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ABSTRACT Bacillus velezensis CE2 produces potent antimicrobial compound(s). The
draft genome sequence of the strain reported here is 4.1 Mb with a G�C content of
46.1%. Whole-genome sequencing revealed that the strain genetically encodes a
novel multicomponent lantibiotic, velezensicidin.

A number of Bacillus velezensis strains were reported to produce antimicrobials
(1–6). A high-throughput culture-based assay was used to screen soil microbiota

for antimicrobial production (7). Using this method, B. velezensis CE2 was isolated and
found to produce potent antimicrobial activity against Gram-positive bacteria.

The whole genome of B. velezensis CE2 was sequenced within the 100K Pathogen
Genome Sequencing Project (8), as described previously (9). Briefly, genomic DNA
(gDNA) was extracted and purified from B. velezensis CE2 culture, grown on MRS agar
(Becton, Dickinson, Franklin Lakes, NJ) at 30°C for 24 h, using a Qiagen DNA genomic
minikit (catalog number 51306). gDNA quality was determined, using A260/280 and
A260/230 ratios, to be �1.5, and size characterization was done using an Agilent 2200
TapeStation system, as described previously (10). Libraries were constructed using a
Kapa HyperPlus library preparation kit (catalog number KK8514) and indexed with
Weimer 384 TS-LT DNA barcodes (Integrated DNA Technologies, Inc., Coralville, IA,
USA). The resulting libraries were 350 to 450 bp. Library amplification was completed in
eight cycles using the Kapa HiFi HotStart ReadyMix PCR kit, followed by cleanup with
1� solid-phase reversible immobilization (SPRI) magnetic beads (9). Final library quality
control was done using an Agilent 2100 Bioanalyzer with a high-sensitivity DNA kit.
Sequencing library concentration was determined by quantitative PCR (qPCR) using the
Kapa library quantification kit with universal qPCR mix (catalog number KK4824) before
indexing. Libraries were sequenced using an Illumina HiSeq X Ten instrument with a
150-bp paired end (PE150) read (Novagene, Sacramento, CA). For B. velezensis CE2, the
total number of paired reads generated was 1,213,887. These were assembled using
SPAdes version 3.11.1 (settings: k-mer sizes 21, 33, 55, and 77 with mismatch careful
mode) (11), after PhiX and indexes were removed by NCBI’s contamination filter
(VecScreen). After assembly, contigs were ordered using Bacillus velezensis FZB42 as a
reference, with progressiveMAUVE (version 2.4.0) and applying the multiple genome
alignment option (12). The genome contained 265 contigs, with a coverage of 44�. The
maximum and minimum sizes of contigs were 558,902 bp and 225 bp, respectively,
with an N50 value of 297,815. The genome was annotated by Rapid Annotations using
Subsystems Technology (RAST) version 2.0 (default settings), and 4,438 coding regions
and 88 rRNA were found (13).

BAGEL version 3 (default settings) was used to identify the lantibiotic gene cluster
in the draft genome sequence (14). Two-component lantibiotic structural genes (lanA),
two modification enzymes genes (lanM), and a transporter gene (lanT) were identified
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in the genome. To the best of our knowledge, the amino acid sequences encoded by
the structural genes for the two-component lantibiotic were not reported elsewhere in
published literature. The production of potent antimicrobial activity and presence of a
novel lantibiotic structural gene indicate the potential usefulness of B. velezensis CE2 in
food or agriculture.

Data availability. Assembled and raw reads can be found at the 100K Project
BioProject (accession number PRJNA203445) in the Sequence Read Archive (https://
www.ncbi.nlm.nih.gov/sra). The accession number for the DDBJ/ENA/GenBank assem-
bly is RBZX00000000 and reads are in the SRA under the accession number
SRR7965938. The sample information can be found under BioSample accession number
SAMN10178429. The assembly version described here is version RBZX01000000.
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