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Abstract

Introduction: Early intervention in Alzheimer’s disease (AD) requires the develop-

ment of an easily administered test that is able to identify those at risk. Focusing on

microRNA robustly detected in plasma and standardizing the analysis strategy, we

sought to identify disease-stage specific biomarkers.

Methods:Using TaqManmicrofluidics arrays and a statistical consensus approach, we

assessedplasma levels of 185neurodegeneration-relatedmicroRNA, in cohorts of cog-

nitively normal amyloid β-positive (CN-Aβ+), mild cognitive impairment (MCI), and

Alzheimer’s disease (AD) participants, relative to their respective controls.

Results:Distinct disease stagemicroRNAbiomarkerswere identified, shown topredict

membership of the groups (area under the curve [AUC]>0.8) andwere altered dynam-

ically with AD progression in a longitudinal study. Bioinformatics demonstrated that

these microRNA target known AD-related pathways, such as the Phosphoinositide 3-

kinase (PI3K-Akt) signalling pathway. Furthermore, a significant correlation was found

betweenmiR-27a-3p, miR-27b-3p, andmiR-324-5p and amyloid beta load.

Discussion:Our results show that microRNA signatures alter throughout the progres-

sion of AD, reflect the underlying disease pathology, and may prove to be useful diag-

nostic markers.
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1 BACKGROUND

Early detection of Alzheimer’s disease (AD) is critical to the delivery of

effective treatment strategies. Although it is feasible to identify known

mutations in family pedigrees with a history of AD, no such routine

genetic test is available to detect the sporadic, late-onset form of the

disease. The apolipoprotein E (APOE)-ε4 genotype is a long-established
risk factor for late-onset AD, but by itself it is not strongly predictive of

progression to AD1 and no other single mutation has demonstrated a

stronger predictive value.2 By contrast, although it is possible to quan-

tify levels of amyloid beta (Aβ), one of the diagnostic features of AD, in
cerebrospinal fluid and brain,3 aswell as anatomical changes in cortical

structures,4 it is not possible to measure these early changes without

repeated use of positron emission tomography (PET) scans, magnetic

resonance imaging (MRI) scans, or lumbar puncture. These expensive

and/or invasive procedures are available only in highly specialized cen-

ters and are not currently suitable for population screening.5

It is therefore vital to identify robust, easily monitored biomark-

ers that are accurate indicators of incipient AD and to understand

how they change through the entire course of the disease. Atten-

tion has focused on blood-borne biomarkers of AD6; yet no such

biomarker is available in clinical practice. Indeed, despite the strong

association between amyloidosis and cognitive decline, there is much

debate as to whether amyloid levels in blood plasma correlate well

with the disease.6,7 Direct measurement of Aβ (or phospho-tau) has

been immensely technically challenging, despite development of new

technologies.5,8 This is likely due to the highly aggregative nature ofAβ,
low levels within blood, and a lack of knowledge regarding how export

of Aβ from the brain changes with disease.

Recently a growing body of evidence suggests that microRNA, a

class of non-coding RNA that function by regulating gene expres-

sion at the post-transcriptional level,9 are dysregulated in AD10 and

that blood-borne microRNAmay be good candidate biomarkers of the

disease.11 Of interest, although microRNA can be detected in cere-

brospinal fluid,12 microRNA crosses the blood-brain barrier and are

protected from degradation by association with protein complexes

and sequestration into membrane bound vesicles, such as exosomes.13

Indeed, recent evidence suggest that exosomes may be involved in

the propagation of neurodegenerative disease14,15 and that exosome-

derivedmicroRNAcan transduce recipient cells.16 Thus circulating lev-

els of microRNAmay not only accurately reflect neuronal function and

dysfunction, butmay represent novel therapeutic targets for the treat-

ment of dementia. Several recent meta-analyses have sought to iden-

tify a consensus microRNA signature for AD. For example, Swarbrick

et al.17 identified a 10-peripheral bloodmicroRNA signature putatively

associated with Braak Stage III. By contrast Bottero and Potashkin18

predicted microRNA that were likely to influence the expression of

genes known to be differentially expressed in MCI and AD. However,

to date there is little concordance in the microRNA species contribut-

ing to the putative Alzheimer’s associated panels.11

Alongside heterogeneity between study cohorts, variation in the

blood fractions collected, the processing or storage of the blood and

analytical and statistical platforms used to assess biomarker levels

RESEARCH INCONTEXT

1. Systematic review: A comprehensive review of the

literature and conference proceedings shows that

despite much research, there is currently no universally

agreed early diagnostic microRNA-based biomarker for

Alzheimer’s disease (AD).

2. Interpretation: We hypothesized that this was a result of

variation in microRNA levels as the disease progresses,

alongside heterogeneity within study cohorts and prean-

alytical variation in the collection, processing, and stor-

age of blood. By using a standardized biofluid (plasma)

and robust microRNA analysis platform (quantitative

polymerase chain reaction [PCR] TaqMan microfluidics

arrays), we have identified distinctive microRNA that

effectively reflect the progression of the disease from

amyloid positive to mild cognitive impairment (MCI) and

AD.

3. Future directions: Although our MCI and AD biomark-

ers are derived from more than one cohort, the next

most important steps are to extend the cohort size of

the amyloid-positive group, to validate these microRNA

as being able to identify individuals at risk of cognitive

decline, and to determine whether these biomarkers are

specific to AD or are universal markers of neurodegener-

ation.

HIGHLIGHTS

∙ Plasma microRNA are dynamically expressed during the

progression of Alzheimer’s disease (AD).

∙ Specific microRNA are altered at specific diseases stages

and have potential diagnostic utility.

∙ miR-195-5p and miR-324-5p are consistently regulated

throughout disease progression.

∙ miR-27a-3p, miR-27b-3p, and miR-324-5p are correlated

with amyloid beta (Aβ) load.
∙ Target analysis of biomarker microRNA reflects underly-

ing neuropathology of AD.

are mooted as crucial limiting factors in the search for blood-based

biomarkers of AD.19 We reasoned that for a biomarker to be clin-

ically relevant, it should be independent of cohort-cohort variation,

but may vary according to biofluid or method chosen for microRNA

analysis. Furthermore, we predicted that plasma microRNA will vary

with the progression of AD, as we found to occur during the devel-

opment of amyloidosis in a mouse model of AD.20 Here, using a stan-

dardized biofluid (plasma) and robust microRNA analysis platform
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(TaqMan microfluidics arrays), we identified distinctive microRNA-

based biomarkers that effectively reflect the progression of AD.

2 METHODS

For further details refer to Supplementary Information.

2.1 Cohorts

Otago Alzheimer’s disease (Otago-AD): probable AD (n = 44); cogni-

tively normal age and sex matched controls (CN; n = 49). PrecisionMed

Inc (Solano Beach, CA, USA; www.precisionmed.com/): MCI (n = 36)

and CN (n = 40). Australian Imaging, Biomarker & Lifestyle Flagship

Study of Ageing (AIBL; www.aibl.csiro.au): probable AD (n = 21), MCI

(n = 38), cognitively normal Aβ-positive (CN-Aβ+; n = 21), and cogni-

tively normal Aβ-negative (CN-Aβ-) (n= 20). All participants gave writ-

ten informed consent.

2.2 MicroRNA expression profiling

We created custom-designed microfluidics arrays representing 185

microRNA correlated with neurological disease and controls (U6

snRNA and ath-miR-159a).20 RNA was isolated from plasma (MirVana

Paris; Life Technologies, Cat # AM1556M), converted to complemen-

tary DNA, and pre-amplified (12 cycles) before qPCR (ViiA-7; Applied

Biosystems). MicroRNA that were not expressed in all samples or had

Ct <12 and >33 were excluded. All samples passed the miR-23a/miR-

451 test of hemolysis.21

2.3 Statistical analysis

Cross-sectional studies: Following data normalization using Norm Rank

Invariant, differentially expressed microRNA were identified using

empirical-Bayes moderated t-tests (case/matched cohort control;

P < .05). Outliers were identified using Grubb’s test. Normal distri-

bution of the data was confirmed using the D’Agostino and Pearson

omnibus normality test (P > .05). Data were processed and heatmap

generated using GraphPad Prism (v8).

Meta-analyses were conducted using the R package “metaphor”

(v2.0-0; http://CRAN.R-project.org/package =metafor). A fixed-effect

model was chosen for CN-Aβ+ group, whereas a random-effect model

was chosen for the MCI and AD groups (DerSimonian and Laird

method) to allow for the different group sizes. Heterogeneity of the

mean estimates (pooled estimated effect size) was assessed using

Cochran’s Q and the I2 statistic; where Qep <0.1; I2 (%) >75% was

considered significantly heterogeneous in the AD group and excluded

from the analysis. Results were visualized with Forest Plots, showing

the the pooled effect size estimate, along with their confidence inter-

vals (95%CI).

Logistic regressions were performed with the Forward: Wald

method (MedCalc, v15.11.4). The goodness of fit for each logistic

regression model was evaluated using the Hosmer-Lemeshow test

(P > .05). Receiver-operating characteristic (ROC) curve, area under

the curve (AUC) was evaluated for the overall model fit (P < .05). Log-

rank test were performed using the Mantel-Cox method to compare

expression (normalizedCt) of the diseased and control groups (P< .05).

2.3.1 Longitudinal studies

A subgroup of longitudinal samples from the AIBL cohort (CN-Aβ+
to MCI, n = 21; MCI to AD, n = 18) were used to identify change in

microRNAexpressionwith disease progression. Box andWhisker plots

(median normalized Ct values and 95% CI) were constructed to dis-

play the data and generalized estimating equations (GEEs; SPSS, v25.0)

used to determine significant effects. The dependent variable was the

microRNA expression studied (normalized Ct). Compound symmetry

was used for the working correlation matrix structure and the Wald

chi-square tested for the effect of group, followed by pairwise compar-

isons of the estimated marginal means at each set (P > .05). AUC were

determinedas above; 95%CIs are reported. Pearson’s correlation coef-

ficient r with P-value were generated for multiple variables, including

normalized Ct, which could possibly explain the different expression in

microRNA usingmethod usingMedCalc, v15.11.4.

2.4 Bioinformatics analysis

DIANA-microT v3.0 (Tarbase v7.0) and miRTarBase 7.0

http://mirtarbase.mbc.nctu.edu.tw/php/index.php were employed

using the most stringent algorithm parameters to identify val-

idated targets of the candidate microRNA biomarker for each

disease stage (Figure 3), as well as the microRNA, which correlated

with amyloidosis. Using DAVID 6.7 (http://david.ncifcrf.gov), we

focused on genes expressed in brain and blood. Biological pathways

enriched within this group were identified using the Enrichr tool

(amp.pharm.mssm.edu/Enrichr22,23) to search Wikipathways. Kegg

Mapper (https://www.genome.jp/kegg/mapper.html) was used to color

the genes associated with each disease stage.

3 RESULTS

3.1 Identification of differentially expressed
microRNA: cross-sectional analysis

To identify microRNA-based biomarker panels representing CN-Aβ+
(AIBL), MCI (PMed, AIBL), and AD (Otago-AD, AIBL) cohorts, we used

qPCRTaqManmicrofluidics arrays toquantifymicroRNA inplasmaand

expressed these relative to their respective CN controls (Table 1 and

Table S1). The heatmap (Figure 1) provides an overview of the data and

includes 32microRNA thatwere found to be significantly differentially

http://www.precisionmed.com/
http://www.aibl.csiro.au
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TABLE 1 Demographic characterization of cohorts

Cross-sectional study

Otago-ADCohort (NZ) CN AD p-value PMed Cohort (USA) CN MCI P-value

Number 49 44 Number 40 36

Age (mean± SD) 74.0± 5.9 75.5± 8.3 0.332 Age (mean± SD) 71.5± 3.9 73.2± 5.0 0.109

Sex (F: M) (25: 24) (23: 21) 0.905 Sex (F: M) (25: 24) (18: 18) 1

MMSE (mean± SD) 28.7± 1.1 19.0± 6.2 <0.0001 MMSE (mean± SD) 29.6± 0.7 24.9± 1.4 <0.0001

APOE ε4− : APOE ε4+ (%) 73: 27 40: 60 0.003 APOEe4 -: APOEe4+ (%) n/a n/a

AIBL cohort (Australia) CN CNAβ+ p-value MCI p-value AD p-value

Number 20 21 38 21

Age (mean± SD) 74.7± 6.4 74.3± 5.7 0.851 75.8± 6.2 0.448 75.9± 7.8 0.616

Sex (F: M) (10: 10) (11: 10) 0.883 (17: 21) 0.711 (10: 11) 0.883

MMSE (mean± SD) 29.3± 0.9 28.6± 1.3 0.989 26.4± 3.2 <0.0001 19.5± 6.2 <0.0001

Image.PET.Centiloid

(mean± SD)

-0.5± 5.9 70.0± 29.8 <0.0001 83.8± 33.2 <0.0001 102.2± 23.1 <0.0001

APOE ε4− : APOE ε4+ (%) 80: 20 33: 67 <0.0001 32: 68 <0.0001 29: 71 <0.0001

Longitudinal study

AIBL Converter cohort

(Aus) CNAβ+ toMCI MCI to AD

Number 21 18

Age (mean± SD) (74.3± 5.7): (77.9± 5.5) (74.7± 7.1): (77.6± 6.9)

Sex (F: M) (11: 10) (8: 10)

MMSE (mean± SD) (28.6± 1.3): (26.4± 1.5) (26.3± 3.1): (23.3± 3.4)

*For full details refer Supplementary Table x.

Abbreviations: AD,Alzheimer’s disease; Aβ−, cognitively normal amyloid negative; CN-Aβ+, cognitively normal amyloid positive; F, female;M,male;MCI,mild

cognitive impairment; MMSE, Mini-Mental State Examination, APOE ε4, apolipoprotein E ε4 variant; P < .05; Participants: CN, cognitively normal control; P-
value: Student t-test, compared to CN.

expressed within at least one group (see Table S3 for fold change; FC).

A flow chart summarizing our study is presented in Figure S1.

This mode of analysis not only identified microRNA previously

related to MCI or AD (eg, miR-27a-3p, miR-29c-3p, miR-132-5p,

miR-142-3p, miR-195-5p, miR-885-3p24), but also showed consider-

able similarities in microRNA levels in like-cohorts and variation with

disease progression. Within the AD cohorts, 75% appeared to be

altered in the same direction (59% up; 16% down). It appears that

the microRNA that were not validated between the AD cohorts were

largely heterogeneous in theMCI group aswell. Indeed, theMCI group

overall showed greater heterogeneity, with only 50% of microRNA

being altered in the same direction (39% up; 9% down). Of interest, of

the microRNA consistently upregulated in the MCI group, 62% were

also upregulated in the CN-Aβ+ group, and 75% of the microRNA reg-

ulated in the CN-Aβ+ group were also consistently regulated in the

AIBL-MCI group, giving weight to the conclusion that these microRNA

are altered early in the progression of AD.

To interrogate these findings more rigorously, we pooled the data

between like-cohorts by meta-analysis. This produced a weighted fold

change (pooled estimated effect size) and 95% confidence intervals for

each of the 32 microRNA. Assuming that there would be substantial

heterogeneity within the MCI group, we next filtered the data by sig-

nificant heterogeneity in the AD group (Log-rank; Qep test, I2 statis-

tics). This resulted in a set of 16 putative biomarker microRNA (Table

S4). These microRNA are dynamically expressed across the CN-Aβ+,
MCI, or AD groups relative to CN groups (Figure 2A). For example,

three microRNA (miR-27a-3p, miR-27b-3p, miR-324-5p) were down-

regulated in the AD and upregulated in the CN-Aβ+ group. By con-

trast, sixmicroRNAwere upregulated inAD (miR-122-5p,miR-132-3p,

miR-193b-3p, miR-320a-3p, miR-365-3p, and miR-885-5p) and two of

theseweredownregulated in theCN-Aβ+ group (miR-122-5pandmiR-

885-5p).OnlymiR-195-5pandmiR-335-5p showedconsistent upregu-

lation in all three disease stages but showed substantial heterogeneity

in the CN-Aβ+ group. The Venn diagram (Figure 2B) summarizes the

association of specific microRNA and disease stage, with miR-27b-3p

and miR-885-5p significantly, yet dynamically, regulated in all disease

groups. Thus, drawing on data from three independent cohorts, these

analyses confirm that specific microRNA are dynamically expressed

across the CN-Aβ+, MCI, or AD groups relative to CN groups.

To prioritize candidate microRNA biomarkers from this 16-

microRNA set, we ranked the importance of the individual microRNA

using a statistical consensus approach.25,26 This involved combining

the output of the differential expression analysis (P-value), the distri-

bution of normalized Ct values (log-rank P-value), and the ability of



GUÉVREMONT ET AL. 5 of 13

F IGURE 1 Heatmap showingmicroRNA expression profiles in cognitively normal amyloid positive (CN-Aβ+), mild cognitive impairment
(MCI), and Alzheimer’d disease (AD) cross-sectional cohorts. A statistically significant expression of microRNAwas identified in each cohort using
empirical-Bayesmoderated t-tests (*; P< .05), based on log2mean-fold changes relative to CN. ThemicroRNA that were differentially expressed
in at least one cohort are presented in the heat map as green/upregulated or red/downregulated. Each column represents a different disease stage
or cohort (number of participants in parenthesis) and each row represents a single microRNA. Data were processed using GraphPad Prism v8.

the microRNA to predict membership of the disease groupings (AUC).

The prioritized list of the putative biomarkers for each disease stage

obtained is shown in Figure 3 (and Table S5). In the AD group, the top

rankedmicroRNA had the highest fold change (Table S3); however, this

was not true for the CN-Aβ+ or MCI groups, thus supporting the use

of this consensus approach. Next we determined the ability of com-

binations of the top-ranked microRNA to predict membership of the

disease groups by ROC analysis. To avoid over-fitting the model, the

number ofmicroRNAwere constrained to complywith the recommen-

dation of Peduzzi et al. (1996).27 Derived AUCs were CN-Aβ+: 0.857
(miR-29c-3p and miR-335-5p); MCI: 0.823 (miR-142-3p, miR-324-5p,

miR-195b-5p,miR-148a-3p); andAD: 0.817 (miR-27a-3p,miR-27b-3p,

miR-122-5p, miR-193b-3p, miR-324-5p and miR-885-5p). This analy-

sis suggests that unique microRNA biomarker signatures reflect each

disease stage andmay have potential diagnostic utility.

3.2 MicroRNA expression: longitudinal analysis

To further explore theassociationof our candidatemicroRNAbiomark-

ers with disease progression, we extracted a subgroup of longitudi-

nal samples from the AIBL cohort comprising n = 21 individuals who

donated samples when CN-Aβ+ as well as when classified as MCI and

n = 18 individuals who donated samples when MCI as well as when



6 of 13 GUÉVREMONT ET AL.

(A)

(B)

F IGURE 2 Forest plots showing the weighted fold-change of 16microRNA highlighted followingmeta-analysis as potential biomarkers in the
CN-Aβ+, MCI, and AD cross-sectional cohorts. (A) The linear mixed-effects model included CN-Aβ+ (n= 21), and pooled results for theMCI
(n= 74) and AD (n= 63) cohorts. Observed outcomes for each disease stage are represented with a diamond (CN-Aβ+= gold, MCI= orange,
AD= crimson). The width of the diamond reflects the precision of the estimate (95%CI); the weights correspond to the inverse standard
deviations of the effect size estimates from the studies; the position on the x-axis represents themeasure estimate, with the vertical line indicating
“no change” in microRNA expression. A positive effect size represents upregulation and a negative effect size represents downregulation. Data are
relative to CN groups. Summary estimates are provided in Table S4. (B) Venn showing the association of the 16microRNA retained after the
meta-analyses with disease stage.
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(A)

(B)

F IGURE 3 Consensus ranking of microRNA and diagnostic value of disease-stage–specific putative biomarker signatures. Each of the 16
microRNA identified in themeta-analysis were ranked using three independent criteria. The three rankings per microRNAwere then summed to
provide a final rank. Lower total rank sumswere given the highest ranking. The three ranking criteria usedwere (1) differential expression (P-value;
refer Table S3), (2) distribution of normalized Ct values (log-rank tests; P-values; refer Table S4), and (3) predictive power (AUC from logistic
regression). The signature and results of each ROC analysis are shown in (A). The diagnostic ability of each derived signature was assessed by
computing the AUC value of the ROC curve (logistic regression with normalized Ct values), compared to the CN group (B).

classified as AD (Table 1; Figure S1). We assessed the trends in expres-

sion of our candidate biomarkers with the progression of disease using

a generalized estimating equation (or GEE) (Figure 4; Table S6), to

account for the longitudinal nature of the samples and the resulting

lack of independence of the data sets. This analysis confirmed dynamic

regulation of this group of microRNA within the individuals in this

longitudinal cohort. Eight microRNA were shown to be significantly

alter in the transition from CN-Aβ+ toMCI (up: miR-27a-3p, miR-27b-

3p, miR-122-5p; down: miR-29c-3p, miR-142-3p, miR-195-5p, miR-

324-5p, miR-335-5p), and four microRNA were shown to be signifi-

cantly downregulated in the transition from MCI to AD. This group

includedmiR-27a-3p,miR-27b-3p, whichwere both upregulated in the

CN-Aβ+ to MCI transition, and miR-195-5p, miR-324-5p, which were

both downregulated in the MCI to AD transition. These results rein-

force that changes in microRNA levels occur early in the disease and

can be dynamic. However, this also shows that particular microRNA,

such as miR-195-5p, miR-324-5p, are consistently regulated through-

out the disease. In addition, these results show that the observed vari-

ation in microRNA levels (Figure 1,2) is not simply a result of varia-

tion in preanalytical processing and indeed reflects the progression of

disease.

To probe the diagnostic utility of the microRNA, we assessed the

ability of each to predict membership of the disease groups by ROC

analysis within this longitudinal cohort. Resulting AUCs ranged from

0.51 to 0.76 and were pronouncedly increased to 0.8 to 0.95 by inclu-

sion of APOE ε4 as a factor (Table S7). AUCs for each microRNA were

assessed singly in line with the Peduzzi constraints. miR-29c-3p and

miR-335-5p showed the equal strongest AUCs in the CN-Aβ+ group,

whereas, miR-142-3p, miR-148a-3p, and miR-27b-3p were strongest

in the MCI group and miR-27a-3p showed the strongest in the AD

group. Furthermore, we found using Pearson correlations that Aβ load
(centiloid values; Table 1) in the AD group was significantly correlated

withmiR-27a-3p (r=0.466;P= .002),miR-27b-3p (r=0.391;P= .012),

and miR-324-5p (r = 0.406; P = .009). Together these analyses rein-

force that thesemicroRNAmay have prognostic utility.

3.3 Relationship between putative biomarker
microRNA and AD: Biological relevance

Using a bioinformatic approach, we probed the association of the can-

didate microRNA biomarkers with AD molecular pathology. Focusing

on the disease stage–related signatures (Figure 3), we identified val-

idated target mRNA and interpreted the resulting lists using the gene

set enrichment tool, Enrichr (Kuleshov et al., 2016). Targets for the

candidate CN-Aβ+, MCI, and AD biomarker microRNA groups were

significantly enriched in AD-relevant Wikipathways, including the

Phosphoinositide 3-kinase (PI3K-Akt) Pathway (Figure S2), the highest
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F IGURE 4 Box andwhisker plots showingmicroRNA expression in the AIBL longitudinal cohort. Expression of biomarker microRNA (Figure 3)
was studied in the AIBL longitudinal cohort (n= 21; CN-Aβ+ toMCI stage and n= 18MCI to AD stage; total MCI= 39). Y-axis shows the
normalized Ct values where high values= low expression. The lines within the boxes show themedianmicroRNA expression (normalized Ct
values) and the whiskers represent the 95%CI. Statistically significant differences were identified using generalized estimating equations (*
P< .05; ** P< .01; *** P< .001). The hashed line indicates themedian values in the AIBL CN group, and these data were not included in this
longitudinal analysis.

overrepresented pathway identified for each of the disease stages

and in combination (Table 2). Pathway analysis of all microRNA tar-

gets combined additionally identified Neurotrophin, Mitogen-activated

protein kinase (MAPK), and mechanistic target of rapamycin (mTOR) sig-

naling. Neurotrophin signaling was also highlighted in pathway analysis

of the microRNA correlated with centiloid values, alongside Insulin

Resistance and Long-term potentiation. Alongside the observations that

the candidate biomarker microRNA have been shown previously to be

altered in either AD plasma and/or post-mortem tissue (Table S8), this

analysis reinforces the connection between the candidate microRNA

biomarkers and the pathology underlying the progressive stages of AD.

4 DISCUSSION

Small non-codingRNA, in particularmicroRNA, are a central focus both

as biomarkers of neurodegenerative diseases and novel therapeutic

agents. To date there is no agreed blood biomarker for AD, despite
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TABLE 2 Candidate biomarker microRNA target AD-relevant
pathways: (A) Pathways targeted by CN-Aβ+, MCI, and AD-related
microRNA (refer Figure 3); (B) combined candidate biomarker
microRNA and (C) those correlated with centiloid values (amyloidosis)

A) Pathways enriched at specific disease stages

CN-Aβ+

1 PI3K-Akt signaling pathway

2 Focal adhesion

3 Focal adhesion-PI3K-Akt-mTOR-signaling pathway

4 Breast cancer pathway

5 Signaling pathways in glioblastoma

6 miRNA targets in ECM andmembrane receptors

7 Inflammatory response pathway

8 Metastatic brain tumor

9 Overview of nanoparticle effects

10 Somatroph and its relationship to dietary restriction and

aging

MCI

1 PI3K-Akt signaling pathway

2 DNA damage response

3 Pancreatic adenocarcinoma pathway

4 Leptin signaling pathway

5 Focal adhesion

6 Integrated breast cancer pathway

7 Breast cancer pathway

8 VEGFA-VEGFR2 signaling pathway

9 Colorectal cancer

10 AGE/RAGE pathway

AD

1 PI3K-Akt signaling pathway

2 Pathways in cancer

3 Colorectal cancer

4 FoxO signaling pathway

5 AGE-RAGE signaling pathway in diabetic complications

6 Human cytomegalovirus infection

7 Proteoglycans in cancer

8 Kaposi sarcoma-associated herpesvirus infection

9 Hepatitis B

10 Hepatocellular carcinoma

B) Pathways enriched by combined candidatemicroRNA biomarkers

Combined Signature

1 Lysine degradation

2 MAPK signaling pathway

3 FoxO signaling pathway

4 mTOR signaling pathway

5 Long-term potentiation

6 HIF-1 signaling pathway

7 Insulin resistance

(Continues)

TABLE 2 (Continued)

8 Oocytemeiosis

9 Neurotrophin signaling pathway

10 Progesterone-mediated oocytematuration

C) Pathways enriched by centiloid-correlatedmicroRNA

Centiloid

1 PI3K-Akt signaling pathway

2 Focal adhesion

3 Neurotrophin signaling pathway

4 Ras signaling pathway

5 Human papillomavirus infection

6 FoxO signaling pathway

7 Pathways in cancer

8 MAPK signaling pathway

9 T cell receptor signaling pathway

10 mTOR signaling pathway

more than 30 studies proposing 100 candidate microRNA.17 This fail-

ure in replication may be due to inconsistent blood-fraction methods

and variation in microRNA analysis.19 Using an innovative statistical

consensus approach and holding the blood fraction, technical platform,

and mode of analysis constant, we have determined a unique set of

plasmamicroRNA associatedwith AD, which rise above innate hetero-

geneities found within populations. It is notable that we have shown

for the first time that plasmamicroRNA levels are altered before symp-

tomsmanifest and vary dynamicallywith disease progression. The indi-

vidual microRNA that we have highlighted have all been associated

previously with AD, and using bioinformatics, we have shown that our

candidate microRNA converge on PI3K-Akt signalling, a pathway with

a well-established relationship with the molecular pathology underly-

ing AD, including neurofibrillary tangles and microglial and astroglial

inflammasome regulation.28 Thus themicroRNA compiled in our study

are likely a valid set of biomarkers reflecting the progression of AD.

Ourwork particularly highlights elevatedmiR-29c-3p andmiR-335-

5p levels as novel biomarkers of early amyloidosis. Levels of both

microRNA have been shown previously to be altered in AD biofluids

(refer Table S8), and miR-29c-3p and BACE1 as well as miR-335-5p

andAβ levels are inversely correlated,29,30,31 suggesting that they both
contribute directly to cerebral amyloid levels. Furthermore, both miR-

29c-3p and miR-335-5p have been shown to enhance memory per-

formance in the Morris water maze.31,32 miR-335-5p is a neuronally

enriched microRNA and a proposed key regulator of AD-related gene

networks.33 Our bioinformatic analysis showed that together these

microRNAmap to Inflammatory Response andGlioblastoma aswell PI3K

and mTOR pathways. Indeed, miR-29c-3p is known to protect against

inflammasome activation inmicroglia,34 suggesting a role in neuropro-

tection.Our finding thatmiR-335-5p is upregulated in plasma supports

the findings of Cheng et al., who showed this microRNA was upregu-

lated in extracellular vesicles isolated from plasma from the AIBL-AD
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cohort.35 Of interest, two previous studies have shown that miR-335-

5p is downregulated in post-mortem brain, thus suggesting that AD is

associated with an increase in the export of miR-335-5p into extracel-

lular vesicles.

Within our biomarker signature we found that expression of most

microRNA varied across the progression of the disease. However, our

cross-sectional study showed that miR-195-5p and miR-335-5p were

consistently elevated, but it is notable that we found that their lev-

els were reducing with the progression of the disease (while remain-

ing above control levels), in the AIBL longitudinal sub-group. Upregu-

lation of miR-195-5p may also be part of a neuroprotective response,

as this microRNA inhibits the expression of both BACE1 and APP36

and apoptosis.37 Indeed, overexpression of miR-195-5p has recently

been shown to alleviate cognitive deficits and reduce Aβ load and

tau hyperphosphorylation in APOE ε4+/+ mice.38 Furthermore, knock

down of miR-195-5p has been shown to decrease dendritic length and

number39 and the synaptically locatedmolecule, neurogranin, is a vali-

dated target ofmiR-195-5p, the levels ofwhich are reduced inADpost-

mortem tissue and neural-derived exosomes.40

Concomitant with change in the composition of the disease stage–

related biomarker microRNA, we observed additional pathways map-

ping to the MCI and AD groups. In particular the MCI analysis

identified the AGE/RAGE Pathway and VEGFA-VEGFR2 signaling Path-

way. This is interesting because both pathways are also linked to

neuroprotection.41 Indeed, inhibition of advanced glycation end prod-

ucts and its receptor has beenmooted as a potential AD therapy,42 and

miR-142, ourmost highly rankedmicroRNA in theMCI group and high-

lighted by Kumar et al., 2013,43 targets the RAGE pathway.44 Because

miR-142-3pdirectly targets inflammatorypathways,45 this leads to the

suggestion that de-repression of miR-142-3p targets may be associ-

ated initially with curtailing a neuroinflammatory response. Although

there is much debate over the role of neuroinflammation in AD, it is

intriguing that recently a genetic variation in the promoter of miR-142

(rs2526377:A>G), which results in reduced expression, was shown to

be significantly associated with a reduced risk of AD.46 Thus further

investigations into the role of miR-142 in AD are warranted.

The microRNA correlated with the amyloid load (centiloid values)

in individuals with advanced AD mapped to the HIF-1 Signaling path-

way. This pathway is interlinked with VEGF, MAPK, and PI3K signal-

ing and promotes amyloidogenic processing of APP.47 The plasticity-

related pathways Neurotrophin Signaling and Long-term potentiation

were also mapped to this group. miR-27a-3p, miR-27b-3p, and miR-

324-5p have been shown previously to be altered in blood or post-

mortem brain tissue (Table S8). Indeed downregulation of miR-324-5p

hasbeenmooted to contribute to synaptic loss during aging,48 whereas

miR-27b-3p is considered a proinflammatory microRNA.49,50 Of inter-

est, miR-27a-3p targets SERPINA3, which encodes a serine protease

inhibitor associated with the APOE ε4 genotype, inflammation, and

amyloid polymerization.51 Together these bioinformatic analyses high-

light a strong relationshipbetweenour candidatebiomarkermicroRNA

inflammation and amyloidosis, lending weight to the conclusion that

theseplasmabiomarkers reflect thediseaseprocessesoccurringwithin

the brain.

In summary, the plasma microRNA highlighted by our studies,

derived by using a statistical consensus approach using multiple

cohorts, vary with disease progression in the AIBL longitudinal study

and reflect known steps underlying AD neuropathology; therefore,

may be useful in disease risk prediction in clinical practice. Our

early signature likely predicts underlying pathology before individuals

become symptomatic. These data are unique and need to be strength-

ened by further in-depth analysis of pre-symptomatic individuals,52

validation in other cohorts, and by analysis of neuronal exosome-

derived microRNA in plasma or CSF.53 It will also be important to

understand the influence of other endophenotypes such as APOE ε4
status on the plasma levels of these microRNA54 as well as sex and

ethnicity of the study cohorts.55 Furthermore, it will be important to

explore the specificity of the biomarker by testingwhether the same or

different microRNA are useful in the early diagnosis of other neurode-

generativediseases. Thesedatawill behighly valuable for improvedcri-

teria of inclusion into clinical trials where currently available cognitive

behavioral anddrug therapies canbe further tested56,57,58 and thus the

onset of disease can be delayed. Overall, we have shown that biomark-

ers are dynamic, altering with disease progression, thus emphasizing

the need for longitudinal biomarker testing. The transition to our later

signaturemay further identify at-risk individuals and be useful in prior-

itizing individuals for more highly specialized testing.
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