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Knee position at the moment of bone bruise could reflect the late 
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Abstract
Purpose  The aim of the present study was to trace knee position at the time of bone bruise (BB) and investigate how much 
this position departed from the knee biomechanics of an in vivo flexion–extension.
Methods  From an original cohort of 62 patients, seven (11%) presented bicompartmental edemas and were included in the 
study. 3D models of bones and BB were obtained from MRI. Matching bone edemas, a reconstruction of the knee at the 
moment of BB was obtained. For the same patients, knee kinematics of a squat was calculated using dynamic Roentgen 
sterephotogrammetric analysis (RSA). Data describing knee position at the moment of BB were compared to kinematics of 
the same knee extrapolated from RSA system.
Results  Knee positions at the moment of BB was significantly different from the kinematics of the squat. In particular, all 
the patients’ positions were out of squat range for both anterior and proximal tibial translation, varus–valgus rotation (five 
in valgus and two in varus), tibial internal–external rotation (all but one, five externally and one internally). A direct com-
parison at same flexion angle between knee at the moment of BB (average 46.1° ± 3.8°) and knee during squat confirmed 
that tibia in the former was significantly more anterior (p < 0.0001), more externally rotated (6.1 ± 3.7°, p = 0.04), and valgus 
(4.1 ± 2.4°, p = 0.03).
Conclusion  Knee position at the moment of Bone bruise position was out of physiological in-vivo knee range of motion 
and could reflect a locked anterior subluxation occurring in the late phase of ACL injury rather than the mechanism leading 
to ligament failure.
Level of evidence  Level IV
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Abbreviations
ACL	� Anterior cruciate ligament
AP	� Anterior–posterior
BB	� Bone bruise
IE	� Internal–external
MRI	� Magnetic resonance image
PD	� Proximal–distal
RSA	� Roentgen stereophotogrammetric analysis
VV	� Varus–valgus

Introduction

Mechanism of noncontact anterior cruciate ligament (ACL) 
injuries represents an enormously debated topic in Sports 
Medicine [2, 4, 10, 13, 18–20, 22, 24, 26]. Several multidis-
ciplinary technologies have been utilized to support the many 
theories proposed [2, 10, 13, 20, 22]. Among them, the pat-
terns of bone bruises (BB) that are typically found in MRI after 
ACL injuries have been interpreted as “hints” or “footprints” 
of a tibiofemoral contusion occurring during the ACL rupture 
mechanism [24, 30]. Although their assessment has been con-
sidered providing valuable insight into knee position near the 
time of ACL rupture [5, 17, 21, 23, 24, 30], whether the impact 
occurs during or after ACL rupture is still unknown.

Two previous studies [17, 25] investigated tibiofemoral 
position leading to ACL tear through tridimensional models 
based on the Magnetic Resonance of ACL injured knees super-
imposing femoral and tibial BB. Despite the novel design, both 
studies compared the predicted ACL rupture position with the 
unloaded non-weightbearing position during MRI. Comparing 
the tibiofemoral position near ACL injury to the weightbear-
ing status or even during dynamic tasks would represent a 
substantial improvement in the understanding of ACL injury 
dynamics based on the study of BB [14, 15].

Therefore, the present study aimed to identify the tibi-
ofemoral position at the time of BB in patients who occurred 
noncontact ACL tear and investigate how much this knee 
position departed from the kinematics of a physiological 
in vivo flexion–extension. On the bases of previous studies 
on BB 3D modeling [17, 25], it was hypothesized that the 
position and orientation of the knee at the moment of BB 
involve knee extension, anterior tibial translation, internal 
rotation and valgus, and that those values are not comprised 
within the ranges of motion occurred during a weightbearing 
flexion–extension.

Materials and methods

This study obtained the approval from Institutional Review 
Board (IRB) of Rizzoli Orthopaedic Institute (ID: 40/CE/
US/ml Clinical Trial Gov ID: NCT02323386). All subjects 
signed informed consent before participating in the study.

This study represents the secondary analysis of data 
collected from a prospective study aimed to evaluate the 
outcome of ACL reconstruction. Based on the study pro-
tocol of this prospective study, 62 patients were included 
and assessed preoperatively with 1.5T MRI analysis and 
dynamic RSA. The inclusion criteria for the original study 
were:

•	 Age 16–50 years.
•	 Complete, traumatic, and unilateral ACL injury.
•	 No previous knee ligament reconstruction or repair.
•	 No concomitant lesions of other ligaments.
•	 Absence of mild or advanced knee osteoarthritis (Kell-

gren–Lawrence III–IV).

For the purpose of the present study, only the patients 
fulfilling the following criteria were selected and further 
analyzed:

•	 Noncontact ACL injury.
•	 MRI-to-injury time < 4 months.
•	 Tibial and femoral BB on both medial and lateral com-

partment.
•	 Complete evaluation with dynamic RSA.

Of the 62 patients included in the original study, 35 had 
an MRI performed within 4 months from injury, and only 
7 (11%) presented both medial and lateral tibiofemoral BB. 
All those patients experienced a noncontact ACL injury. The 
patients’ age ranged from 16 to 30 years, and the injury-to-
MRI time ranged from 0.7 to 3.9 months. Three patients had 
medial meniscus lesions; one had both medial and lateral 
menisci lesions (Table 1).

The design of the study was aimed to identify the tibial 
and femoral position at the time of BB and to compare it 
to the joint kinematics during an active squat. For this pur-
pose, MRI scans were used to create 3D models of the distal 
femur, proximal tibia bones, and BB. Subsequently, the bone 
models were matched according to the BB position. The BB 
on both compartments were necessary to achieve the best 
matching possible: model position based only on one sin-
gle compartment edema would have neglected the rotatory 

Table 1   Demographic data, mean ± SD [range]

M male, F female, R right, L left, Y yes, N no

Age (years) 19 ± 5 [16–30]
Gender (M/F) 6/1
Injured leg (R/L) 4/3
Injury-to-MRI (months) 2.2 ± 1.1 [0.7–3.9]
Meniscal lesion (Y/N) 4/3
BMI 22.2 ± 2.7 [19.7–26.9]
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parameters, especially internal–external and varus–valgus. 
Matching the BB, the knee position at the instant the joint 
extremities were supposed to come into contact and generate 
edema was reproduced, according to a methodology vali-
dated in a previous study [17]. The same bone models were 
used to calculate the knee kinematics of a squat performed 
on the injured limb through a dynamic RSA setup. There-
fore, the knee position at the moment of BB was compared 
to the kinematical data of the squat.

Bone modeling and positioning

Two investigators identified the MRI matching of the inclu-
sion criteria (P.A. and G.A.L.). The segmentation of bone 
surfaces and BB were performed using dedicated software 
(Slicer 4.10.1, Slicer, Brigham and Women’s Hospital, Har-
vard University, NIH) [11]. Thus, 3D models of the bones 
(distal femur and proximal tibia) and their corresponding BB 
were created for each patient. The sequence used to create 
the models was PD fat sat, which allowed a better evaluation 
of the bone marrow edema. A single experienced investiga-
tor performed all the segmentations (P.A.) (Fig. 1). Sub-
sequently, an orthopedic surgeon (A.G.) and a biomedical 
engineer specialized in knee pathologies (S.D.P.) reviewed 
the entire segmentation process.

The 3D models were imported in software designed to 
model three-dimensional geometries and subject-specific 
reference systems implementation (nmsBuilder v2.0, Rizzoli 
Orthopaedic Institute, Bologna) [27]. This software allows 
creating an anatomical reference system on tibia and femur 
3D models according to ISB recommendation [28]. The 3D 
position of the tibia and femur at the moment BB was recon-
structed in nmsBuilder: through the “Transform” operation 
command, BB was matched based on the maximal possible 
congruency between their external surfaces (Fig. 2). Three 
different investigators (P.A., A.G., and S.D.P.) reviewed the 
results. Finally, the software output describing the position 
and orientation of the tibia referred to the femur at BB was 
obtained.

Dynamic RSA

The kinematical data of the squat were collected using a 
biplane radiographic setup for dynamic RSA. The specif-
ics of the RSA radiographic setup were analogous to the 
ones already published in previous articles [1, 3, 8, 9]. The 
radiographic images were processed in a dedicated software 
in Matlab® (R2016a, MathWorks Inc., Natik, MA, USA) 
for dynamic RSA. A 3D virtual environment was used for 
semi-automatic segmentation of bone contours on radio-
graph images and, subsequently, to place the bone models 
obtained from MRI according to the contours. The meas-
urement accuracy of the validated dynamic RSA software 
is sub-millimetric (0.22 ± 0.46 mm and 0.26° ± 0.2° for the 
model position and orientation respectively, according to the 
ISO-5725 regulation [ISO]), as evaluated in previous studies 
[1, 7]. The operator’s repeatability (test–retest reliability) 
was evaluated through repeated tests under different image 
noise conditions [7]. The average error [6] was lower than 
0.48 mm (95% CI 0.15–0.80 mm) for all the conditions.

Comparison between bone bruises position 
and squat kinematics

The position obtained for the BB models were compared 
to the kinematical data obtained from RSA for the squat 
for each patient. Since the data were referred to the same 

Fig. 1   Example of segmentation 
process in 3D Slicer software 
[11]. BB were identified on 
MRI image of the knee (a) 
and underlined in every slice 
through segmentation tool (b), 
at the end of the process three-
dimensional models of tibia, 
femur and correspondent areas 
with edema were obtained (c)

Fig. 2   Example of 3D models positioning matching BB areas in nms-
Builder [27]: lateral view (a) and 45° frontal view (b)
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coordinate system based on the anatomical landmarks, it was 
possible to compare all the knee joint kinematical param-
eters directly: flexion angle, internal–external (IE) rotation, 
varus–valgus (VV) rotation, antero-posterior (AP) transla-
tion, and proximo-distal (PD) translation.

Statistical analysis

Knee position at the moment of BB was compared with the 
entire range of motion of the single-leg squat for all the kin-
ematics parameters, separately for each patient. This way, it 
was possible to assess how the knee position at the moment 
of BB departed from the range of motion of the squat in 
ACL-deficient condition. Furthermore, a matched-pair com-
parison was performed based on the flexion angle of the 
BB models. The frame of the squat with the same flexion 
angle as the BB models was isolated. All the kinematical 
parameters of the squat at that frame were compared to their 
corresponding on the BB models, using the paired t-test. 
Differences were considered statistically significant for 
p < 0.05. An a-priori power analysis was performed based 
on G*Power (v3.1, Brunsbüttel, Germany) on the results of 
a previous similar study [17]. Considering a standard devia-
tion of 14 mm and a mean difference of 22 mm between 
knee position at the time of BB and MRI in terms of AP 
translation [17], at least 7 subjects were required to have a 
power of 0.9 and a type I error of 0.05.

Furthermore, a post-hoc power analysis was performed 
to ensure the statistical effectiveness of the differences 
obtained. The post-hoc power analysis focused on VV rota-
tion, i.e., the parameter with the lowest absolute difference 
(10.5°) between BB and squat. With α = 5%, the power was 
80.3%.

Results

Comparison between knee position at the moment 
of BB and single leg‑squat range of translations/
rotations

For all the patients, the knee flexion angle at BB (> 30° in all 
cases) was within the range of values obtained by dynamic 
RSA analysis of single-leg squat. All the patients at the 
moment of BB had an anterior tibial translation exceeding 
their own maximal translation observed during the single-
leg squat (Fig. 3). All the patients showed negative values 
of PD translation at BB, while a positive value was always 
reported during the squat tasks. According to the knee ref-
erence system, this means that the femur and tibia models 
overlapped along the proximo-distal axis at BB but not dur-
ing the squat.

In five out of seven patients, the tibia was more externally 
rotated at the moment of BB than the maximal external rota-
tion observed during the single-leg squat. In one patient, the 
tibial rotation at the moment of BB fell within the rotation 
range during squat, and in one patient, it resulted more inter-
nally rotated than the maximal internal rotation of squat. In 
five out of seven patients, the knee at BB had more valgus 
than during the entire single-leg squat, while two patients 
had a more varus alignment compared to the VV range 
observed during the execution of the squat (Fig. 3).

Comparison between knee at the moment 
of BB and single‑leg squat position 
at the same degree of flexion

The statistical comparison between the tibiofemoral position 
at the moment of BB and the tibiofemoral position during 
single-leg squat at the same flexion of BB was performed at 
flexion angles > 30° in all patients (Table 2). The mean AP 
translation at the moment of BB was significantly higher 
than during the single-leg squat (more anterior, p < 0.001). 
Furthermore, the mean difference at the moment of BB 
was significantly different in IE rotation (more external, 
p = 0.04), VV rotation (more valgus, p = 0.03), and proxi-
mal–distal translation (p < 0.001) (Table 2).

Discussion

The most important finding of the present study was that BB 
in noncontact ACL injuries seems to occur with flexed knee 
(average 46°), a significant amount of anterior and proxi-
mal translation of the tibia, and mainly in external rotation 
and valgus. In all BB models, the tibia appeared evidently 
sub-luxated anteriorly. This condition became more evident 
when compared to Dynamic RSA at the same knee flexion 
angles (Fig. 4). Moreover, knee kinematics during an active 
flexion–extension did never reproduce the BB mechanisms.

The present study was one of the firsts that reproduced a 
3D matching of the tibiofemoral joint position at the moment 
of BB and the first one that compared such position to a 
weightbearing dynamic task performed by the same patients.

Interesting considerations could be outlined based on 
the findings of the present study regarding the current theo-
ries of ACL injury mechanisms. One of the most influen-
tial is considered the one proposed by Koga et al., which 
performed a 3D video-analysis on real in-vivo noncontact 
ACL injuries [18, 19]. The authors identified 3 phases: (1) 
axial and knee valgus loads are applied on early-flexed knee 
resulting in lateral tibial compression; (2) the compressive 
force coupled with anterior force vector caused by quadri-
ceps contraction causes the lateral femoral condyle to shift 
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posteriorly, and the tibia to translate anteriorly and to rotate 
internally (ACL rupture); (3) the medial femoral condyle 
displaces posteriorly, resulting in external rotation of the 
tibia while the knee flexes [19]. Examining the data provided 
by the authors [18], the plateau of anterior tibial transla-
tion seems to occur approximately between 50 and 100 ms 
after initial ground contact, with the knee flexed between 40° 
and 60° and when tibial rotation is reversing from internal 
to external rotation. This translational and rotational pat-
tern described in the late phase of the injury mechanism 
seems consistent with the pattern reported at the time of 
bone bruise described in the present study. Thus, BB could 
occur after ACL rupture, when the tibial and femoral motion 
is guided by the abnormal kinematics due to the ligamentous 

injury and the traumatic inertial energies, exposing to con-
tact articular surface that would not be normally overlapped 
during physiological motion. Moreover, in the present study, 
the translation and rotations described in the moment of BB 
are not included in the normal ranges of translation\rotations 
found with dynamic RSA when performing squat. Based 
on these considerations, it could be speculated that BB do 
not occur within the first 40 ms of ACL rupture when knee 
is early flexed and internally rotated, but in the following 
frames, when the ligament is already gone and the tibia is 
anteriorly and proximally subluxated.

The findings of the present study are in contrast with ones 
reported in previous studies with similar methods [17, 23]. 
Kim et al.[17], evaluating 8 patients with bicompartmental 

Fig. 3   Knee position at the moment of bone bruise compared to the 
range of motion during single-leg squat. The distance values repre-
sent the difference between the upper limit of each patients’ squat 

range and the knee position/rotation at bone bruise. Positive values 
represent a more anterior, proximal position, valgus, internal rotation

Table 2   Comparison between 
BBs genesis and single-leg 
squat at the same flexion angle

CI confidence interval, AP antero-posterior translation, PD proximo-distal translation, IE internal–external 
rotation, VV varus–valgus
*Statistically significant differences (p < 0.05)

BBs genesis Squat at BBs flexion Difference [95% CI] p value

AP (mm) 46.9 ± 2.8 18.5 ± 2.5 28.4 [25.3–31.5]  < 0.0001*
PD (mm) −22.9 ± 1.3 26.5 ± 4.2 49.4 [45.8–53.0]  < 0.0001*
IE (°) −6.1 ± 3.7 7.6 ± 5.0 13.7 [8.6–18.8] 0.04*
VV (°) 4.1 ± 2.4 −6.4 ± 3.8 10.5 [6.8–14.2] 0.03*
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BB, reported that 12° of knee flexion, 22 mm of anterior 
translation, 15° of internal tibial rotation, and 5° of valgus 
rotation (5°) were present in the BB position relative to rest 
MRI position. The main methodological difference, which 
could explain these substantial differences, is the knee 
starting position used in the cited study to calculate data 
describing BB knee orientation. The choice of MRI static 
knee position as reference could cause measurement bias, for 
the absence of weightbearing and the intra-subject variabil-
ity of rest position during imaging acquisition [15]. Moreo-
ver, according to BB pattern and distribution described in 
the literature [24, 29], their position seems to be localized 
predominantly in posteromedial and postero-lateral tibial 
plateau, even more posteriorly (and inferiorly) with respect 
to the articular cartilage and subchondral bone (Fig. 5). It 
could be hypothesized that an impact in such a steep and 
“vertically-oriented” area would occur with higher knee flex-
ion values than those reported by Kim et al. [17].

The more recent study by Shi et al. [25] represented 
an evolution of the methodology of the above-mentioned 
research. With a greater sample size and numerical optimi-
zation of BB identification and matching, based on signal 

intensity on MRI, they claimed bone contusion occurred at 
an average knee flexion of 36.1°, anterior tibial translation 
of 34.3 mm, external rotation near 10°, and valgus near 10°. 
These data are extremely consistent with the ones reported 
in the present study and highlighted the role of higher values 
of knee flexion than ones reported by Kim et al. [17, 23]. 
Nevertheless, the matching of tibia and femur was based 
only on lateral compartment BB, thus possibly affecting the 
reliability of tibial internal–external rotation values. Indeed, 
from a geometrical point of view, it would be impossible to 
obtain a single tibiofemoral position at BB if only a single 
compartment is involved, without any hint on how to con-
strain the contralateral compartment.

The present study has several limitations. First, the sam-
ple was relatively small. Thus, the inferences drawn are far 
from being conclusive. The need for bicompartmental BB 
in both tibia and femur for optimal bone matching consid-
erably reduced the number of patients available. Indeed, 
bone edema on medial femoral condyle was reported in 
approximately 8% of knees with ACL injury [12], which is 
in accordance with the numbers of the present study (11%). 
Moreover, the sample size was similar to the only other 
study that used bicompartmental BB for 3D bone matching 
(8 patients, [17]). These aspects restrict the findings only to 
the subset of ACL injuries with these features. However, the 
predominant knee position at BB and the gross differences 
from in-vivo kinematics identified in the present study could 
contribute to enlarging the knowledge on BB mechanism 
by partially overcoming previous technological limitations.

Another element to clarify, which should be a matter of 
further research, is that the present study -as the other stud-
ies with similar methodologies [17, 22, 23]- is based on the 
assumption that medial and lateral BB occurs in the same 
moment. No proofs of this -and the contrary—are currently 
available, even if some authors imputed the medial bone 
bruise to a countercoup mechanism that occurs during back-
ward tibial reduction after anterior subluxation [16]. Another 
consideration on BB should be made and possibly clarified 
in the future: since the present study was based on exact 

Fig. 4   Comparison of knee position at BB genesis (a) and during 
squat for the same flexion angle of BB genesis (b). Notice the sig-
nificant amount of tibial anterior and proximal translation in the first 
figure with respect to the knee position and orientation observed in 
the execution of a physiological motor task, reflecting the idea that 
BB genesis could occur during a knee locked sub-luxation

Fig. 5   a–c MRI images of 
lateral BB from the case series. 
BB areas are predominantly 
located in posterior aspects of 
tibial plateau (inferiorly respect 
to articular cartilage and sub-
chondral bone) and at the center 
of lateral femoral condyle
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matching of bone edema areas, it is assumed that those areas 
effectively represent the exact point of bone-to-bone impact. 
Whether this is actually true, or if the edema distribution is 
determined by other factors such as subchondral and cancel-
lous bone architecture or mechanical properties, water con-
tent distribution, or biological healing, remains unknown.

Conclusions

Based on the knee position found in the present study and 
from the comparison with in-vivo kinematics, bone bruise 
occurs out of physiological range of motion and could 
reflect the late phase of noncontact ACL injury rather than 
the mechanisms leading to ligament failure. These findings 
suggest that caution should be used when interpreting BB 
to understand ACL injury dynamics.
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