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ABSTRACT Oregano is a novel cluster CZ4 bacteriophage isolated from the soil using the
bacterial host Gordonia terrae. The Oregano genome is 47,575 bp long and encodes two
tyrosine integrases and a toxin/antitoxin system. It shares an immunity repressor with both
Gordonia and Mycobacterium phages that spans 7 clusters.

Actinobacteriophage are a diverse group of viruses that infect actinobacteria, a large
group of Gram-positive bacteria that include both pathogenic and environmental bacteria

relevant to human health (1, 2). By studying actinobacteriophage, we increase our understand-
ing of the evolution and diversity of phage and their bacterial hosts (3–5). Bacteriophage
Oregano was isolated from soil collected in Orono, ME (44.915628 N, 68.69072 W), using the
actinobacterial host Gordonia terrae 3612. Soil extracts were prepared in peptone-yeast
extract-calcium (PYCa) medium and filtered using an 0.22-mM filter. The filtrate was ino-
culated with G. terrae and incubated at 30°C for 2 days before being filtered, diluted, and
plated in soft agar containing G. terrae onto PYCa agar. Oregano produced turbid plaques
1.0 mm in diameter after 2 days of incubation at 30°C. After five rounds of plaque purification
using standard methods, the particle morphology of Oregano was determined by negative
stained transmission electron microscopy (Fig. 1) (6). Oregano has a Siphoviridaemorphology
with a long, flexible, noncontractile tail 358.8 6 4.4 nm (mean 6 standard error [SE]) long
and an icosahedral head 55.86 0.5 nm (mean6 SE) in diameter (n = 4).

DNA was extracted from a high-titer lysate by phenol-chloroform extraction (7). DNA
was prepared for sequencing using the Kapa Plus DNA library kit (Roche, South San Francisco,
CA) and sequenced on an Illumina HiSeq platform. This yielded 500,000 paired-end 250-bp
reads. Newbler v2.9 and Consed v29 were used to assemble the sequence and check it for
completeness, respectively, yielding a 47,575-bp genome with 66.4% G1C content (8). The
genome ends are defined by single-stranded 11-bp 39 extensions (TGCCAAGGGGA). Based
on shared gene content of 35% or higher with sequences in the Phamerator Actino_Draft
database, Oregano was assigned to subcluster CZ4 (2, 9, 10).

Auto-annotation of Oregano’s genome was performed using DNA Master v5.23.6 (http://
cobamide2.bio.pitt.edu/) and PECAAN (https://blog.kbrinsgd.org/) using the embedded
programs GLIMMER v3.02 and GeneMark v2.5 (11, 12). Translational starts were refined using
BLAST and Starterator (http://phages.wustl.edu/starterator/) by identifying conserved starts
that included the coding potential predicted using GeneMark (13). Putative gene functions
were predicted using BLAST, TMHMM, HHpred, and the Phamerator Actino_Draft database
(10, 14, 15). No tRNA genes were identified using Aragorn v1.2.38 and tRNAscan-SE (16, 17).
The genome contains 79 protein coding genes, of which 48% were assigned a function. The
left arm encodes forward-transcribed structural and assembly genes (gp1 to gp29) (Fig. 1).
The right arm of the genome contains forward-transcribed genes (gp45 to gp79), including
Cro (gp45), an antirepressor (gp48), excise (gp50), and a RecT single-stranded DNA binding
protein (gp58).
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Between the minor tail proteins and Cro, there is a group of forward- and reverse-
transcribed genes (genes 30 to 44) that are likely expressed during lysogeny (18).
These include two tyrosine integrases (gp37 and gp39), several DNA binding proteins
(gp32, gp40, and gp41), and an immunity repressor (gp44). Oregano shares an immu-
nity repressor with 41 Gordonia and Mycobacterium phages across six clusters (AD, CY,
CZ, DH, DN, and P). Gp42 and gp43 are a putative toxin/antitoxin (TA) system. Gp42
and gp43 have strong HHpred matches to a PilT N-terminal (PIN) domain and an M. tu-
berculosis VapB antitoxin (PDB accession no. 5AF3_A), respectively (19). The TA system
is found in six other phage genomes in clusters CZ4 and CZ6.

Data availability. Oregano is available at GenBank under the accession no. ON456355
and the Sequence Read Archive (SRA) accession no. SRX14816099.
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