticulin, the innermost glucose l is removed by the

exoglucosidase II to prevent immediate re-association of

the folding polypeptide with the ER-resident glucose-

binding lectins. Most glycopolypeptides probably attain

the native structure at this stage [8,9]. For a subset of them,

the intervention of specific cargo lectins facilitates export

from the ER (Figure 2, step 2) [10]. Examples have been

reported of polypeptides that undergo several cycles of

release from/re-association with calnexin before attain-

ment of the native structure [8,11]. These cycles are driven

by the folding sensor UDP-glucose:glycoprotein glucosyl-

transferase (UGT1) that specifically re-glucosylates the

terminal mannose g of non-native polypeptides thus send-

ing them back for another round of folding attempts in

association with calnexin (D. Williams in this issue,

Figure 2, step 3 [12,13]).
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Figure 1

The N-linked oligosaccharide structure. The core oligosaccharide is

added onto side chains of asparagine residues in a specific sequon

(N = asparagine, X = any amino acid but proline, S/T = serine or

threonine). It is composed of three glucose (triangles), nine mannose

(circles) and two N-acetylglucosamine (squares) residues. Removable

a1,2-linked mannose residues are shown in dark green. Letters a-n are

assigned to each saccharide and A–C define the oligosaccharide

branch. The linkage between individual saccharides is shown.
Active interruption of unproductive folding
attempts and generation of an ERAD signal:
mechanisms conservation and possible
divergences between Saccharomyces
cerevisiae and other Eukarya
Even for correct gene products, a fraction ranging from

30% [14] to much less [15] never attains the native

structure. Folding-defective polypeptides are cleared

from the ER lumen and most of them are degraded by

cytosolic proteasomes. The series of events leading to

disposal of terminally misfolded glyco-polypeptides from

the ER lumen have initially been characterized in the

budding yeast S. cerevisiae [16,17]. The yeast ERManI

first removes the mannose residue i (Figure 1) from

protein-bound oligosaccharides. This is not sufficient to

tag polypeptides for disposal because it also occurs for

native polypeptides that will be selected for secretion

(Figure 2, step 2) [18]. However, it is a pre-requisite for

the intervention of yeast EDEM, which removes the

mannose residue k (Figure 1) from oligosaccharides dis-
www.sciencedirect.com
played on misfolded conformers [19,20�,21�]. This clea-

vage generates a signal that recruits Yos9p, an ERAD

lectin containing a mannose 6-phosphate receptor

homology domain that binds Man7 oligosaccharides

exposing the terminal a1,6-bonded mannose j
[20�,21�,22]. Yos9p releases misfolded polypeptides with

luminal or transmembrane folding defects (ERAD-L and

ERAD-M substrates) to retro-translocation complexes

built around the membrane-embedded E3 ubiquitin

ligase Hrd1p. Misfolded polypeptides with cytosolic fold-

ing defects (ERAD-C substrates) engage retro-transloca-

tion complexes containing the E3 ubiquitin ligase

Doa10p. These complexes facilitate transport of mis-

folded polypeptides across the ER membrane and their

proteasomal degradation [23–30].

The folding sensor UGT1, which is absent in S. cerevisiae,
determines the quality control pathways operating in most

other Eukarya. UGT1 could indefinitely delay ERAD

onset by continual re-glucosylation of the oligosaccharide

branch A (Figure 1). This would prevent release of folding-

defective polypeptides from the calnexin chaperone sys-

tem (Figure 2, step 3). Unlike S. cerevisiae, more extensive

de-mannosylation of folding-defective polypeptides with

removal of all a1,2-linked mannose residues has been

reported for mammalian cells (Figure 1, dark green)

[31]. In particular, the removal of mannose residues g
and f is documented [2,32,33] and requires the intervention

of several members of the glycosyl hydrolase family 47

comprising the ER-mannosidase I (ERManI), EDEM1,

EDEM2 and EDEM3 and, possibly, also the intervention

of endo-mannosidases (Figure 2, step 4) [34]. All in all,

extensive de-mannosylation of ERAD candidates in the

mammalian ER reduces the efficiency of UGT1 re-gluco-

sylation, eventually removes the glucose acceptor-site

(mannose g) and generates a signal that may elicit inter-

vention of ERAD lectins, which direct terminal misfolded

polypeptides to specialized dislocation sites at the ER

membrane (steps 5LM and 5LS).

Substrate-specific ERAD pathways: ERAD-LS

and ERAD-LM substrates
Cumulating data acquired by monitoring the fate of an

increasing number of model ERAD substrates highlight

the complexity of the quality control mechanisms operat-

ing to ensure most efficient recognition and clearance of

aberrant polypeptides from the mammalian ER [35]. The

aggregation proneness of the misfolded polypeptides

determines whether ERAD or autophagic pathways are

activated for disposal [36]. For ERAD substrates, the

presence of protein-bound oligosaccharides determines

the intervention of sugar processing and sugar binding

ER proteins, while their absence results in activation of

quality control pathways that are much less understood [2].

Recent systematic studies of glycopolypeptides charac-

terized by structural defects in their luminal portion and
Current Opinion in Cell Biology 2011, 23:176–183



178 Cell regulation

Figure 2
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modified to add (ERAD-LM substrates) or to delete

(ERAD-LS substrates) a membrane anchor revealed

unsuspected mechanistic variations in the ERAD path-

ways for glycoproteins (Figure 2, step 5LM versus step

5LS) [37�]. While confirming the requirement of exten-

sive de-mannosylation to interrupt unproductive folding

attempts and the intervention of cytosolic proteasomes

for degradation, these studies showed that only the

ERAD-LS substrates strictly require the intervention of

the ERAD lectins OS-9 and/or XTP3-B, of the membrane

adaptor SEL1L and of the E3 ubiquitin ligase HRD1

[37�]. Moreover, disposal of ERAD-LS substrates contain-

ing peptidyl-prolyl bonds in the cis configuration (but not

of their ERAD-LM counterparts) is inhibited by Cyclos-

porine A and requires the enzymatic intervention of the

luminal peptidyl-prolyl isomerase cyclophilin B (CyPB)

[38]. The cis to trans isomerization of peptidyl-prolyl

bonds may facilitate dislocation of ERAD candidates

across the ER membrane by promoting their detachment

from luminal chaperones. Alternatively, like the

reduction of disulfide bonds [39], it could facilitate the

dislocation through the elusive, membrane-embedded

retro-translocation channel (? in Figure 2) by eliminating

turns in the misfolded polypeptide secondary structures

([38] and Figure 2, step 5LS). Requirement for OS-9/

XTP3-B, CyPB, SEL1L and HRD1 interventions is less

stringent for efficient disposal of the same polypeptides

when they are anchored at the membrane (ERAD-LM

substrates, Figure 2, step 5LM [37�,38]). It can be envi-

sioned that membrane-bound misfolded polypeptides

may eventually access dislocation sites by lateral diffusion

in the ER membrane, while for soluble polypeptides an

active transport from the ER lumen to the membrane-

embedded dislocons is crucial for the efficient clearance

from the ER [38]. In this context, it is important to

mention that unlike other E3 ubiquitin ligases, the

HRD1 is characterized by the association of adaptors that

recruit luminal factors such as the ERAD lectins OS-9 and

XTP3-B that may act as shuttles to transfer soluble

ERAD substrates from the folding machinery to the

dislocation sites at the ER membrane. The mechanisms

that regulate the handoff of ERAD substrates are unclear

and data showing that EDEM1 [40�] and OS-9 [41�] use

their lectin sites to form complexes with components of

the dislocation machinery (i.e. SEL1L) rather than with

misfolded proteins raise new questions on the actual role

of protein-bound oligosaccharides in ERAD.
( Figure 2 Legend ) Folding and ERAD pathways in the mammalian ER lume

chaperones calnexin (CNX) and calreticulin (CRT). The oxidoreductase ERp57

CNX and CRT, the glucose l and the mannose i are removed by the exogluco

some cases under the assistance of specialized cargo lectins, are secreted

their final destination (step 2). Non-native glycopolypeptides are retained in

residue on the mannose residue g (step 3). Extensive de-mannosylation irre

(step 4). Pathways directing ERAD substrates to dislocation sites at the ER

containing peptidyl-prolyl bonds in the cis configuration), SEL1L and HRD1

multiple pathways (steps 5LM). Dislocation across the ER membrane occurs

ER membrane ERAD substrates are poly-ubiquitylated, de-glycosylated and

www.sciencedirect.com
A competition for non-native proteins: loss-of-
function disorders
How folding intermediates to be preserved are distin-

guished from terminally misfolded conformers to be

degraded remains a central question in the field. Several

observations indicate that conformational maturation

and selection for disposal are in kinetic competition

in the ER lumen [42]. For example, many loss-of-func-

tion genetic diseases are caused by mutations that do not

affect the function of the polypeptide, but delay the

folding process such that immature conformers are

degraded before attainment of the native structure. In

such cases, chemical or pharmacological chaperones that

promote maturation before the onset of polypeptide

disposal can rescue the disorder [42,43]. Interestingly,

the enhanced expression of ERAD regulators such as

ERManI [44], EDEM proteins [45] or E3 ubiquitin

ligases [46] may result in the premature destruction

of folding intermediates. On the other hand the

reduction of the intralumenal level of ERAD regulators

or their pharmacologic inactivation offers additional

time to cargo proteins characterized by slow maturation

to attain the native structure. This enhances folding and

secretion efficiency and may alleviate disease pheno-

types [46–52].

Life and death of ERAD regulators: ERAD
tuning
In the ER lumen, non-native folding intermediates must

be protected from unwanted recognition by ERAD reg-

ulators that could prematurely interrupt ongoing folding

programs. One model claims that this is obtained upon

compartmentalization of the disposal machinery in sub-

regions of the ER characterized by high ERManI content,

the ER quality control compartment (ERQC [31]). Term-

inally misfolded proteins would be transported at the

ERQC to be subject to the extensive de-mannosylation

that tags them for disposal [2,31]. However, emerging

evidences show that the selective degradation of ERAD

regulators in a series of events collectively termed ERAD

tuning may contribute to the reduction of the ERAD

capacity at levels that do not interfere with maturation of

newly synthesized cargo proteins at steady state [45]. Our

model is based on data showing that several folding

factors (e.g. calnexin, calreticulin, BiP, PDI, ERp57,

ERp72 and GRP94) are long-living proteins [45,53], while

many ERAD regulators (e.g. ERManI [54,55], EDEM1
n. Newly synthesized glycopolypeptides associate with the lectin

catalyzes formation of native disulfide bonds (step 1). Upon release from

sidase II (GII) and the ERManI, respectively. Native glycopolypeptides, in

in coat protein complex II (COPII)-coated vesicles and are transported at

the CNX chaperone system by the UGT1 that adds-back one glucose

versibly extracts terminally misfolded polypeptides from the CNX cycle

membrane obligatorily rely on OS-9/XTP3-B, CyPB (for substrates

only for ERAD-LS proteins (step 5LS). ERAD-LM substrates may engage

through an elusive proteinaceous channel (?). At the cytosolic face of the

degraded by 26S-proteasomes (step 6).

Current Opinion in Cell Biology 2011, 23:176–183
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Figure 3

ERAD tuning. Many ERAD regulators are short-living proteins at steady state. Some of them are degraded with the intervention of cytosolic

proteasomes (e.g. SEL1L and HERP). The selective removal of EDEM1 and OS-9 from the ER can be subdivided in three steps. (1) Association with an

elusive receptor allows segregation of EDEM1, OS-9 and possibly other ERAD factors (EF) from conventional, long living ER-resident chaperones (in

grey); (2) the ERAD regulators exit the ER in small, LC3-I-coated vesicles, the EDEMosomes; (3) EDEMosomes deliver their content to endosomal/

lysosomal compartments for disposal.
[45,56,57�], OS-9 [57�], XTP3-B [58], HERP [53,59] and

SEL1L [60]) are rapidly removed from the ER in

unstressed cells. HERP that contains an ubiquitin-like

domain and SEL1L are degraded by the proteasome

[53,59,60]; the ERManI [54,55], EDEM1 [45,56,57�]
and OS-9 [57�] by endosomal/lysosomal enzymes

(Figure 3).

Subcellular fractionation [45] and electron microscopy

studies [61] revealed that at steady state about 80% of

the endogenous EDEM1 localizes in small ER-derived

vesicles, the EDEMosomes. Originally, these vesicles

were thought to be involved in the removal of mis-

folded cargo proteins from the ER lumen [61]. How-

ever, our studies showing that EDEM1 and OS-9 do

accumulate in these vesicles when cells are exposed to

lysosomotropic drugs or are infected with Coronaviruses

(see below) revealed that EDEMosomes are rather

involved in the clearance of short-living ERAD regu-

lators from the ER lumen [45,57�,62]. The rapid

turnover of EDEM1 and OS-9 relies on firstly, their

segregation from long-living ER chaperones; secondly,

their export from the ER in small vesicles; and thirdly,

their degradation in endosomal/lysosomal compart-

ments [45,57�] (Figure 3). The non-covalent association

of the ubiquitin-like protein LC3 at the cytosolic face

of the membrane distinguishes EDEMosomes from
Current Opinion in Cell Biology 2011, 23:176–183
autophagosomes [45], which display LC3 covalently

bound to membrane lipids [63] and from secretory

vesicles, which display a COPII-coat [10]. Although

some controversy still exists [56] and some component

of the autophagy machinery participates in the process,

ERAD tuning is clearly distinct from macroautophagy

[45,57�]. With such regulatory mechanisms operating in

the ER, adaptation of ERAD activity to transient

accumulation of aberrant polypeptides in the ER lumen

might not necessarily await the activation of the tran-

scriptional unfolded protein response (UPR) programs

[64]. Rather, it is conceivable that ERAD activity can

rapidly be modulated ‘on demand’ when association

with misfolded conformers retains ERAD regulators in

the ER lumen thus preventing their rapid segregation

from the compartment that occurs at steady state.

Conclusions and perspectives
The capacity to intervene in protein biogenesis by

improving the rate and/or the efficiency of protein folding

and by modulating the degradation of non-native poly-

peptides has important clinical and industrial implica-

tions.

The rapid degradation of select ERAD regulators (ERAD

tuning) may contribute in determining the basal level of

ERAD activity. At steady state, basal ERAD must insure
www.sciencedirect.com
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disposal of by-products of protein biogenesis that would

otherwise progressively accumulate, without interfering

with ongoing folding programs. Physiologic or pathologic

variations in the level of misfolded polypeptides may

require enhancement of the ERAD capacity. This can

be obtained upon the well-studied induction of an UPR

transcriptional program, which may take several hours

and may eventually lead to cell death if recovery is

impossible [65]. Alternatively, a more rapid and readily

reversible ERAD enhancement could rely on the shut-

down of ERAD tuning occurring when ERAD regulators

that are normally rapidly degraded do actually remain in

the ER upon association with accumulating misfolded

conformers that need assistance.

The activation of autophagy inhibits disposal of EDEM1

and of OS-9 [45,57�] possibly because LC3-I, which is

involved in their vesicular export from the ER, is con-

verted in autophagosomal-membrane-bound LC3-II [63].

If inhibition of this branch of ERAD tuning (the other

branch relies on degradation of ERAD regulators by

cytosolic proteasomes, Figure 3) is sufficient to enhance

the overall ERAD activity, one could envision interesting

medical implications. The cross talk between autophagy

and ERAD tuning may for example contribute to delay

the progression of diseases such as serpinopathies where

the accumulation of misfolded polypeptides does not

induce an UPR [66,67]. In such cases, the enhancement

of the ERAD activity to contrast the accumulation of

misfolded conformers could solely depend on the inhi-

bition of ERAD tuning.

Since the machineries regulating folding and degradation

of proteins entering the secretory pathway are up-

regulated in many types of tumors and are hijacked in

many ways by pathogens of bacterial and viral origin, the

detailed mechanistic characterization of the events

described in this review will hopefully offer new targets

for therapeutic intervention. In the context of this review,

the characterization of the vesicular pathway exiting the

ER to reduce the luminal content of select ERAD factors

seems important since at least one class of pathogens, the

Coronaviruses, has been identified that co-opts the

ERAD tuning machinery. In fact, in infected cells, the

EDEMosomes or a modified version thereof containing

EDEM1 and OS-9, host the viral replication and tran-

scription complexes. Consistently, viral infection inter-

feres with ERAD tuning and results in accumulation of

EDEMosomal cargo in the viral replicosomes [45,57�,62].
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