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Abstract
Clinical metagenomics (CMg) is the process of sequencing nucleic acid of clinical samples to obtain clinically relevant informa-
tion such as the identification of microorganisms and their susceptibility to antimicrobials. Over the last decades, sequencing 
and bioinformatic solutions supporting CMg have much evolved and an increasing number of case reports and series covering 
various infectious diseases have been published. Metagenomics is a new approach to infectious disease diagnosis that is currently 
being developed and is certainly one of the most promising for the coming years. However, most CMg studies are retrospective, 
and few address the potential impact CMg could have on patient management, including initiation, adaptation, or cessation 
of antimicrobials. In this narrative review, we have discussed the potential role of CMg in bacteriology, virology, mycology, 
and parasitology. Several reports and case-series confirm that CMg is an innovative tool with which one can (i) identify more 
microorganisms than with conventional methods in a single test, (ii) obtain results within hours, and (iii) tailor the antimicrobial 
regimen of patients. However, the cost-efficiency of CMg and its real impact on patient management are still to be determined.
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Key Points 

Clinical metagenomics is an emerging diagnostic tool in 
infectious diseases.

Clinical metagenomics has the potential to identify 
unexpected microorganisms with no prior assumption 
(including fastidious ones) and to infer their susceptibil-
ity to antimicrobials.

Clinical metagenomics could have an impact on adminis-
tered antimicrobial therapies.

1 Introduction

Clinical metagenomics (CMg) is the process of sequenc-
ing nucleic acids of clinical samples to obtain clinically rel-
evant information such as identifying microorganisms and 
susceptibility to antimicrobials. CMg is a new field whose 
first application was published in the 2010s. Since then, the 
world has witnessed the development of more affordable and 
diverse next-generation sequencing machines. Their bioin-
formatics (solutions tools to convert DNA sequences into 
biological signals) have progressed in terms of DNA exploi-
tation possibilities. Accordingly, clinical microbiologists are 
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all the more interested in metagenomic sequencing for clini-
cal samples [1–6], mostly those facing a diagnostic dead-end 
despite extensive testing. One of the upsides of CMg over 
conventional methods is the capacity to detect microorgan-
isms in an exhaustive manner without any presupposition. 
Over the past few years, several case reports and series have 
been published [7–10], many supporting the potential rel-
evance of using CMg in a routine setting. However, few stud-
ies have shown the added value (including the adaptation of 
therapeutic regimen) of CMg as compared with conventional 
methods and the actual clinical impact of CMg remains to 
be assessed. In this narrative review, we aimed at (i) sum-
marising the main wet lab and dry lab protocols of CMg 
and (ii) discussing the potential impact CMg could have on 
therapeutics (see Table 1).

2  Wet Lab Experiments

2.1  Pre‑extraction Step

CMg can potentially be applied to any type of samples, 
provided that a sufficient amount of nucleic acids can be 
extracted [11]. The first step, called pre-extraction step, con-
sists of accessing the nucleic acids of the potentially present 
microorganisms by breaking their cell membranes and walls. 
It typically includes (i) lysis of the microorganism (fungi, 
Gram-positive bacteria, mycobacteria, etc.) external struc-
tures and (ii) enrichment of the lysate with the nucleic acid 
of interest. Usually, a combination of different types of lysis 
methods are used, including chemical (detergent-based, e.g., 
sodium dodecyl sulfate), enzymatic (e.g., proteinase K or 
lysozyme), and mechanical lysis (beads beating, using beads 
of various size and composition [12]). Given that chemi-
cal lysis combined with proteinase K is an effective way 
to obtain DNA from Gram-negative bacteria and viruses, 
adding mechanical lysis greatly improves recovery yields 
in mycobacteria and Gram-positive bacteria, and is manda-
tory in fungi [13]. In any case, enrichment is typically used 
for the characterisation of microorganisms. Removing free 
DNAs and RNAs from the lysate using nucleases improves 
sequencing efficacy. However, this step greatly reduces the 
amount of nucleic acids of a particular microorganism (such 
as Pseudomonas) and should therefore be considered with 
caution [14, 15]. Besides, samples can include a significant 
concentration of human cells (typically leukocytes in infec-
tion sites samples) and given that the human genome is 
larger than that of bacteria and yeasts by a  103 magnitude, 
human DNA depletion can be considered [16, 17]. qPCR 
assays targeting bacterial 16S rRNA and human beta-actin 
genes may then be applied to determine the ratio of bacterial 
to host DNA [16].

2.2  Nucleic Acids Extraction

Nucleic acid extraction is typically performed using mag-
netic beads-based kits, which give good qualitative yields 
of nucleic acids for sequencing and can be automated [18]. 
For such, there are two options to consider: the extraction of 
RNA (followed by a retrotranscription into cDNA) to docu-
ment the presence of RNA viruses or the host’s gene expres-
sion profile, and the use of a kit that softly fragments the 
genomes when long reads are needed. Library preparation 
refers to the steps where raw nucleic acids are converted to 
a material ready to be sequenced. Two main approaches can 
serve the purpose: amplicon and shotgun. With the amplicon 
approach, particular care should be taken when choosing the 
primers to use. Traditional targets are the variable regions 
v1–v4 loops of the 16S rRNA encoding gene for bacteria, 
and internal transcribed spacers (ITS) 1 and 2 for fungi [19, 
20]. With the shotgun approach, no prior amplification is 
needed. Nucleic acids are then prepared so that they might 
be sheared according to the size of the expected reads, and 
attached to adapters and sometimes to primers.

2.3  Nucleic Acid Sequencing

Sequencing offers two main alternatives: a high number 
of short reads (Illumina, ThermoFisher) or a small num-
ber of long reads (Oxford Nanopore Technologies, Pacific 
Biosciences). In amplicon-based metagenomics, short-read 
sequencing with a low output (e.g., < 50,000 reads, 2 × 250 
bp length) is usually chosen [21]. As for amplicon long-read 
sequencing (> 1000 bp), it provides better accuracy of species 
characterisation since all variable regions are covered [22]. 
In a shotgun approach, high-throughput short-read sequenc-
ing (> 10 million reads) is most commonly used because 
the documentation often requires a very high sequencing 
depth to provide sufficient sensitivity, especially if the sam-
ple has not been depleted of human DNA [23]. Conversely, 
low-throughput, long-read sequencing can provide a higher 
specificity of species detection. When genome reconstruc-
tion is desired, long-read sequencing, possibly coupled with 
short-read sequencing, appears to be a promising option [24].

2.4  Controls

Irrespective of the chosen approach, using appropriate con-
trols is mandatory. There must be at least a no template 
control (NTC) prepared in the same conditions of sample 
collection, and a positive control, preferably quantitative and 
containing the widest possible microbial diversity [25]. It is 
also possible to include a spiked internal control (DNA and 
RNA) to all samples to ensure that each step is correctly 
carried out [26].
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3  Principles of Bioinformatics Applied 
to Clinical Metagenomics (CMg)

The adjustment of CMg to meet clinical microbiology 
requirements calls for the development of bioinformat-
ics pipelines to achieve the best performance in terms of 
sensitivity and specificity. To date, most CMg pipelines are 
custom-made and their functionality, in comparison with 
each other, has been poorly assessed despite recent initia-
tives like CAMI project [27] and ring trials [28]. As the 
current development of CMg is based mainly on shotgun 
sequencing with pan-pathogen detection approach, we will 
focus in this section on bioinformatics pipelines using shot-
gun metagenomics data as input. Of note, such data require 
(i) substantial calculation and storage resources with respect 
to the volume of sequences generated by next-generation 
sequencing (NGS) machines, (ii) bioinformatics skills, 
even though user-friendly interfaces such as Galaxy [29] or 
NanoGalaxy [30] have been made available.

3.1  Taxonomic Assignment

A typical CMg bioinformatics pipeline (Fig. 1) starts by 
cleaning the sequences to keep the desired quality and size, 
followed by removing duplicate sequences, subtracting reads 
aligned to the human genome (except if the host’s tran-
scriptome is considered), and then aligning the remaining 
sequences to reference microbial databases in order to per-
form taxonomic assignment. This last step is critical since 
the specificity and sensitivity of the assignment pipeline will 
crucially rely on the exhaustiveness and curation of data-
bases as well as on the stringency of the software in match-
ing sequences to reference databases (e.g., alignment or 
k-mer based, see below). Taxonomy classification errors in 
databases may lead to false assignations and perhaps adverse 
outcomes for the patient. Likewise, a database that does not 
include the infection-causative pathogen would give a false 
negative result, with detrimental consequences as well. As 
there is no such perfect combination between a database 
and a software, a multiple approach using diverse databases 
and software types is warranted. For instance, MetaPhlAn2 
[31] is a specific taxonomic tool that relies on conserved 
sequences within species onto which reads are aligned. 
However, it does not cover all possibly existing microorgan-
isms and may miss subdominant, under-sequenced species 
[27]. A more sensitive approach is to use alignment tools 
(e.g., BLAST [32], Bowtie2 [33] or BWA-MEM [34]) and 
broader, non-specific databases such as NCBI RefSeq or 
nt, but at a more expensive computational cost. In comple-
ment, more sensitive tools can be used such as k-mer–based 
tools (e.g., Kraken [35], Clark [36] or Centrifuge [37]). With 
k-mer approach, fast classification is performed using exact 

matching of short words of length k (referred to as k-mers). 
Reads can also be assembled with software like metaSPAdes 
[38] for short reads or metaFlye [39] for long reads in order 
to reconstruct genomes and identify genes.

3.2  Secondary Analyses

Once microorganisms are identified, other traits can be 
sought. In microbiology, susceptibility to antimicrobials is 
as equally important as the taxonomic assignment, if not 
more, since the antimicrobial choice depends on it. Detect-
ing antimicrobial resistance determinants and inferring a 
phenotype is a task CMg can potentially address. Nonethe-
less, knowing the genetic determinants is required in order to 
infer the proper genotype from the phenotype. For bacteria, 
there are several databases for antibiotic resistance genes 
(ARG) [40–42] and for resistance-associated mutations, 
and genotype-to-phenotype inference works well for some 
specific combinations of pathogens-antibiotics when single 
genomes are tested [42, 43]. Genotypic antibiotic suscepti-
bility testing should become a routine tool for Mycobacte-
rium tuberculosis provided that NGS devices are available 
[44]. However, dealing with metagenomic data is challeng-
ing since more than one bacterial genome can be present. 
Since many ARG are embedded in mobile genetic elements, 
connecting each ARG to its host is a challenge bioinformat-
ics has not yet overcome. Besides ARG, other genes of inter-
est such as virulence genes, or those related to phylogenetic 
analysis can be analysed provided that sufficient sequencing 
depth is achieved in order to span the whole microorganism 
genome.

RNA sequencing helps detect potential RNA viruses and 
gives access to mRNA sequences of the host, i.e., allows 
analysis of the human transcriptome whilst searching for 
pathogens. Recently, Langelier et al have shown that the 
analysis of the human transcriptome could be leveraged 
to identify pulmonary infection, in comparison with non-
infected samples, thereby offering clinicians a decision tool 
to uphold antimicrobial drugs or stop them [3]. In Lyme dis-
ease, specific gene expression signature suggests that a panel 
of selected human host-based biomarkers could help in the 
diagnosis [45]. However, integrating host RNA analysis in a 
bioinformatics pipeline requires additional resources and the 
implementation of machine-learning solutions [46]. Another 
interesting approach is performing metagenomic analysis 
of microbiota in non-sterile samples (e.g., respiratory tract 
sample). It has been shown that oropharyngeal flora associ-
ated with lung infection have a lower diversity index than 
those of non-infected patients. This original approach can 
also improve the capacity to distinguish infections from 
colonisation [3]. Similarly, the quantification of microor-
ganisms using thresholds expressed in colony-forming units 
per mL can be of help in bacteriology (e.g., in respiratory or 
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urinary samples). Metagenomic sequencing provides relative 
quantification (expressed as a ratio). Albeit, transforming 
relative concentrations into absolute microorganisms con-
centrations, as proposed by Blauwkamp et al [4] using mol-
ecules of microbe-specific cfDNA per microlitre of plasma 
(MPM), provides perspectives to distinguish actual patho-
gens from commensals or contaminants.

3.3  Contamination Challenge and Pipeline 
Validation

To avoid false positive results, detection criteria aimed at 
distinguishing microorganisms actually present in the sam-
ple from contaminants play a key role. To that end, it is 
possible to consider the number of reads per million (RPM) 
or RPKM (reads per kilobase million) assigned to a micro-
organism with respect to the number of reads of the same 
microorganism found in the negative control (NTC). For 
instance, SURPI + pipeline [47] reports pathogens have an 
RPMsample / RPMNTC >10. Other strategies rely on the 
probability of finding a microorganism in a sample and 

comparing results with a set of negative controls [48, 49], 
the genome coverage of the microorganism or the identifica-
tion of microorganism-specific genomic markers.

3.4  Report

It is important to produce a report that is understandable, 
meaningful, and actionable by both microbiologists and cli-
nicians. Ideally, some bioinformatics output markers should 
be provided such as the estimation of genome coverage, the 
relative abundance, and the degree of identification confi-
dence. In a certification perspective, the software and related 
versions should also be provided. If antibiotic resistance 
determinants are needed (in cases where genotype-pheno-
type inference is simple), then a short description (e.g., to 
which antibiotic they have been reported to confer resist-
ance) should also be given [40, 42].

Fig. 1  Schematic representation of an example of a clinical metagenomics bioinformatics pipeline from reads processing to clinical reporting. 
NTC no template control, RPKM reads per kilobase million, RPM reads per million (created with BioRender.com)
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4  Application of CMg in Bacteriology

4.1  CMg May Play a Therapeutic Role by Detecting 
Unexpected or Fastidious Pathogens

Central nervous system (CNS) infections are amongst the 
leading infections explored by CMg. Overall, etiological 
diagnosis of encephalitis is not reached in ~50% of patients 
[50]. It is estimated that the prevalence of autoimmune 
encephalitis might equal that of infectious encephalitis 
[51], hence the need for new diagnostic tools to detect/rule 
out infections caused by rare or emerging microbes, and 
to adapt/stop anti-infectious agents (or other treatments) 
accordingly. The seminal study of neuroleptospirosis diag-
nosed by CMg [1] paved the way for the insertion of CMg 
in the medical investigations of CNS infections. Further data 
demonstrated that CMg had a sensitivity of 73–92% and a 
specificity of 96–99%, depending on the pathogen detected 
in cerebrospinal fluid (CSF) [1]. More recently, Wilson et al 
included 204 critically-ill, idiopathic meningitis patients, 
with or without encephalitis [26], in whom 58 infections 
were diagnosed in 57 patients (27.9%). Of these 58 infec-
tions, 13 (22%) were diagnosed by CMg, 26 (45%) by con-
ventional methods (11 by serology, 7 from tissue samples 
other than CSF, and 8 by direct testing), and 19 (33%) by 
both approaches. Among the 13 infections diagnosed by 
CMg alone, healthcare was subsequently adjusted in nine 
of them including the antimicrobial regimen.

Bone and joint infections (BJIs) are complex infec-
tions that are often explored by CMg. Thoendel et  al 
sequenced 408 sonicate fluid samples drawn from resected 
hips and knee arthroplasties, of which 213 samples came 
from patients with infections and 195 from subjects with-
out infection [52]. Compared with the results of sonicate 
fluid culture, CMg confirmed pathogens presence in 94.8% 
(109/115) of cases and revealed additional potential patho-
gens in 9.6% (11/115). In culture negative samples, patho-
gens were detected in 43.9% (43/98) of cases. Bacteria were 
rarely detected in samples from presumably aseptic failure 
cases (7/195 [3.6%]). Comparable performances were found 
by other teams on samples drawn from prosthetic joints and 
other orthopaedic device infections or total knee arthroplas-
ties [53, 54]. CMg was also found suitable to detect (i) less 
common pathogens like M. tuberculosis or Brucella meliten-
sis in a study conducted on patients with osteoarticular infec-
tions [55], or (ii) novel pathogens like Mycoplasma sali-
varium detected in a BJI [56].

4.2  CMg May Play a Therapeutic Role by Reducing 
the Time to Actionable Results

The time gap between the onset of an infection (e.g., bacte-
rial) and the start of effective antibiotic therapy has often 
been correlated with the outcome, especially in intensive 
care [57]. Culture-based methods typically yield results 
within 24–72 h after sampling, whereas sequencing using 
Nanopore technologies (Oxford Nanopore Technologies, 
Oxford, UK) can provide results with a turnaround time of 
< 10 h [17, 58, 59]. First cases of respiratory infection diag-
nosed by CMg faster than by culture were two pneumonia 
cases incurred by Pseudomonas aeruginosa and Staphylo-
coccus aureus [59]. More recently, Charalampous et al used 
Nanopore sequencing on respiratory samples in the context 
of hospital-acquired infections [17]. After human DNA 
depletion, they detected respiratory pathogens with 96.6% 
sensitivity as compared with culture methods, with optimal 
turnaround time of 6 h.

4.3  CMg May Help Identify the Microorganism 
Responsible for Sepsis

Faster time-to-results could also help in sepsis manage-
ment. However, the low number of bacterial cells present 
in the blood sample in bloodstream infection (BSI) repre-
sents a significant challenge for CMg. Gyarmati et al applied 
metagenomic sequencing to 27 blood samples from nine 
patients with acute leukaemia and suspected BSI at differ-
ent time points with respect to their exposure to antibiot-
ics. The authors evidenced the presence of bacteria during 
fever but not after initiation of the antibiotic therapy [60]. 
However, common contaminants (mainly Cutibacterium 
acnes, Corynebacterium spp., and Staphylococcus spp.) 
were detected, which doubled the challenge to distinguish 
true pathogens from contaminants. In another study [48], 
101 blood samples from immunosuppressed patients were 
sequenced and CMg displayed a significantly higher propor-
tion of bacteria in those patients (mostly Pseudomonas spp., 
n = 17) as compared with conventional methods (36/101 
[36%] vs 11/101 [11%], respectively, p < 0.001). CMg has 
also been tested in 35 children with confirmed (n = 12) or 
suspected BSI (sepsis with negative blood culture, n = 23) 
[61]. Among patients with confirmed BSI, bacteria were 
identified (at the family level) in eight patients (8/12, 67%). 
In patients with suspected BSI, 3 of the 23 samples yielded 
signals of microorganisms putatively causing the sepsis. 
CMg based on cell-free DNA sequencing such as that devel-
oped by Karius company (Redwood, CA) showed 93.7% 
agreement with blood culture in a cohort of 350 patients 
with suspected BSI [4]. Moreover, it identified an indepen-
dently adjudicated cause of the sepsis alert more often than 
all of the microbiological testing combined (169 aetiological 
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determinations vs 132). However, the method significantly 
detected microorganisms in 38/167 (22.8%) asymptomatic 
volunteers, stressing the need for further studies on cell-free 
DNA sequencing.

4.4  CMg May Play a Therapeutic Role by Rapidly 
Adapting Antimicrobial Therapies

Searching for resistance markers in CMg data requires a 
high sequencing depth, especially when host’s DNA deple-
tion is not applied [59]. In a study on a large number of 
respiratory samples using saponin-based host DNA deple-
tion, Charalampous et al searched for antibiotic resistance 
genes (ARG) in metagenomic data of respiratory samples 
[17]. Of the 187 detected ARG (41 samples), 24 matched 
the phenotypic resistance observed in culture, and 14 were 
classified as relevant, but the drug was not tested by a clini-
cal laboratory. Many of them (98/187) were suspected as 
originating from commensal bacteria (commonly recovered 
in proximal respiratory samples, e.g., sputa and endotracheal 
aspirations) whose DNA was found along with that of patho-
gens, hence the difficulty to connect ARG to their host in 
metagenomic data. In addition, some ARG were presumably 
not detected because of the insufficient genome coverage of 
the pathogens. Indeed, another study found a correct infer-
ence of antibiotic susceptibility that was achieved in 94.1% 
of the 24 BJI samples, where only one bacterium was found 
(and its genome sufficiently covered to detect ARG), and in 
76.5% of samples where more than one bacterium was found 
in culture [62]. Using ARG genotype-to-phenotype inference 
to guide patient therapy is already challenging upon working 
on genomic data, especially when resistance arises from a 
change in gene expression (e.g., cephalosporinase-encoding 
gene AmpC). Dealing with metagenomic data brings com-
plexity as linking an ARG to its host is not achievable unless 
cross-ligation is performed during the DNA extraction step. 
As for ARG shared by pathogens and commensals such as 
mecA in staphylococci, achieving a correct phenotypic infer-
ence remains difficult.

5  Application of CMg in Virology

5.1  CMg Can Detect New or Unexpected Viruses

Currently, the most commonly used techniques to diagnose 
viral infections target one or a limited number of viruses. 
The functionality of these traditional methods, such as PCR 
(including multiplex PCR) or serology, cannot be extended 
to discover new emerging viruses, unexpected viruses attrib-
utable to a given pathology, or viruses that are uncommon 
to a particular geographic area. Unlike bacteria whose 16S 
rRNA gene can be targeted, there is no common gene to 

all viruses, and only shotgun sequencing offers unbiased 
detection of all viral genomes. Theoretically, with CMg it is 
possible to find unknown or unexpected viruses in clinical 
samples. In practice, numerous clinical cases or series have 
shown the success of this technique in diagnosing viruses in 
different types of infections including encephalitis, pneumo-
nia, fever/sepsis, or even eye infections [46, 63–66].

5.2  CMg Can Help Tailor the Antiviral Therapy

Antiviral therapeutic panel is still very limited (except for 
HIV and viral hepatitis), therefore, diagnosing a viral infec-
tion by CMg often does not help implement a specific treat-
ment. However, a few case reports have shown that diagnos-
ing viruses via CMg made it possible to initiate a specific 
treatment. For instance, Murkey et al reported hepatitis E 
virus-associated meningoencephalitis diagnosed by CMg in 
a lung transplant recipient, which was successfully treated 
by ribavirin [67]. CMg also helped diagnose unexpected 
herpes zoster laryngitis, which incited clinicians to start 
acyclovir treatment and stop fingolimod [68]. A case of 
astrovirus meningoencephalitis was also reported, and the 
patient was successfully treated with ribavirin and interferon 
[69]. Another case of astrovirus encephalitis was similarly 
treated with ribavirin without success [70]. Recently a case 
of chronic Jamestown Canyon virus encephalitis diagnosed 
by CMg in a patient receiving rituximab has been reported 
[71]. In the absence of approved treatment, the patient was 
treated with intravenous immunoglobulin and favipiravir, 
albeit with an unfavourable outcome. Despite the above-
mentioned therapeutic failures, the diagnosis of these viral 
infections remains crucial in order to (i) stop unnecessary 
antiviral therapy and (ii) introduce approved or experimental 
therapeutic regimens as early as possible.

Another indication of CMg is the detection of domi-
nant (high level) as well as minor (low level) markers of 
resistance to antiviral drugs. Provided the viral load is high 
enough, CMg potentially gives access to the full-length 
genome of the virus, and thus allows identification of resist-
ance-associated substitutions (RASs) in patients infected 
with HIV (by analysing reverse transcriptase, protease, and 
integrase—encoding genes) or viral hepatitis (by analysing 
NS3, NS5A, and NS5B sequences) when antiviral treatment 
failure is suspected. Such indication has also been adapted 
for cytomegalovirus (by analysing UL97, UL54, and UL56 
in letermovir failure), herpes simplex viruses, or influenza 
[72–74]. Identifying resistance-associated mutations in 
the targeted genes is of great interest to adjust treatment 
accordingly.
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5.3  CMg Can Divert Treatment Towards 
Non‑antimicrobial Drugs

Diagnosing an aetiological agent by CMg in a case of infec-
tion can spare patients unnecessary investigations, invasive 
procedures, and empirical antibiotic therapy [75]. CMg can 
also guide the clinician to use immunomodulating therapies. 
In another word, the absence of infection as evidenced by 
CMg, in addition to conventional tests, gives the clinician 
a supplementary argument to initiate an immunosuppres-
sive therapy to treat a possible autoimmune disease [26, 
76]. However, it is important to note that CMg might be 
less sensitive than targeted techniques for the detection of a 
particular pathogen [1, 4, 26, 52] stressing that CMg should 
not replace conventional methods.

5.4  CMg Can Help Describe Genetic Diversity

Another interesting use of CMg is the possibility of charac-
terising the viral genetic diversity. Viruses, particularly RNA 
viruses, and to a lesser extent DNA viruses, rapidly adapt to 
their environment (immune pressure, antiviral treatment). 
In SARS-CoV-2 pandemic, CMg has been so useful in pro-
foundly characterising the full-length genome of circulating 
variants, which allows researchers to analyse the selection 
of specific mutations towards immune response [77]. It has 
been shown to be relevant in characterising divergent geno-
types within a virus genus, as Sanger sequencing might miss 
them [73, 78]. The potential of CMg to sequence the full-
length genome also provides a great opportunity to detect 
fitness-associated substitutions in HCV-infected patients 
failing treatment [79].

5.5  CMg Can Help Study Outbreaks

Taxonomic assignment and phylogenetic analyses can also 
be carried out for epidemiological studies. CMg has been 
used successfully to characterise the epidemiology of Zika 
and Ebola viruses in several regions of the world [80, 81], 
which is pivotal for the surveillance of emerging viruses 
and the rapid implementation of wide-scale public health 
measures. The current SARS-CoV-2 pandemic, discovered 
and characterised by CMg [82], demonstrates the need for 
non-targeted screening of potential pathogens and their rapid 
characterisation.

6  Application of CMg in Mycology 
and Parasitology

6.1  CMg May Help to Identify Fungi

Application of CMg in medical mycology has not exceeded 
the research stage despite the long field of experience in 
ecology [83]. Addressing technical issues and methodologi-
cal biases beforehand would enable researchers to associ-
ate fungal species to medical conditions [84]. However, 
this path is still not useful in clinical practice. Identifying 
fungi by shotgun metagenomics in sterile samples of cer-
ebrospinal fluids or biopsies may provide a diagnosis and 
then significantly change the therapeutic strategy. Fungi are 
common contaminants of air and reagents; therefore, inter-
pretation of results requires caution and multidisciplinary 
discussions. In respiratory invasive fungal diseases, espe-
cially aspergillosis and Pneumocystis jirovecii pneumonia, 
distinguishing colonisation/carriage from infection is crucial 
for proper patient management; however, currently there is 
no common consensus [85, 86]. Some studies suggest that 
metagenomic analysis of fungal abundances with respect 
to the remaining microbiota together with a specific cut-off 
could be exploited for clinical diagnosis [87–89]. In a ret-
rospective analysis performed by Hogan et al on 82 Karius 
tests, CMg-positive results represented 61%, albeit with poor 
clinical impact on cases (7.3%). Three of the latter six cases 
were fungal diseases (aspergillosis, n = 1; candidiasis, n = 1 
and mucormycosis, n = 1) hence, the initiation of antifungal 
treatments [90].

6.2  CMg May Be an Asset to Diagnose Rare 
and Fatal Parasitic Diseases

Regarding parasitic infections, very few publications used 
CMg to diagnose parasitic cases. In 2015, Wilson et al 
reported a case of meningoencephalitis secondary to Bala-
muthia mandrillaris diagnosed post-mortally by CMg [91]. 
Similarly, a case of CNS angiostrongyliasis was diagnosed 
by CMg that led to the introduction of an appropriate treat-
ment [9]. Unfortunately, the delayed treatment did not pre-
vent death. Of note, the earlier the diagnosis of angiostron-
gyliasis, the better the prognosis. A rapid and reliable CMg 
diagnosis might be of great help in such life-threatening 
infections. Other publications reported parasitic diseases 
such as visceral leishmaniasis [10] and CNS angiostron-
gyliasis [26] for which the diagnosis was confirmed by CMg 
after first being suspected by conventional methods. Schnee-
berger et al also showed that shotgun CMg could help detect 
pathogens, including parasites, in faeces [92]. For instance, 
in two patients with persistent diarrhoea, CMg identified 
Ascaris lumbricoides and Schistosoma mansoni (patient 1), 
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and Giardia intestinalis (patient 2). However, CMg missed 
G. intestinalis and Chilomastix mesnili in patient 1. These 
reports illustrate the sensitivity and temporality issues of 
CMg. In the 82 Karius tests reported by Hogan et al, no 
parasites were detected in blood [90].

6.3  CMg May Have an Impact on the Antifungal 
Therapy

Antifungal resistance in fungi is an emerging threat, espe-
cially in Candida spp. [93] and Aspergillus fumigatus [94], 
but few studies have investigated this issue using metagen-
omics, and none of them had a direct clinical impact 
[95–97]. Metagenomics could rapidly detect local preva-
lence of cyp51A resistance genotype in A. fumigatus, which 
is pivotal in determining first-line treatments [98]. Whole-
genome sequencing (WGS) of Aspergillus isolates, which 
exhibit an unexplained azole-resistant phenotype, makes it 
possible to identify new mutations potentially responsible 
for resistance [96, 99]. Similarly, WGS of Candida isolates 
showing azole and echinocandin resistance can quickly iden-
tify mutations and putative resistance mechanisms [97, 100]. 
Regarding resistance detection in parasites, no publication 
on CMg has been made available to date. A few genomic 
studies focused on Plasmodium resistance detection, yet had 
no direct therapeutic implications [101]. WGS was also used 
by Doyle et al to describe a new locus associated with iver-
mectin resistance in a veterinarian nematode, Haemonchus 
contortus, which could help researchers improve their under-
standing of ivermectin resistance in human nematodes [102].

6.4  CMg, a Field to be Developed for Mycological 
and Parasitological Purposes

Overall, although CMg theoretically generates the same 
results as routine methods [63, 87], the complexity of the 
procedure and the need for specific protocols are currently 
preventing its routine implementation for medical mycology 
or parasitology. Moreover, parasites and fungi are usually 
present in low loads in infected specimens, which hinders 
their detection with less sensible methods. As eukaryotes, 
they share large parts of their genome with humans, thus 
some of fungal or parasitic DNA is filtered during bioin-
formatics trimming process incurring reduction of test sen-
sitivity [86, 103]. Specific adaptation of CMg might thus 
be necessary for parasitic or fungal diagnostics. Finally, the 
high cost and technicity of CMg are as of today barely com-
patible with large-scale implementation in low-income areas 
where parasitic diseases often prevail.

7  Conclusion and Perspectives

As an emerging discipline crossing microbiology, infec-
tious diseases, and bioinformatics, CMg has witnessed fast 
development over the last decade. The multiple sequencing 
tools together with the diverse bioinformatic solutions have 
provided CMg enthusiasts a vast array of possibilities to 
play with. Several case-series have been published, includ-
ing some showing a potential impact on patient manage-
ment. The place of CMg in the diagnostics arsenal has yet 
to be defined in order to use it to its best advantage. As CMg 
will gradually impose itself as a diagnostic tool of infections, 

Fig. 2  Summary of the potential impact of clinical metagenomics (created with BioRender.com)
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standardisation of its methods (wet and dry lab steps) as well 
as randomised controlled trials are now needed; the aim is 
to elaborate strong recommendations on methodological key 
points, spanning of nucleic acid, and bioinformatics analy-
sis. As for other tests, the position of CMg will most likely 
depend on the clinical context. Being highly versatile given 
the diversity of sequencing and bioinformatic solutions, 
CMg will enable researchers to address many challenges 
such as (i) identification of hard-to-culture or dead (due to 
a previous antimicrobial exposure) microorganisms (ii) fast 
diagnosis (iii) identification with no prior assumption of 
unexpected or new microorganisms (Fig. 2). CMg should 
also be positioned according to its cost-efficiency. CMg is 
more expensive than traditional culture or targeted PCR 
techniques. However, that could be balanced against (ii) 
savings in other tests and investigations (ii) using targeted 
therapies much earlier, and (iii) earlier patient discharge. 
For such, this may plead for a higher position of CMg in the 
diagnostic algorithm.

In conclusion, CMg is emerging as a promising diagnos-
tic method in microbiology thanks to the exhaustive array of 
microorganisms it can detect. It appears as the next genera-
tion of tests beyond syndromic panels currently deployed 
in diagnostic laboratories. Nonetheless, many challenges 
remain to be solved before CMg can be widely adopted, 
especially the current lack of evidence that CMg can actually 
improve patient healthcare.
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