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ABSTRACT

MicroRNAs (miRNAs) are involved in the fine control
of cell proliferation and differentiation during the
development of the nervous system. MiR-124, a
neural specific miRNA, is expressed from the begin-
ning of eye development in Xenopus, and has been
shown to repress cell proliferation in the optic cup,
however, its role at earlier developmental stages
is unclear. Here, we show that this miRNA exerts a
different role in cell proliferation at the optic vesicle
stage, the stage which precedes optic cup formation.
We show that miR-124 is both necessary and suffi-
cient to promote cell proliferation and repress neuro-
genesis at the optic vesicle stage, playing an
anti-neural role. Loss of miR-124 upregulates
expression of neural markers NCAM, N-tubulin
while gain of miR-124 downregulates these genes.
Furthermore, miR-124 interacts with a conserved
miR-124 binding site in the 3'-UTR of NeuroD1 and
negatively regulates expression of the proneural
marker NeuroD1, a bHLH transcription factor for
neuronal differentiation. The miR-124-induced
effect on cell proliferation can be antagonized by
NeuroD1. These results reveal a novel regulatory
role of miR-124 in neural development and uncover
a previously unknown interaction between NeuroD1
and miR-124.

INTRODUCTION

Although many of the coding genes involved in eye
development have been known for decades, the

post-transcriptional mechanisms controlling their expres-
sion are poorly understood. In recent years, systematic
studies in zebrafish and mouse have determined specific
microRNAs (miRNAs) expressed in the developing eye
and brain (1,2). MiR-7 and /et-7 have been shown to be
involved in Drosophila eye development (3,4). In Xenopus,
miR-24a has been reported to play an essential role in
repressing apoptosis in the developing neural retina (95).
However, the functions of most miRNAs in eye develop-
ment are still unclear.

Eye development starts from the specification and
splitting of the eye field in the anterior neural plate,
followed by the formation of the optic vesicle and optic
cup which are laterally protruded from the ventral
forebrain. The eye retina, a derivative of the primary
brain vesicle which has limited cell types, has been used
as a simplified model of the central nervous system for
studying the molecular control of neurogenesis during
development (6,7).

MiR-124 is a group of well conserved miRNAs and has
been reported to be abundantly expressed in the brain and
retina of the mouse (8), rat (9), chick (10,11), Xenopus
laevis (12,13) and zebrafish (14). Recently, based on their
analysis of the first miR-124 mutant, Clark er al. (15)
discovered that Caenorhabditis elegans miR-124 is
expressed in a subset of sensory neurons. Many reports
show that miR-124 can promote neuronal differentiation.
For example, ectopic expression of miR-124 in HeLa
cells shifts the expression profile toward a brain-like
pattern (16). In mouse embryonic development, miR-124
promotes the differentiation of progenitor cells into ma-
ture neurons by directly targeting PTBP1 (PTB/hinRNP I)
mRNA which encodes a global repressor of alternative
pre-mRNA splicing in non-neuronal cells (17). In adult
regeneration, miR-124 increases neuron formation by
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targeting sox9 (18). However, the functions of miR-124 in
neural development are also controversial. For instance,
Cao et al. (19) showed that neither inhibition nor over-
expression of miR-124 alone significantly alters neuronal
fate. Visvanathan ef al. (20) using the same model, found
that miR-124 helps modestly promote neuronal
differentiation.

We have previously reported that miR-124 is expressed
in the developing and adult nervous system of Xenopus
laevis, and that its overexpression results in an abnormal
eye phenotype with decreased cell proliferation in the
optic cup, while its downregulation leads to no morpho-
logical defects (13). As the expression of Xenopus miR-124
in the brain and eye fields initiates at the mid-neurula
stage (12,13), a developmental period at the beginning of
optic vesicle formation and retinogenesis, it is necessary to
investigate the role of miR-124 in the early neurogenesis of
the eye in order to fully understand its role during eye
development.

Here, we studied the effect of miR-124 on cell prolifer-
ation and differentiation in early optic vesicle develop-
ment using both loss- and gain-of-function experiments.
We found miR-124 is both necessary and sufficient for cell
proliferation and the repression of neurogenesis in the
optic vesicle and forebrain. This role is distinct from
that observed in later developmental stages and in
adults. In addition, we have shown that NeuwroDI is
targeted by miR-124 and can restore miR-124-induced
cell proliferation. These results indicate that the role of
miR-124 in neurogenesis varies in a stage-dependent
manner during eye development, and that the NeuroD1I-
miR-124 interaction is involved in the early regulation of
both genes.

MATERIALS AND METHODS
Microinjection

Oligonucleotides or mRNAs were injected into one or two
dorsal-animal blastomere(s) of an eight-cell stage embryo
using an Eppendorf FemtoJet (Hamburg, Germany) and
embryos were then cultured as previously described (21).
For the loss-of-function study, 0.2pmol 2’-O-methyl
antisense RNA oligonucleotides for miR-124 (Anti-124)
and a control inhibitor (Anti-ctrl) were used (Ambion,
USA) according to our previously published method
(13). For the gain-of-function study, 0.025 pmol miR-124
precursor (Pre-124) and a control precursor (Pre-ctrl) were
used (Ambion, USA). Capped mRNAs of NeuroDI (22)
were synthesized from linearized plasmid templates
using mMMESSAGE mMACHINE kits (Ambion, USA).
Embryos were co-injected with 100-500pg p-gal or
200400 pg GFP mRNA as a lineage tracer. Embryos
injected with [B-gal were stained as previously des-
cribed (23).

Bromodeoxyuridine (BrdU) incorporation and
immunohistochemistry

Both BrdU and phosphohistone-H3 (pH3) staining were
used for cell proliferation assays. BrdU (Sigma B9285)
was incorporated as described by Qiu ef al. (13), Quick

and Serrano (24). Embryos were fixed with 4%
paraformaldehyde in PBS and cryoprotected with 20%
sucrose in PBS overnight at 4°C, before embedding in
OTC and storing at —70°C. The cryosections (12 pum)
were immunostained with mouse anti-BrdU (1:200 Santa
Cruz) or rabbit anti-phosphohistone-H3 (1:200, Upstate
Biotechnology). TRITC-conjugated goat anti-mouse IgG
(1:100, Sigma) and TRITC-conjugated goat anti-rabbit
IgG (1:200, Santa Cruz) were used as secondary
antibodies. All cell nuclei were counterstained with
Hoechst 33258 (Sigma). Images were taken using a
compound microscope (Nikon FXA, Japan).

Counts of BrdU-positive (Ngqu), pH3-positve (Np3)
and Hoechst-labeled cells (Nygecnst) Were obtained from
embryo sections by tracing digitized images projected on a
computer monitor. The ratio of proliferating cells in the
eye was calculated as: Nprqu or pr3 /Nioechst X 100%.

In situ hybridization

Whole mount in situ hybridization was performed on
Xenopus embryos as previously described (13,25).
The cRNA probe for NeuroDI1 and the LNA probe for
mature miR-124 were prepared separately according to
methods described previously (13). Embryos were fixed
with MEMFA and stored in ethanol at —20°C before
use. For paraffin sections, samples were embedded in
paraffin after being refixed. Images of whole-mount
embryos were taken using a stereomicroscope (Olympus
SZX12, Japan) with a digital acquisition system (Olympus
C4040, Japan). Sections were photographed on an
inverted microscope (Olympus IX71, Japan) or a
compound microscope (Nikon FXA, Japan) using DIC
optics or fluorescent filters.

RNA extraction, RT-PCR and real-time PCR

Total RNA was extracted from the heads of embryos at
the optic vesicle stage using an RNeasy Micro Kit
(Qiagen, Germany) according to the manufacturer’s
instructions. The first-strand cDNA synthesis was
performed with M-MLV  Reverse Transcriptase
(Promega, USA). The following primers were used for
PCR, NCAM (Forward: 5-CACAGTTCCACCAAAT
GC-3, Reverse: 5-GGAATCAAGCGGTACAGA-3),
N-tubulin  (Forward: 5-ACACGGCATTGATCCTAC
AG-3, Reverse: 5-AGCTCCTTCGGTGTAATGAC-3),
NeuroD1 (Forward: 5-GTTATTGTACCCATGCCG-3,
Reverse: 5-GTCTCTA AGGCAACACAAC-3), Lhx2
(Forward: 5-GTTGGAAAGCTTGTCATTGC-3,
Reverse: 5-CCTTCGGAAACTCAAATCAG-3), elrC
(Forward: S-AGAATCATCACATCCCGTATC-3,
Reverse: 5-CAGGCTTTGTGCTGTTTACT-3), xtwi
(Forward: 5-AGTCCGATCTCAGTGAAGGGC-3,
Reverse: 5-TGTGTGTGGCCTGAGCTGTAG-3'), and
ODC (Forward: 5-AATGGATTTCAGAGACCA-3,
Reverse: 5-CCAAGGCTAAAGTTGCAG-3). PCR was
conducted using normalized amounts of template. The
number of PCR cycles performed varied from 24 to 30
depending on the individual gene. An annealing
temperature of 52°C was used for the NeuroDI primer
set while other primer pairs were annecaled at 56°C.



For real-time PCR, the resultant cDNA was diluted 1:20.
The PCR reactions were performed with a TransStart
Green qPCR SuperMix UDG kit (Transgen, China) on
an MJ Research Chromo4 detector (Biorad) using a
SYBR green fluorescence quantification system. The
relative expression level was calculated by the 2744
method. Means £ SEM are from three independent
experiments.

MiRNA target prediction

The predicted miR-124 recognition elements (MRE) in
NeuroD1 were analyzed by RNAhybrid (26) using the
highly conserved mature sequence of miR-124 and the
NeuroD1 3'-untranslated region (UTR) of human
(NM_002500), mouse (NM_010894), rat (NM_019218),
Xenopus tropicalis (Xt7.1-XZT30819.5, an EST with a
longer 3'-UTR than the Refseq NM_001097399) and
Xenopus  laevis (NM_001092127). RNAhybrid was
operated with either perfect (no U:G in the seed) or
imperfect (U:G allowed in the seed) seed match, and the
helix constraint in the seed was set from positions 2 to 7 of
the miRNA sequence. MiR-124 target candidates in other
species were retrieved from Targetscan (27), Pictar (28)
and miRbase (29).

Luciferase reporter assay

The firefly luciferase reporter genes were constructed using
the pCS2-Luc vector and the 3’-UTR sequences of
Xenopus NeuroDI. The primers for PCR amplification of
the 3’-UTP fragment were as follows: 5-CGTGAATTCG
TTATTGTACCCATGCCG-3 (forward) and 5-TCACT
CGAGGTCTCTAAGGCAACACAAC-3' (reverse). The
underlined sequences are introduced EcoRI and Xhol
sites, respectively. Constructs with mutated 3-UTR of
NeuroD1 (NeuroDI-Mut) were used as negative controls.
Mutations in positions 2-7 of the miR-124 seed were
introduced using a QuikChange mutagenesis kit
(Stratagene, USA). The 293T cells were cultured in
DMEM supplemented with 10% fetal bovine serum.
A total of 5x 10* cells/well were seeded in 24-well
plates. After 24h in culture, the cells were transfected
using Lipofectamine 2000 (Invitrogen, USA) with a
mixture containing 1pg/ml of firefly luciferase reporter
plasmid, 20nM miR-124 or control precursor and
20ng/ml  of Renilla reniformis luciferase encoding
plasmid (pRL-TK, Promega, USA). Cells transfected
without the precursor served as controls for normaliza-
tion. Luciferase activity was measured 24-48h post-
transfection using a dual-luciferase assay system
(Promega, USA). All transfections were repeated inde-
pendently at least three times.

Statistical analysis

At least three independent experiments were performed in
each case. Statistical analysis was performed using
one-way ANOVA followed by the Duncan test. Differ-
ences among groups were considered to be significant
when P <0.05.
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RESULTS

MiR-124 is both necessary and sufficient for cell
proliferation in the optic vesicle and forebrain

In Xenopus, miR-124 is expressed from the beginning of
eye formation (around stage 18) in the retinal progenitors
of the eye anlagen (12-13). To investigate the roles of
miR-124 on the early stages of eye development, we
used BrdU incorporation in a loss-of-function study to
examine cell proliferation in the early optic vesicle and
forebrain of Xenopus embryos at around stages 22/24
(when most of the embryonic retinal progenitors have
already formed and the first population of retinal
neurons has just begun to differentiate). Effects on the
differentiating optic cup were also examined at around
stages 33/34. 2'-O-methyl antisense oligonucleotides for
miR-124 (anti-124, 0.2 pmol) were injected into dorsal-
animal blastomere(s) of an eight-cell stage frog embryo
to block miR-124 expression. This approach has previous-
ly been shown to be efficient for miR-124 downregulation,
at least to stage 33 (13). As a result, the proliferating cell
ratio decreased significantly (P <0.01) in the optic vesicle
and forebrain at stages 20-24 (22.7%), compared with
that in the uninjected control (45.2%). Embryos injected
with a control inhibitor (negative control, Anti-ctrl)
showed no significant change in cell proliferation
(39.3%). When embryos were at stage 33 and the optic
vesicle had developed into an optic cup, the difference
between the ratios of proliferating cells in the anti-124
injected embryos and controls was insignificant
(Figure 1A), indicating that miR-124 is necessary for
maintaining proliferation of neural progenitors in the
early optic vesicle but not in the optic cup.

We then tested whether loss of miR-124 could influence
neurogenesis while repressing proliferation. NCAM and
N-tubulin (neural-specific class 11 B-rubulin) were used as
neuronal markers (30-32). RT-PCR and real-time
RT-PCR experiments indicated that loss of miR-124 sig-
nificantly enhanced the expression of NCAM and
N-tubulin at the early optic vesicle stage (P <0.01 and
P <0.05, respectively) (Figure 1B). This suggests that
miR-124 is required for the maintenance of proper cell
proliferation and the repression of neural differentiation
during early eye development.

In order to investigate whether miR-124 is sufficient to
promote cell proliferation and repress neurogenesis during
the optic vesicle stages, we performed a miR-124 gain-
of-function study by microinjecting 0.025 pmol miR-124
precursor (pre-124) at the eight-cell stage and detected
cell proliferation as above. At stages 20-24, upregulation
of miR-124 led to a significant increase (P < 0.01) in the
proliferating cell ratio in the forebrain and optic vesicle
(71.6%), compared with that of the uninjected control
(45.2%). Application of pre-ctrl did not appear to alter
cell proliferation (43.2%) (Figure 1A). RT-PCR and
real-time RT-PCR results show that expression of
NCAM and N-tubulin were significantly decreased on
miR-124 overexpression (P <0.01 and P <0.05, respect-
ively) (Figure 1B). At stage 33, the opposite effect on
cell proliferation was observed in the optic cup
(Figure 1A) in agreement with results previously
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Figure 1. MiR-124 regulates cell proliferation and neurogenesis in the optic vesicle and forebrain. (A) Proliferating cells were detected with a BrdU
(red) incorporation assay. Hoechst (blue) was applied to label the nuclei of all cells. The dashed line in the schematic diagram [images from
Nieuwkoop and Faber, 1994, Normal Table of Xenopus laevis (Daudin)] indicates the location of the transverse sections in the developing eye.
In the optic vesicle (arrow) and forebrain (arrow head) of embryos at stage (st.) 22/23, the BrdU-positive cell ratio was significantly reduced when a
miR-124 inhibitor (Anti-124) was injected, but significantly increased when an miR-124 precursor (Pre-124) was applied. In the optic cup (st.33/34),
injection of either control inhibitor (Anti-ctrl) or precursor (Pre-ctrl) molecules gave no significant change in cell proliferation compared with the
uninjected control (Uninj). The bar graph illustrates the BrdU-positive ratio of the transverse sections (mean = SEM, 24 sections from six embryos).
Scale bar: 100 pm. (B) Expression of NCAM and N-tubulin are significantly upregulated with downregulation of miR-124, but significantly
downregulated with overexpression of miR-124. ODC and —RT are the internal and negative controls, respectively, for the RT-PCR procedure.
The bar graph illustrates the gene expression level analyzed by real-time RT-PCR. Means = SEM are from three independent experiments. The
values of injected groups were compared with those of uninjected controls by one-way ANOVA followed by the Duncan test. *P and #P <0.05;
#P and P <0.01.

reported (13). These knockdown and overexpression the gain or loss of miR-124 were specified neuronal
effects show that miR-124 plays differential roles during progenitors, the effects of miR-124 on proneural genes
eye development, and that the level of miR-124 is positive- were also considered. Since NeuroDI is a well-known
ly correlated to cell proliferation and negatively correlated neurogenic factor and proneural marker in both the em-
to neurogenesis during early optic vesicle stages. bryonic and adult central nervous systems (30,33-36), and

is implicated as a candidate target of miR-124 (13,37),
we investigated whether NeuroD1 is negatively regulated
To investigate whether the proliferating cells which had by miR-124 and whether it is involved in the early role of
increased or decreased in the optic vesicle in response to miR-124 during the optic vesicle stage. Therefore, we

MiR-124 negatively regulates expression of NeuroD1



performed both further loss- and gain-of-function studies
to verify the functional effects of miR-124 on NeuroDI.
Expression of Lhx2, a target of miR-124 in the eye,
verified in our previous work (13), was also analyzed.

By whole-mount in situ hybridization, loss of miR-124
was shown to contribute to the increase in expression of
NeuroD1 but not Lhx2 from stages 20 to 22/23 compared
with that on the control side (Figure 2A). However,
NeuroD1 expression was no longer significantly affected
by loss-of-miR-124 at the optic cup stage (stage 33)
(Figure 2A). This stage-dependent upregulation of
NeuroD1 was confirmed by RT-PCR and real-time
RT-PCR (Figure 2B).

In addition, we detected the expression of two genes
downstream of NeuroDI, elrC (38) and xtwi (30), which
are activated and inhibited by NeuroDI, respectively.
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expression was downregulated, indicating that NeuroDI
activity is also upregulated within miR-124-silenced
embryos (Figure 2C). These results confirm that loss of
miR-124 promotes NeuroDI expression and that
miR-124 is necessary for controlling NeuroD1I expression
at the optic vesicle stage.

In agreement with the results of the loss-of-function
assay, the level of NeuroDI at stage 22/23 was
downregulated when miR-124 was overexpressed
(Figure 3A). Expression of the two downstream genes
elrC and xtwi was correspondingly reduced and increased,
respectively (Figure 3B). However, expression of Lhx2 was
also significantly downregulated (Figure 3A), indicating
that miR-124 is sufficient for repressing Lhx2 transcrip-
tion at both the optic vesicle and optic cup stages.
This result is consistent with our previous in situ hybrid-

ElrC expression markedly increased, whereas xtwi ization results (13). Interestingly, real-time RT-PCR
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Figure 2. Downregulation of miR-124 increases the expression of NeuroDI in the optic vesicle. (A) Expression of NeuroDI increased in stages 20 and
22/23 embryos but not in stages 33/34 embryos injected (Inj.) with Anti-124, as indicated by in situ hybridization, while expression of Lhx2 was not
affected at any of these stages. Yellow dashed lines indicate the midlines of Stage 20 embryos. Red dots circle the position of the optic vesicle/cup.
Scale bar: 500 pm. (B) RT-PCR and real-time PCR quantification confirm that expression of NeuroDI, but not Lhx2, in stage 22/23 embryos is
Ereguldted on loss of miR-124. (C) Correspondingly, the expression of erC increased and that of xtwi decreased. *P and *P <0.05; **P and

P <0.01.



2874 Nucleic Acids Research, 2011, Vol. 39, No. 7

N
"? ~
&

NeuroD? I SR

7] S e W |

onc B I

150 -

I NeuroD1
[JLhx2

100
##
) i%‘
0-

>
N
2y
&
Q Q

Relative amount (%)

o~ >
§ &
&

300 1 B oIrC
[ xtwi
;\? ##
= 200 -
=]
[]
£
©
Q
=
= 100 N
E
o
0 -
-« - N
& N &
S @’ K
Q Q

Figure 3. MiR-124 overexpression reduces the expression of NeuroDIl. RT-PCR (gel panel) and real-time PCR (bar graph) conditions are the same
as those in Figure 2. (A) Gain of miR-124 resulted in downregulation of both NeuroDland Lhx2 at Stages 22/23. (B) Expression of el/rC decreased

and that of xtwi increased. *P and #P <0.05; **P and P <0.01.

results showed that the NeuroDI expression level
decreased to 42.4% and was much lower than the expres-
sion level of Lhx2 (59.4%) (Figure 3A), suggesting that
miR-124 is a strong inhibitor of NeuroDI expression spe-
cifically at the optic vesicle stage in Xenopus laevis. Taken
together, the above loss- and gain-of-function studies
provide both direct and indirect evidence that NeuroDI
is negatively regulated by miR-124 at least at the optic
vesicle stage. These results also indicate that miR-124
represses both proneural and neuronal properties at
these stages, thus playing an anti-neural role.

MiR-124-enhanced cell proliferation is rescued by
NeuroD1

To investigate whether miR-124 promotes cell prolifer-
ation by repressing NeuroD1, the miR-124 precursor was
co-injected with NeuroDI mRNA and effects on cell
proliferation in the optic vesicle were compared with
the effects of injecting NeuroDl or pre-124 alone
(Figure 4). Stimulation of cell proliferation by miR-124
overexpression was confirmed with a pH3 staining assay.
As expected, co-expression of 10pg NeuroDI mRNA
drastically reduced (P <0.05) the increased cell prolifer-
ation resulting from miR-124 upregulation. Expression
of NeuroD]1 alone at the same dose led to no significant
changes in the pH3-positive cell ratio compared to the
blank control. These results indicate that NeuroD1 coun-
teracts miR-124-induced cell proliferation in early eye
development, suggesting that NeuroDI may be a key
factor involved in the regulation of neurogenesis by
miR-124 during the optic vesicle stages.

NeuroD1 is a direct target of miR-124

The above results strongly suggest that NeuroDI is a
functionally important target of miR-124. To test this
possibility, we analyzed vertebrate NeuroD1 sequences
in silico. We found that NeuroDI is evolutionarily
conserved from amphibians to humans both in its
coding region (data not shown) and in its 3-UTR
(Figure 5A), and that it is a candidate target of miR-124
as predicted computationally by RNAhybrid (26),
Targetscan (27) and Pictar (28).

Next, we used luciferase reporter assays to check
whether NeuroD1 is a target of miR-124. The 3’-UTR of
NeuroD1 containing the predicted MRE was inserted
downstream from the luciferase-coding region in the
reporter vector. Two constructs containing the antisense
sequence of miR-124 (Anti-124) or the 3-UTR of Lhx2
were employed as positive controls (13). Two other con-
structs with 3'-UTRs of Pax6, which contains no MRE
(13), or a mutated 3'-UTR of NeuroDI1 (NeuroDI-Mut)
(Figure 5A) were used as negative controls. Each
reporter construct was separately co-transfected into
293T cells with the miR-124 precursor or the control
precursor molecules. Consistent with our previous results
(13), the luciferase activity of the positive controls, the
Anti-124 and Lhx2 reporters, was reduced to 3.6% and
64.5%, respectively, while the Pax6 3’-UTR negative
control did not significantly alter the luciferase activity
(Figure 5B). The incorporation of the NeuroDI 3'-UTR
in the reporter resulted in a significant (P < 0.01) decline in
luciferase activity to 58.3%. In contrast, the incorporation
of the NeuroDI-Mut fragment did not change expression
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Figure 4. NeuroDl antagonizes miR-124-induced cell proliferation.
Transverse sections of the optic vesicle in stage 22/23 embryos
injected with Pre-124 (0.025 pmol) and/or NeuroD1 (10 pg). Proliferzat-
ing cells were immunohistochemically stained with phosphohistone-H3
(pH3) antibody (red). Nuclei were labeled with Hoechst33258 (blue).
The pH3-positive cell ratio of transverse sections was shown in the bar
graph (Mean + SEM, 16 sections from four embryos). More
proliferating cells in the brain and optic vesicle were detected in the
Pre-124 group compared with the uninjected blank control. Injection of
NeuroDI mRNA alone had no obvious effect on cell proliferation.
Co-injection with Pre-124 plus NeuroDI restored cell proliferation
to the level of the blank control. Scale bar: 100 pm. *P <0.05;
P <0.01.

significantly (Figure 5B). The above results demonstrate
that miR-124 can directly target the MRE in the 3’-UTR
of the NeuroD1 to repress gene expression.

To confirm the interaction of miR-124 with NeuroDI
in vivo, we performed whole-mount in situ hybridization
on wild-type embryos at stage 22/23. The expression level
of miR-124 in the optic vesicle and forebrain was quite
low compared with the strong expression of NeuroDI.
In these embryos, NeuroD1 signals were observed to be
restricted in the dorsal region of the anterior forebrain and
the peripheral optic vesicle, areas where miR-124 shows
relatively low levels of expression (Figure 5C). These
results show that the expression of miR-124 and
NeuroD1 are somewhat, though not completely, comple-
mentary to each other in the optic vesicle and anterior
forebrain, supporting the hypothesis that NeuroDI can
act as a direct target of miR-124 in vivo to control cell
proliferation and neurogenesis.
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DISCUSSION

Using loss- and gain-of-function studies, we have provided
the first evidence that miR-124, a neuronal-specific
miRNA, antagonizes NeuroD1 and plays an anti-neuronal
role by promoting cell proliferation and repressing
neurogenesis in early eye development (Figure 6).
MiR-124 is a highly conserved and CNS-enriched
miRNA that has been reported in a range of species
from C. elegans to humans (4,8,17,19-20,39-44).
Previous work by in vitro analysis has shown that
miR-124 overexpression represses cell proliferation and
promotes neuronal differentiation (17,45-46). However,
results reported from in vivo analyses are somewhat diver-
gent. It has been shown that neither inhibition nor
overexpression of miR-124 alone significantly alters
neuronal fate in chick embryonic development (19).
At the same time, miR-124 has been found to moderately
enhance neuronal differentiation in chicks (20). Recently,
Maiorano et al. (47) reported that miR-124 promotes em-
bryonic cortico-cerebral neuronogenesis in mice and we
also found that miR-124 overexpression decreases retinal
cell proliferation in the Xenopus optic cup (13). MiR-124 is
both necessary and sufficient for adult neurogenesis in
mice, regulating the progression from progenitor cells to
neurons (18). These results indicate that miR-124 plays a
role in repressing cell proliferation and/or inducing neuro-
genesis. However, all of the above results were obtained
from analyses after the optic vesicle stages. While miR-124
starts to be expressed at the onset of neurogenesis in the
neurula stage, its role during this period of early neuro-
genesis is unclear. Our work shows that at the Xenopus
optic vesicle stage, miR-124 is both required and sufficient
for cell proliferation and repression of neurogenesis in the
forebrain and optic vesicle, playing an anti-neural role
distinct from that in later developmental and adult stages.
During the dynamic embryonic development stages,
miR-124 is expressed in different cells of the central
nervous system (13). The diverse roles of miR-124
in vivo are likely to be developmental stage dependent.
In contrast to results reported here for the optic vesicle
stage, we previously found that at the optic cup stage
when the level of miR-124 has increased to a high level
and miR-124-expressing cells have become more specified,
gain of miR-124 decreases cell proliferation in the retina
(13). In experiments with divergent results from chicks
(19-20), overexpression of miR-124 was carried out by
electroporation at stage HH13, when the optic cup starts
to form from the optic vesicle; and the effect of miR-124
was investigated at stage HH25. The developmental stage
selected in these chick experiments was later than those
used in our experiments. In Maiorano’s work in mice (47),
the role of miR-124 was analyzed at a developmental
period (E12.5-E14.5) even later than those in the chick
experiments. Therefore, miR-124 might act as an
‘enhancer’ for cell proliferation and an inhibitor for
neurogenesis in the less-specified earlier cells, while
playing a reverse role in the later stages. A recent report
showed that miR-124 transgenic embryonic mice have
enlarged body sizes and increased weight compared with
controls (48). In this case, transformation with miR-124



2876 Nucleic Acids Research, 2011, Vol. 39, No. 7

kk ke kdokdokkkdokk sk position
hsa-NeuroD1 AAUUUAAACCAGCAGAAAAGUGCUUAGAAAGUUAUUGUGUUGCCUUAGC-ACT 1932

mmu-NeuroD1 AAUUUAAACCAGCAGAAAAGUGCUUAGAAAGUUAUUGCGUUGCCUUAGC-ACT 1800
rno-NeuroD1 AAUUUAAACCAGCAGAAAAGUGCUUAGAAAGUUAUUGCGUUGCCUUAGC-ACT 1790
xtr-NeuroD1  AAUUUAAACCAGCAGCAAAGUGCUUAGACAG———UUGUGUUGCCUUAGAGACG 1793
xla-NeuroD1 GAUUUAAACCAGCAACAAAGUGCUUAGAAAG——UUGUGUUGCCUUAGAGACA 1708

L ol VT e Mfe (keal/mol)
xla-miR-124 AAC CAUAAG U  GGCGC ACGGAAU -20. 3
xtr-miR-124 AC CGUAAG U  GGCGC ACGGAAUU -22. 3
mmu-miR-124 AC CGUAAG -21. 1

U GGCGC ACGGAAU
| ] SRS EY |
xla-NeuroD1-Mut GAUUUAAACCAGCAACAAAGUGCUUAGAAAG——UUGUGUACGGAAAGAGACA 1708

C
150 +
N Pre-124
3 [ Pre-ctrl S
> <
2 1 14
g 00 4 ] s
&
E *k
2 *k
5]
3
- 504
5
3 o
* 3
Jedede|
0d = =2
™ 9 N &
NV o 0 N\
& v N N
© W@ @0 Lateral Transverse
«°

Figure 5. MiR-124 targets NeuroD1. (A) An evolutionarily conserved miR-124 target element (red) is located at the 3'-UTR of NeuroDI mRNAs in
humans (hsa), mice (mmu), rats (rno), Xenopus tropicalis (xtr) and Xenopus laevis (xla). The minimal free energy (Mfe) of xla-NeuroD1 pairing to xla-
miR-124, xtr-miR-124 and mmu-miR-124 was below —20 kcal/mol. A mutant NeuroDI plasmid (x/a-NeuroDI-Mut) was constructed with mutations
in the underlined positions which pair with the miR-124 seed sequence (2-7 nt). Homologous sites are marked by asterisks. (B) Luciferase assays were
carried out in the 293T cell line using pCS2-Luc-NeuroDI 3'-UTR reporters (in x/a). Positive (Anti-miR-124, Lhx2) and negative (Pax6,
NeuroD1-Mut) controls were set. Anti-miR-124 almost completely blocks luciferase activity. The relative luciferase activity of the NeuroDI group
is significantly lower than that of the negative control groups and similar to that of the Lhx2 positive control. Means + SD are from three
independent experiments. *P <0.05; **P <0.01; ***P <0.001. (C) In situ hybridization of miR-124 and NeuroDI at stage 22/23. MiR-124 is
weakly expressed in the eye (arrow) in comparison with expression of NeuroDI as shown in the lateral view. Transverse sections at the level of
the eye showed that the expression patterns of miR-124 and NeuroD1 were partially complementary in the forebrain (arrow head) and optic vesicle
(arrow).

was conducted by microinjection into mouse blastomeres
and led to an increased growth rate as determined by
BrdU labeling. This result provides more evidence that
miR-124 overexpression enhances cell proliferation
during early embryonic development. Therefore, we
propose that miR-124 may act as either a positive or a
negative regulator of neurogenesis depending on develop-
mental stage.

Different genes have been identified as targets of

NeuroD1 is specifically upregulated by knocking down
miR-124 at the optic vesicle stage, and that miR-124 can
repress gene expression by targeting the 3-UTR of
NeuroD1, thus providing both in vitro and in vivo
evidence that NewroDI is a target of miR-124.
Systematic research on miRNA and its targets in zebrafish
has shown that NeuroD]I is upregulated in the MZDicer
mutant which does not contain miR-124 (14). Our conclu-
sions are strongly supported by this recent genetic

miR-124 in the developing central nervous system
(13,17,19-20), pancreas (37) and adult brain (18,49).
Recent studies using high-throughput techniques have
also shown that miR-124 has hundreds of targets
(14-15,50). The existence of multiple targets implies that
miR-124 has multiple roles. However, these roles are as
yet largely unexplored. NeuroDI, a candidate miR-124
target (13,37) that has yet to be verified, is well known
as a proneural bHLH transcription factor due to its
critical role in promoting neuronal differentiation, and
has been shown to be downregulated by miR-124
overexpression (13). In this study, we show that

evidence in zebrafish.

NeuroD1 (NeuroD) was identified in mouse and
Xenopus simultaneously, and acts as one of the earliest
transcription factors promoting neuronal differentiation
(30). Knockout of NeuroD1 leads to neuronal deficits in
the granule layers of the cerebellum and hippocampus
(51,52), and its overexpression has been shown to inhibit
cell proliferation and promote neurogenesis (53,54). These
effects are coincident with those of gain and loss of
function of miR-124 at the optic vesicle stage. However,
excessive cell death has also been observed in the NeuroD-
deficient mice (51,52). This is in contrast to the significant
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Figure 6. A putative scheme of the regulatory effect of miR-124 on
NeuroD1 in early eye and brain development. NeuroD 1, which represses
cell proliferation and promotes neuronal differentiation, is one of the
target genes of miR-124. The arrow represents promotion; the right
angle represents repression.

increase in proliferating cells in miR-124-injected embryos
in this study, indicating that expression changes in other
miR-124 targets are also involved in the miR-124
overexpression effects. As the upregulation of NeuroDI
by miR-124 knockdown is significant only at the optic
vesicle stage but not at the later optic cup stage, and
high levels of miR-124 and NeuroDI co-localize in the
central retina at the early optic cup stage (st.32-st.41)
(13,55), other regulators may also be involved in the
regulation of NeuroD1 expression. The differential
interaction of miR-124 with its targets may be key in
determining its changing roles during neural development.

No significant morphological defects have been
observed in miR-124 downregulated embryos (13), sug-
gesting possible compensatory events and complex
regulation of overall embryonic development. This obser-
vation is consistent with recent results from C. elegans,
showing that miR-124 mutant worms show no obvious
morphological changes (15). However, cell proliferation
and differentiation are closely related events during
neurogenesis, and the timing of cell cycle exit has been
shown to be critical to cell fate determination (56-58).
NeuroDI is also known to play multiple roles in
neuronal development and to influence the fate of
specific neuronal cells (30,33-34,51,54,59-62). For
example, in chicks and mice, NeuroDI regulates photo-
receptor cell formation and is involved with other
bHLH transcription factors in controlling retinal
subtype specification (60,62-65). Recent findings on
zebrafish retina development show that NeuroDI is dy-
namically expressed in the proliferating cells that give
rise to the photoreceptor cell lineage and that its
overexpression inhibits retinal cell proliferation and

Nucleic Acids Research, 2011, Vol.39, No.7 2877

promotes neuronal differentiation (53,54). Our identifica-
tion of the conserved miR-124 binding site in the 3-UTR
of NeuroDI, together with the known functional conser-
vation of miR-124 and NeuroD1, suggests that the novel
post-transcriptional regulation of NeuroDI by miR-124
described here may also be conserved in other species,
modulating multiple functional roles of both genes.
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