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Abstract
Despite recent successes in the control of dental caries, the mechanism of caries develop-

ment remains unclear. To investigate the causes of dental decay, especially in early child-

hood caries, the supragingival microflora composition of 20 twins with discordant caries

phenotypes were analyzed using high-throughput pyrosequencing. In addition, the parents

completed a lifestyle questionnaire. A total of 228,789 sequencing reads revealed 10 phyla,

84 genera, and 155 species of microflora, the relative abundances of these strains varied

dramatically among the children, Comparative analysis between groups revealed that Veil-
lonella, Corynebacterium and Actinomyces were presumed to be caries-related genera,

Fusobacterium, Kingella and Leptotrichia were presumed to be healthy-related genus, yet

this six genera were not statistically significant (P>0.05). Moreover, a cluster analysis

revealed that the microbial composition of samples in the same group was often dissimilar

but that the microbial composition observed in twins was usually similar. Although the

genetic and environmental factors that strongly influence the microbial composition of den-

tal caries remains unknown, we speculate that genetic factors primarily influence the indivi-

dual's susceptibility to dental caries and that environmental factors primarily regulate the

microbial composition of the dental plaque and the progression to caries. By using improved

twins models and increased sample sizes, our study can be extended to analyze the spe-

cific genetic and environmental factors that affect the development of caries.

Introduction
There are many methods for the prevention and treatment of caries, especially early childhood
caries (ECC). Studies have shown how to alleviate the pain of children's dental caries[1] and
have revealed its impact on the development of the permanent teeth. However, this complex,
chronic, multi-factorial disease[2] is still common and affects nearly two-thirds (66%) of chil-
dren in China[3].

Researchers continue to explore the etiology and pathogenesis of caries. In the 1960s, dental
decay was suggested to be the result of the interaction of four major factors: biofilm, diet, host
and time[4]. Since then, considerable attention has been given to the genetic and non-genetic
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factors that influence caries development, such as environmental factors, the individual’s
health, behavioral habits, lifestyle, dietary composition, and access to dental care[5]. However,
due to the complex nature of dental decay and to the limitations in the research approaches,
the exact mechanisms of caries development remain unclear.

With recent advances in molecular biology, researchers are now elucidating the structure
and function of the oral microbial community and are exploring the relationships between
microbial diversity and oral health and disease in different populations. Such in-depth studies
of microbiota can pave the way for a greater understanding of the etiology of disease. In recent
years, pyrosequencing and phylogenetic analysis of the 16S rRNA gene have proved to be more
sensitive and discriminatory compared with traditional PCR cloning because they avoid the
biases that are inherent in cloning methods[6, 7]. 16S rRNA pyrosequencing has been used to
quantitate the relative abundances of bacterial components and the structural variations of
communities[8–10]. Keijser et al[11] examined the bacterial diversity in the healthy adult oral
cavity using pyrosequencing and found that the bacterial phylotypes were more complex than
previously reported.

Moreover, due to the particular genetics of twins[12], various twins models were used to
explore how genetic and environment factors influence several oral cavity and physical dis-
eases. Dicksved[13] sampled the fecal microbiota from both monozygotic twin pairs with
Crohn’s disease (discordant and concordant) and healthy twin pairs to study the effects of
genetic and environmental factors on the microbial composition of the gut. Turnbaugh[14]
attempted to analyze how genetic, environment and adiposity factors influence the gut micro-
biome by characterizing the fecal microbiota of monozygotic (MZ) and dizygotic (DZ) twin
pairs who were concordant for obesity or leanness as well as their mothers. Corby[15] uncov-
ered several microbial risk indicators of ECC by studying the samples of 204 twin pairs. How-
ever, pyrosequencing analysis of dental caries using twin pairs with discordant phenotypes was
rarely been reported.

Therefore, to explore ECC further, we used pyrosequencing to determine the composition
of the supragingival plaque microbiota in 10 pairs of twin children with discordant caries phe-
notypes. We then used a questionnaire survey to speculate on the factors that resulted in the
different caries phenotypes in the twins.

Materials and Method

Ethics Statement
Informed written consent was obtained from the parents of all participants prior to enrollment
in this study. The study design, protocol, and informed consent form were approved by the
Ethics Committee at the School & Hospital of Stomatology, Wuhan University (Wuhan,
China).

Subject Selection
The twins, aged 3–6 years, came from four different kindergartens in Wuhan, China. In each
twin pair, only one child had caries and all individuals were primary dentition. The definition
and diagnosis of dental caries were based on the criteria of the International Caries Detection
and Assessment System (ICDAS, 2005)[16]. The “Caries” group subjects had more than 3 cavi-
tated caries teeth which includes at least one carious primary molar(codes 5 or 6 based on the
classification of the carious status of the ICDAS), whereas the “Healthy” group subjects did not
have caries in any teeth (code 0 based on the classification of the carious of the ICDAS). All
subjects were examined clinically by a single calibrated examiner before sampling, and the sam-
ples were subsequently divided into three groups: Hhc1 group (H1: intact enamel surface of
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healthy individuals, n = 10); Hhc2 group (H2: intact enamel surface of caries individuals,
n = 10); and Chc2 group (C2: decayed tooth surface of caries individuals, n = 10).

The inclusion criteria were that the children were medically healthy, had no current bacte-
rial or viral infections, had not used antibiotics within the preceding three months, had more
than 18 teeth present, had no enamel or dentin hypoplasia detectable visually, and had not
received any prior treatment (including fluoride) for dental caries. In addition, the parents
filled out a questionnaire mainly covers the following four aspects, 1) basic personal informa-
tion.(includes the zygotic of twins) 2) daily habits. caregivers, life habits, oral health awareness
and oral status of parents and caregivers. 3) oral health behavior. feeding within three months,
brushing start time, brushing frequency and time of day, brushing assistance. 4) eating habits.
dietary preferences, poor eating habits, mainly concern on caries-related dietary factors.

Sample Collection and Preparation
Samples were collected in the morning, and the children were asked not to brush their teeth
before the exam. The plaque samples of the non-caries children were collected from at least
three healthy surfaces, including anterior and posterior teeth, and were then pooled. The pla-
que samples of the caries-active subjects were collected separately from two types of surfaces:
the surface of intact enamel (site 1) and the surface of a deep caries lesion (site 2). All plaques
were sampled 2 h after breakfast and were obtained after rinsing by scraping the tooth surface
with a sterile curette. The curette was immersed in a sterile 1.5 ml Eppendorf tube that con-
tained 1 ml of a saline solution that had been UV-irradiated to eliminate DNA contamination.
The samples were transported on ice to the laboratory and stored at −80°C unt0il used.

Taxonomic Assignment of Individual Sequencing Reads
The detail of total genomic DNA extraction and amplification of 16S rRNA genes are described
in the Supporting Information(S1 File).

Sequencing Data and Statistical Analysis
We designed three different grouping ways and conducted comparative analysis respectively.
1) Grouped according to the health condition of the teeth (H1, H2, C2). The comparative anal-
ysis within and among the groups were been conducted. 2) Grouped according to the twin
pairs(a total of 10 groups). We only conducted comparative analysis between samples within
the group. 3) Grouped according to the kindergarten(K1, K2, K3, K4). The comparative analy-
sis within and among the kindergartens were all been conducted. The details of sequencing
data and statistical analysis are described in the Supporting Information(S1 File).

Accession Numbers
All sequences and associated metadata were deposited into the NCBI Sequence Read Archive
under the accession number SRP062988.

Results

Subjects and Samples
A total of 30 supragingival samples (T1-T30) were sampled from 10 pairs of twins aged 3–6
years (10 males and 10 females, Table 1). Samples T1-T6, T7-T12, T13-T21, and T22-T30 were
from different kindergartens (K1, K2, K3, K4). In addition, the parents of each pair of twins
filled out a lifestyle questionnaire.
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Pyrosequencing Data
Pyrosequencing of the 16S rRNA gene amplicons yielded 315,005 high-quality reads, of which
228,789 reads (72.6%) passed quality control. There were 152,025 unique sequences, and they
represented all phylotypes. The average length of the sequences was 397 bp, excluding the
primers. The number of sequences per sample ranged from 2553 to 15018 (mean read = 7626)
(Table 1).

The operational taxonomical unit (OTU) diversity was assessed using the program Mothur.
Overall, 1,967 OTUs were detected, with each sample averaging 656 OTUs. S1 Fig shows the

Table 1. Sample Information and Pyrosequencing Data.

Subject/Sample
name

Group Sex Raw reads number Effective reads number OTU number

K1-1a T1 Hhc1 F 10687 7904 142

K1-1b T2 Hhc2 M 13474 9110 146

T3 Chc2 7868 5921 127

K1-2a T4 Hhc1 M 9089 6653 170

K1-2b T5 Hhc2 F 9271 6785 160

T6 Chc2 14070 10656 133

K2-1a T7 Hhc1 M 17059 12919 238

K2-1b T8 Hhc2 F 20196 15018 261

T9 Chc2 17942 13373 242

K2-2a T10 Hhc1 M 14302 10806 182

K2-2b T11 Hhc2 F 12801 9225 200

T12 Chc2 13153 9486 202

K3-1a T13 Hhc1 F 10145 7609 161

K3-1b T14 Hhc2 F 9059 6746 122

T15 Chc2 16852 12378 210

K3-2a T16 Hhc1 M 12109 8887 159

K3-2b T17 Hhc2 M 13213 9824 162

T18 Chc2 12254 9058 166

K3-3a T19 Hhc1 F 14595 10844 198

K3-3b T20 Hhc2 F 11735 8708 173

T21 Chc2 14706 10656 224

K4-1a T22 Hhc1 M 4482 2851 100

K4-1b T23 Hhc2 M 3923 2553 86

T24 Chc2 4030 2709 67

K4-2a T25 Hhc1 F 4497 2784 81

K4-2b T26 Hhc2 F 5198 3486 75

T27 Chc2 5870 3737 71

K4-3a T28 Hhc1 M 4262 2891 69

K4-3b T29 Hhc2 M 3890 2597 71

T30 Chc2 4273 2615 68

K1, K2, K3, K4 denote four different kindergartens;

-n(n = 1, 2, 3) represent one of the twin pairs in this kindergarten;

M = male, F = female.
a The healthy individuals
b The caries individuals

doi:10.1371/journal.pone.0141310.t001
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degrees of OTU sharing and non-sharing among the three groups. After the duplicate
sequences were removed, the three groups shared 169 OTUs. Mothur identified a higher num-
ber of OTUs for the C2 group (mean OTU = 881) compared with the H1 and H2 groups
(mean OTU = 820 and 804, respectively), but the comparisons of the alpha diversity index (S2
Fig) indicated that the differences among the three groups were insignificant (P>0.05. The rar-
efaction curves showed the curves did not reach the saturation level, which suggests that the
microbial richness of the supragingival plaque was not completely revealed at the current
sequencing depth.

Fig 1 shows the phylogenetic tree at the level of genus. The overall abundance and magni-
tude of the differences among the three groups are indicated by bars.

Composition and Distribution of Supragingival Microbiota
In a BLAST search against the HOMD, a total of 10 phyla, 20 classes, 33 orders, 55 families, 84
genera, and 155 species were detected. The proportions of the predominant taxa at the phylum,
genus, and species levels were compared among the groups (Fig 2). The classification of
sequences by phylum is summarized in Fig 2A. The vast majority of sequences belonged to
these five phyla: Proteobacteria (29.8%), Bacteroidetes (19.5%), Firmicutes (19.5%), Fusobac-
teria (16.5%), and Actinobacteria (14.4%). In group C2, Firmicutes and Actinobacteria were
found at relatively high abundance (P>0.05), whereas Fusobacteria and Bacteroidetes were
found less frequently. Among the five common phyla, only Bacteroidetes had a significant dif-
ference between the caries-free plaques (H1 and H2 group) and caries-active plaques (C2
group) (P = 0.0370 and P = 0.0220, respectively). The TM7 phylum was found only in groups
H1 and H2, the DSR1 phylum was found only in group H2, and the Deinococcus-Thermus
phylum was found only in group C2.

At the genus level (Fig 2B), a total of 84 genera were represented, with 50 genera shared by
the three groups. Approximately 87% of the sequences came from twelve genera: Neisseria,
Fusobacterium, Veillonella, Corynebacterium, Capnocytophaga, Prevotella, Kingella, Leptotri-
chia, Streptococcus, Actinomyces, Porphyromonas, and Selenomonas. In comparing these gen-
era, we found that Veillonella (48.6% vs 26%), Corynebacterium (39.8% vs 21%), and
Actinomyces (37.6% vs 22.9%) were found more frequently in group C2 than in group H1. In
contrast, Fusobacterium (29.3% vs 39.1%), Kingella (26.1% vs 45.7%), and Leptotrichia (25.5%
vs 40.3%) were found more frequently in group H1 than in group C2. However, the differences
in representation of the above six genera were not statistically significant (P>0.05). The genera
that did exhibit significant differences in representation between groups C2 and H1 were Lac-
tobacillus (P = 0.0380), Propionibacterium (P = 0.0010), Scardovia (P = 0.0321),Moraxella
(P = 0.0010), Alysiella (P = 0.0010), and TM7-genus-incertae-sedis (P = 0.0028), although these
were found infrequently (0.004–0.21%). Approximately 10% of all sequences could not be
identified at the genus level.

At the species level (Fig 2C), thirteen species constituted 73.4% of the oral microbiota, and 5
species (Neisseria;Other, Fusobacterium_canifelinum, Veillonella_dispar, Corynebacterium_-
matruchotii, and Kingella_denitrificans) accounted for 49.3% of the total. An unclassified Neis-
seria species (12.61%-34.85%) was the most abundant strain in many of the samples. In
addition, we found a relatively high level of Veillonella_dispar (13.2%), Corynebacterium_ma-
truchotii (7.2%), and Selenomonas_noxia (3.2%) in group C2 as well as Fusobacterium_canifeli-
num (13.2%) and Kingella_denitrificans (7.7%) in group H1. However, the differences in
representation of these species among the groups were not statistically significant; only low-
abundance species had significant differences in representation. Furthermore, the abundance
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Fig 1. Circular maximum likelihood phylogenetic tree at level of genus. The inner band shows genera colored by their corresponding phylum (see key
for taxa with multiple members), the outer band shows overall relative abundance of each genus in different groups. The tree was constructed in iTOL
(Letunic and Bork, 2007).

doi:10.1371/journal.pone.0141310.g001
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of most major genera and species in group H2 was similar to their abundance in groups H1 or
C2 (Fig 2B and 2C).

Comparative analysis of the differences within and between the twins
According to a cluster analysis (Fig 3), samples that are clustered in a sub-branch have similar
plaque microbiota compositions. In the present study, the samples of a group generally did not
cluster in one branch: the samples of group H2 clustered with samples of group H1 or group
C2 (in addition to T5, T14, T20). A principal component analysis(PCoA) (Fig 4) showed a sim-
ilar tendency in the distances based on genus level.

Fig 2. The barplot graph of samplesmicroorganisms and the predominant bacteria of three groups. (A, B, C) Abundance and prevalence of bacteria
at the phylum, genus, and species level in the 30 plaque samples. (a, b, c) Mean levels of the predominant bacteria in groups H1, H2 and C2 at the phylum,
genus, and species level.

doi:10.1371/journal.pone.0141310.g002
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In addition, the results of the questionnaire showed that most of the twin pairs share the
similar daily habits, oral health habits and eating habits. Only a few twins(T4-T6, T13-T15,
T19-T21) have some differences in dietary preferences. When the sequencing data were com-
bined with the questionnaire data (S1 Table), we found that the clustered samples, (Fig 3) such
as T1-T6, T7-T12, T13- T21, and T22-T30 (except for some special cases), coincides with the 4
different kindergartens. This finding indicates that twin children living in the same environ-
ment have relatively similar plaque microflora. The plaque composition of different twin pairs
in the same kindergarten had some cross-similarity, which indicates that that even with differ-
ent genetic backgrounds, the environment affects the composition of plaque to a certain extent.
In addition, the three samples of each twin pair usually clustered together as T1-T3, T7-T9,
T10-T12, T16-T18, T22-T24, T25-T27, and T28-T30. This likely occurred because the twins
have at least 50% identical genes and share similar living conditions, oral health behavior and
daily habits. When the two individuals of a twin pair differed in their diet preferences (caries-
related factors: eat sweets or snacks, drink carbonated beverages), their samples were farther
apart, such as T4-T6, T13-T15, and T19-T21. This finding indicates that caries-related dietary
differences also influence plaque composition.

Moreover, the same type of samples in different kindergartens and the different types of
samples in the same kindergarten were analyzed. The bacteria that exhibited significant differ-
ences in this analysis are shown in Fig 5. The comparison of group C2 among different kinder-
gartens was relatively prone to differences. In contrast, differences were rarely found when
comparing samples in the same kindergarten.

Fig 3. Weighted Unifrac clustering results of the samples. Samples having similar plaque microbiota compositions are usually clustered in a sub-branch.
The different colors denote different kindergartens.

doi:10.1371/journal.pone.0141310.g003
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Fig 4. Principal Component Analysis results on individual samples. Principal Component Analysis
(PCA) results on all individual samples at the level of OTUs clustering sequences at a 3% difference: A) the
plot of the PCA axis 1 (accounting for 30.26% of intersample variation) and the axis 2 (17.56% of intersample
variation); B) the plot of the PCA axis 1 and the axis 3 (13.93% of intersample variation). Blue dots—samples
(Square) from group H1, orange dots—samples(Triangle) from groupH2, red dots—samples(Round) from
group C2. Data were normalized to an equal number of reads per sample and log2 transformed.

doi:10.1371/journal.pone.0141310.g004
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Discussion
With the completion of the Human Genome Project and the recent advances in molecular biol-
ogy, innovative molecular applications of various twins models have the potential to advance
our understanding of the etiologies of complex diseases and disorders. Dental caries is a multi-
factorial, polygenetic, unintelligible oral disease with an unclear pathogenesis. Therefore, twins
with discordant caries phenotype were selected in this study to explore the etiology of dental
decay. However, after screening nearly 80 pairs of twins, only 10 pairs met our requirements,
and eight of those ten (80%) were dizygotic twins (the other two were unknown). This provides
further evidence that monozygotic twins have a more similar caries experience but that differ-
ent-sex dizygotic twins have the greatest variance[17]. Unfortunately, this selection greatly
reduced our sample size.

Because the mouth is in continuous contact with the external environment, the oral micro-
biome is extremely dynamic[18]. Among the oral microbiota, the supragingival plaque may
have the most impact on the incidence of dental caries in the micro-environment[19–20].
However, most previous studies on dental plaque only collected carious teeth plaque from car-
ies individuals [15, 21]. In our study, the intact enamel surface plaques of caries individuals
were also sampled. This may help us further comprehend the plaque microbiome community.

To effectively analyze plaque microbiota structure and function, different hypervariable
regions (V1-V9) should be selected carefully for accuracy and reliability. Claesson et al[22]
constructed a library of human fecal microbiota using the V3/V4 and V4/V5 regions because
these microbiota were predicted to provide the highest accuracies for phylogenetic assignment.
Therefore, in our study, the V3-V5 hypervariable regions were amplified and sequenced for
analysis (Escherichia coli positions 517F-907R).

Fig 5. Genera and species with significant differences in representation (P<0.05). A: Comparisons between different kindergartens. B: Comparisons
between different samples in the same group.

doi:10.1371/journal.pone.0141310.g005
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Studies[23] have shown that bacterial diversity decreases significantly with the aggravation
of caries; however, the differences in bacterial diversity among the three groups was not signifi-
cant in our study[24, 25]. This may be due to the subjects whom we chose. A study reported
that the number of shared species and the similarity of the plaque microbiota between twins
are great[26]. Thus, although the twins included in our study were discordant for caries, their
plaque compositions were similar. In this case, after increasing the sample size, the differences
in microbiota among the different groups would still be very small.

In our study, approximately 70% of the microbiota were represented by five phyla, twelve
genera and thirteen species. Wen et al[27] reported that these five major phyla have no signifi-
cant differences in representation among children. In another report[28], Firmicutes was
shown to be the prevailing phylum in supragingival plaques of severe ECC patients. Wen[29]
and Belda-Ferre[30] reported that Bacteroidetes was represented to a greater extent in caries-
active samples than in caries-free samples; however, in our study, Bacteroidetes (P<0.05) was
represented to a lesser extent in caries-active samples (group C2). This inconsistency might be
caused by the different primer sets that selected different hypervariable regions of the 16S
rRNA gene, by different degrees of caries of the subjects, or both. At the genus level, previous
studies have indicated that the cariogenic bacteria Streptococcus, Veillonella, Actinomyces, and
Leptotrichia accounted for a large proportion of the microbiota in caries subjects[31, 32]. Our
study showed that Leptotrichiamay be associated with healthy teeth[33]. In addition, Abiotro-
phia has been reported to account for a significant proportion of the microbiota on the healthy
enamel surface in both children and adults[9], but we did not detect this bacteria. At the species
level, more phylotypes were detected in our study than were found in previous studies[11].
However, most of the bacteria were represented by only 13 species. Though the relative abun-
dances of these major bacteria varied dramatically between samples, significant differences
were rarely detected, which may be have relation with our subjects.

Although each twin pair was discordant for the caries phenotype, a cluster analysis indicated
that the twins’ plaque compositions were similar. Furthermore, large differences in the repre-
sentation of several predominant phylotypes were detected in different kindergartens. In the
current study on dental caries, we thus speculate that phenotypic differences likely arose
because the quality and/or quantity of several specific cariogenic strains on the surface of
healthy teeth did not match the cariogenic conditions, although the plaque compositions of
caries-active and caries-free teeth were similar. Compared with the teeth of unrelated healthy
subjects, group H1/H2 may be more susceptible to caries. This finding indicates that an
increase or decrease of any one phylotype does not necessarily lead to the occurrence of dental
caries; the appropriate microbiological composition and the combined effects of the cariogenic
bacteria causes dental caries. This view is consistent with the ‘Ecological Plaque
Hypothesis’[34].

Evidence from animal models[35] and heritability estimates of different twins models[36]
indicates that a significant proportion of the factors that influence the incidence and severity of
caries is heritable, such as the structure of dental enamel[24], immunologic response to cario-
genic bacteria[37], sugar metabolism[38] and the saliva constituents[39], which in turn indi-
cates that elements of the host genome are significant risk factors in the etiology of dental
caries. In addition, these studies demonstrated that genetic factors significantly influence host
taste preferences[40], whereas environmental factors primarily influence microbial acid pro-
duction[41]. Unfortunately, our study did not yield definitive answers regarding the relative
influences of genetic and environmental factors on the development of dental caries. However,
the combination of our study results and those of recent studies in dental decay suggest that
genetic factors primarily influence an individual's susceptibility to dental caries but that envi-
ronmental factors primarily regulate the composition of the dental plaque and the progression
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to caries. More in-depth studies with larger groups sizes and more diverse samples are needed
to validate this hypothesis.

Studies on MZ twin pairs[26] who show different phenotypes for a particular trait or disease
provide a powerful approach for clarifying the roles of genetic and environmental influences
on normal features or susceptibility to diseases. However, it may be difficult to collect a suffi-
cient number of suitable samples. In the present study, because the data between the groups
were not significantly different, correlation analyses and model predictions would have been
unreliable[25, 42]. In future studies, we will select MZ twins with discordant phenotypes and
increase the group sizes to further elucidate the specific genetic and environmental factors that
affect the development and progression of caries.

Supporting Information
S1 Fig. Venn diagram of the number of OTUs that are shared unique among the groups
(Hhc1, Hhc2, Chc2). The interior of each large circle symbolically represents the number of
OTUs found in the group. The overlapping areas or intersections represent the number of
OTUs found in both (or all three) groups. The single-layer zone represents the number of
OTUs found only in that group.
(TIF)

S2 Fig. Comparison of phylotype coverage and diversity estimation at 3% dissimilarity
from the pyrosequencing analysis. P values of comparisons of three groups were shown in the
last table. The coverage percentage (Observed-species), richness estimators (Chao and ACE),
diversity indices (Shannon and Simpson) were calculated using the Mothur program.
(TIF)

S1 File. The appendix of “Pyrosequencing of Plaque Microflora In Twin Children with Dis-
cordant Caries Phenotypes.”
(DOC)

S1 Table. Summary of questionnaire.

1. Daily habits including caregivers, life habits, oral health awareness and oral status of parents
and caregivers.

2. Oral health habits including feeding within three months, brushing start time, brushing fre-
quency and time ofday, brushing assistance.

3. Eating habits including dietary preferences, poor eating habits, mainly concern on caries-
related dietary factors.
(DOC)
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