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Abstract 

Objective:  Properties of gene products can be described or annotated with Gene Ontology (GO) terms. But for many 
genes we have limited information about their products, for example with respect to function. This is particularly true 
for long non-coding RNAs (lncRNAs), where the function in most cases is unknown. However, it has been shown that 
annotation as described by GO terms to some extent can be predicted by enrichment analysis on properties of co-
expressed genes.

Results:  GAPGOM integrates two relevant algorithms, lncRNA2GOA and TopoICSim, into a user-friendly R package. 
Here lncRNA2GOA does annotation prediction by co-expression, whereas TopoICSim estimates similarity between 
GO graphs, which can be used for benchmarking of prediction performance, but also for comparison of GO graphs in 
general. The package provides an improved implementation of the original tools, with substantial improvements in 
performance and documentation, unified interfaces, and additional features.
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Introduction
The properties of gene products like proteins or non-pro-
tein coding RNAs (ncRNAs) can be described with Gene 
Ontology (GO) terms as provided by the GO Consor-
tium [1]. GO resources describe a gene product by anno-
tating it with standardized terms organized as a DAG 
(Directed Acyclic Graph). Such annotation should ideally 
be based on experimental data. However, the amount of 
experimental information that is available varies a lot, 
and for many genes very little is known about their func-
tion. This is particularly true for most ncRNAs, includ-
ing long ncRNAs (lncRNAs). The number of lncRNAs 
seems to be comparable to the number of protein-coding 
genes [2], and they are known to be important in several 

processes of gene regulation [3], but any useful annota-
tion is in most cases missing. However, it has been shown 
for example by Jiang et al. that annotation by GO terms 
to some extent can be predicted [4]. A typical approach 
will identify sets of genes with correlated expression pat-
tern across several experiments, based on the assump-
tion that genes with correlated expression pattern may be 
involved in similar processes. It will then use enrichment 
analysis of GO terms for the gene set to identify these 
processes. This approach was recently benchmarked 
using an improved strategy for comparing known and 
predicted GO terms for genes with known annotation 
[5]. Although the benchmarking had to be done on pro-
tein-coding genes (due to the lack of annotated lncRNA 
genes), the results indicate that the same approach can be 
used also on other classes of genes, like lncRNAs.

Here we present a user-friendly and well-documented 
implementation of two tools for annotation predic-
tion and benchmarking, lncRNA2GOA (lncRNA to GO 
Annotation) [5] and TopoICSim (Topological Informa-
tion Content Similarity) [6], integrated into the R package 
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GAPGOM (Gene Annotation Prediction using GO Met-
rics). This package provides a workbench for exploring 
annotation prediction. We also show how these tools can 
be the basis for alternative approaches, by using other 
types of annotation terms or in combination with GO-
based definition of gene sets for enrichment analysis.

Main text
Overview
GAPGOM integrates the tools lncRNA2GOA and 
TopoICSim together with libraries on properties like 
gene expression and annotation data into a pipeline as 
illustrated in Fig.  1. The main use of GAPGOM will be 
to go from expression data for a query gene to predicted 
GO annotation using lncRNA2GOA, by first defining a 
set of co-expressed genes by correlating the expression of 
the query gene to other genes across several experiments. 
The available methods for correlation represent both sta-
tistical (Pearson, Spearman, Kendall) and geometrical 

(Fisher, Sobolev) measures. The tool will then do an 
enrichment analysis on GO terms for the most correlated 
genes, by default using the top 250 genes, which previ-
ously has been found to be the optimal cutoff [5]. The 
enriched terms are used as predicted annotation for the 
query gene. The predicted GO annotation can optionally 
be compared to actual GO annotation on benchmark sets 
by using TopoICSim, for example in a simple leave-one-
out approach. The overall performance will be indicative 
of the level of performance that can be expected also for 
novel genes. Both alternative similarity measures and 
more advanced cross-validations can easily be integrated 
with GAPGOM through the R framework.

The lncRNA2GOA tool can also be used in alternative 
approaches as indicated in Table  1. The main approach 
described above is Approach 1. A similar approach can 
be used for predicting “class” rather than GO annotation 
(Approach 2). The “class” can be any type of annotation 
term for which we have good training data, as for exam-
ple whether the gene may be associated with specific 
types of cancer. This is basically the same as the stand-
ard approach, except that we need annotation of “class” 
rather than GO for the training data. Here we do not 
need TopoICSim for benchmarking as it will not involve 
comparisons between complex graph structures of GO 
terms. Instead, we will typically use a 2 × 2 confusion 
matrix where predictions on the benchmark set are clas-
sified as true or false positive or negative predictions.

The TopoICSim tool can also be used in another alter-
native approach (Approach 3) by predicting “class” from 
gene sets defined through similarity of GO terms rather 
than gene expression. This means that we can use GO 
annotation to predict “class”, which can be more specific 
and informative regarding the property we are inves-
tigating, compared to a set of GO terms. Again, bench-
mark scoring will typically be based on a 2 × 2 confusion 
matrix.

The use of lncRNA2GOA and TopoICSim has been 
integrated into the R package GAPGOM, with improved 
usability and user-friendliness, function documentation 
and vignettes, significant speed improvements, a more 
unified input interface, unit tests, and extra features. The 
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Fig. 1  The GAPGOM pipeline for annotation prediction. The 
flowchart shows the main steps of GAPGOM. For a query gene and a 
certain property type, a gene set is defined based on similarity over 
a property library. The gene set is then populated with data from an 
annotation library and enriched terms of the gene set are identified. 
The predicted annotation may optionally be compared to actual 
annotation if the query gene is part of a benchmark dataset (i.e., with 
known annotation)

Table 1  Main alternative approaches for annotation prediction 
with GAPGOM tools

a 2 × 2 represents benchmarking using a confusion matrix over true and false 
positive and negative predictions

Approach Tool Property Annotation Benchmarka

1 lncRNA2GOA Expression GO TopoICSim

2 lncRNA2GOA Expression Class 2 × 2

3 TopoICSim GO Class 2 × 2
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main speedup is seen in TopoICSim with more efficient 
use of R-specific data structures and improvements in 
the algorithm. Integration through R also makes it easy to 
add new features. The package is available on Bioconduc-
tor and GitHub. Documentation and vignettes are made 
available in Rmarkdown and HTML (webpage) form and 
includes both an extensive introduction to the package 
(An introduction to GAPGOM) and examples of bench-
marking (Benchmarks and other GO similarity methods).

Applications
Using co‑expression for prediction of GO annotation 
(approach 1)
The use of lncRNA2GOA for annotation prediction by 
co-expression in combination with TopoICSim for com-
parison of GO annotations as an approach to benchmark-
ing has been presented previously [5], although the actual 
benchmarking had to be based on mRNA data, due to the 
lack of libraries of well-annotated lncRNAs. We will here 
just exemplify this approach with a simple benchmark 
that is available as one of the package vignettes. Here the 
GSE63733 [7] expression set is used and the annotation 
of each of the top 10 most variant genes from the Gly-
colysis hallmark gene set from MSigDB [8] is predicted 
with lncRNA2GOA. The predicted annotations are 
compared to the original ones by using TopoICSim. The 
results demonstrate that the prediction performance on 
these genes depends upon the ontology. It is best for the 
Cellular Component ontology (CC) (average similarity 
of 0.859), followed by Biological Process (BP) (average of 
0.699) and Molecular Function (MF) (average of 0.608). A 
similarity of 1 means that the predicted and actual anno-
tations are identical, whereas 0 means that the two anno-
tations have nothing in common.

Using co‑expression for prediction of gene class (approach 2)
The approach used in lncRNA2GOA for identifying GO 
annotation terms through co-expression can in princi-
ple be used also on other sources of annotation. A con-
tribution to the LncRNA Function Prediction Challenge 
at the BIBM 2019 LncRNA Workshop may be used as an 
example [9]. The organizers of the prediction challenge 
provided a set of 395 lncRNA genes and their association 
with 33 different cancer types. Most genes (58%) were 
associated with just one type of cancer, but the remain-
ing genes were associated with up to 25 different cancer 
types. Also, the number of lncRNA genes associated with 
each cancer type varied a lot, from just one gene (like for 
bladder and testis) to more than 100 different lncRNA 
genes (colon, lung, liver). The challenge was to use this 
as a training set to predict cancer association for a set of 
novel lncRNA genes.

In our first approach to the challenge (the “direct” 
approach in [9]) the different cancer types were used as 
annotation terms for the lncRNAs in the training set. For 
benchmarking each lncRNA was then “re-annotated” 
with lncRNA2GOA by identifying co-expressed lncRNA 
genes of the training set and doing enrichment analysis 
on cancer type for the co-expressed set. This gave a sta-
tistically significant enrichment for the expected cancer 
type, but the enrichment was not very strong. This prob-
ably indicates that cancer type may not be strongly asso-
ciated with co-expression in normal cells.

Using GO similarity for prediction of gene class (approach 3)
Here an alternative approach for the prediction chal-
lenge was used (the “indirect” approach in [9]), assuming 
that cancer association could be more directly linked to 
the function of genes rather than co-expression. There-
fore, gene sets were defined by clustering on GO terms, 
rather than on gene expression. This approach was com-
plicated by the fact that we did not have any GO annota-
tion for the training set. Therefore, the GO annotation of 
the lncRNAs of the training set was first predicted with 
lncRNA2GOA. For benchmarking each lncRNA of the 
training set was then “re-annotated” to cancer type by 
using TopoICSim to find the other genes of the train-
ing set with the most similar set of predicted GO terms 
and doing enrichment analysis on cancer type for this 
set. This gave a clearly improved performance, for exam-
ple when using BP GO terms. The Mathews Correlation 
Coefficient went from 0.058 for the “direct” approach 
to 0.514 for the “indirect” approach, and although both 
prediction results are statistically significant, the Χ2 test 
score (with Yates correction) went from 22.0 for the 
“direct” approach to 479.2 for the “indirect” approach. 
Therefore the “indirect” approach represents a very clear 
improvement in benchmarking results, even though the 
“indirect” approach uses two stages of prediction, first on 
GO terms and then on gene class. This example shows 
the advantage of being able to use both lncRNA2GOA 
and TopoICSim in combination.

Discussion and conclusion
The main goal of GAPGOM has been to provide access 
to lncRNA2GOA and TopoICSim as user-friendly and 
well-documented tools for doing experiments on anno-
tation prediction by correlation analysis. This is particu-
larly relevant for gene types where a large fraction of the 
genes may lack functional annotation, like lncRNA genes, 
but can in principle be used on any expressed gene.

The lncRNA2GOA tool includes the novel correlation 
metrics Fisher and Sobolev, which can give improved 
performance [5]. TopoICSim makes it possible to 
benchmark performance on suitable benchmark sets 
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by comparing predicted and original annotation for all 
genes in the set, and R as a framework facilitates the 
use of other metrics that can be made available in R. 
Users can thereby evaluate the effect of alternative set-
tings for annotation prediction, like alternative librar-
ies of expression data. During GAPGOM development 
expression data from both FANTOM 5 [10] and 
selected TCGA [11] datasets have been used.

There are other tools for correlation-based annota-
tion, like LncRNA2Function [4], Co-LncRNA [12], 
FuncPred [13], lncFunTK [14] or NeuraNetL2GO [15], 
but many of these tools may be difficult to install and 
run. As part of a Bioconductor package the lncRNA-
2GOA tool should install easily on any compatible R 
system.

The results described here are mainly meant to indi-
cate how GAPGOM can be used, as full evaluation of 
the performance of lncRNA2GOA and TopoICSim has 
been documented previously [5, 6]. However, the results 
presented here show that interesting observations can 
be made even from relatively simple experiments. The 
first benchmarking (co-expression to GO annotation) 
indicates that cellular component (CC) is more directly 
linked to co-expression compared to MF and BP. The sec-
ond benchmarking (co-expression to gene class) shows 
that although there is a significant enrichment for the 
expected cancer type, the enrichment is not very strong, 
possibly because gene expression in normal cells may not 
be a good indicator for possible association with cancer. 
The third benchmarking (GO similarity to gene class) 
shows that the best prediction performance is for bio-
logical process (BP), which seems reasonable since we 
are trying to identify genes associated with the process 
of cancer. In the prediction of cancer genes up to 41% 
of the predictions were classified as false positive. How-
ever, it is possible that some of these false positive predic-
tions are true positive. It may be difficult to define if gene 
is involved or not in a specific cancer type, and some of 
the false positive predictions may represent unknown 
positive cases. However, in all examples more extensive 
benchmarking can easily be implemented and explored 
with GAPGOM.

Limitations
The performance of GAPGOM is mainly limited by the 
access to expression data and quality of annotation in ref-
erence libraries.
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