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Combined improved A* and greedy 
algorithm for path planning 
of multi‑objective mobile robot
Dan Xiang1,2, Hanxi Lin1, Jian Ouyang3* & Dan Huang4

With the development of artificial intelligence, path planning of Autonomous Mobile Robot (AMR) has 
been a research hotspot in recent years. This paper proposes the improved A* algorithm combined 
with the greedy algorithm for a multi-objective path planning strategy. Firstly, the evaluation function 
is improved to make the convergence of A* algorithm faster. Secondly, the unnecessary nodes of 
the A* algorithm are removed, meanwhile only the necessary inflection points are retained for path 
planning. Thirdly, the improved A* algorithm combined with the greedy algorithm is applied to multi-
objective point planning. Finally, path planning is performed for five target nodes in a warehouse 
environment to compare path lengths, turn angles and other parameters. The simulation results show 
that the proposed algorithm is smoother and the path length is reduced by about 5%. The results show 
that the proposed method can reduce a certain path length.

In recent years, warehouse storage1,2 has gradually developed in the direction of intelligence and systematization 
by the "Made in China 2025" strategy3 and the rapid development of the logistics industry.

Autonomous Mobile Robot(AMR) which plays an important role in the intelligent process4, is widely used in 
warehouses, hospitals, factories, and transportation industries. Path planning is one of the key technologies of 
automatic navigation and task scheduling for AMR. Therefore, how to make AMR plan the optimal path while 
reducing energy consumption and improving the efficiency of the whole storage system is a topic of research 
for many scholars.

The path planning of AMR is a constrained optimization problem. The algorithms include Genetic algorithm4, 
Probabilistic Roadmap5, Rapidly-exploring-random Tree3,6, Dijkstra algorithm7, A* algorithm8–10, Machine learn-
ing algorithm11–13, Ant Colony algorithm14, Particle Swarm Optimization15, Artificial potential field algorithm16,17 
and Breath First Search algorithm18, and so on.

Path planning algorithms explore collision-free paths between start point and target point based on map 
environment information19. Huang et al.20 introduced the competitive strategy in the standard particle swarm 
optimization algorithm to find the optimal solution. Li et al. 21 designed a multi-objective automated guided 
vehicles (AGVs) path planning algorithm based on an improved ant colony algorithm. The algorithm can effec-
tively ensure high safety and low energy consumption of AGVs in the logistics and storage environment. Yi et al.3 
used a random sampling method based on potential function to improve the RRT* algorithm. Also remove the 
redundant nodes to make the path follow smoothly. Xue et al.22 proposed a multi-objective method to solve the 
multi-objective programming problem.

According to the different characteristics of AMR algorithms, the algorithm can be divided into global path 
planning and local path planning23. In the global planning algorithm, A* algorithm is a heuristic global path 
planning algorithm and one of the most efficient direct search methods for finding the shortest path in a static 
environment. Many researchers have improved the A* algorithm, such as bidirectional A* algorithm24, A* algo-
rithm based on obstacle information25, and so on.

Most researchers have changed the convergence speed of A* algorithm by improving the evaluation function. 
Wang et al.10 proposes a path planning method for improving the A* algorithm by weighting the heuristic func-
tion to improve the computational efficiency. Shang et al.26 proposed a guideline generated by globally planning 
to develop heuristic functions and variable-step A* algorithms. Xiong et al.27 applied a path processing method 
based on the A* algorithm to ensure the stability of the vehicle and improve the tracking accuracy by addressing 
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the problems of the A* algorithm not considering vehicle contours and the lack of speed planning. Wang et al.28 
proposed an improved A* algorithm that introduces turning factors, which solved the shortest path problem of 
multiple AGVs. Zheng et al.29 added the angle evaluation cost function to the cost function of A* algorithm and 
used the feature of jump point search to improve the search speed.

The traditional A* algorithm has the problem of redundant nodes. Zhang et al.30 introduced a key point 
selection strategy for secondary planning of the path, which deleted redundant turning nodes and invalid nodes. 
Guruji et al.31 proposed an improvement of the A* algorithm to reduce the processing time by determining the 
value of the heuristic function before the collision phase. Quan et al.32 studied the A* algorithm for grid path 
planning at different obstacle scales. Meanwhile, an improved A* algorithm is introduced to optimize the key 
points and simplify the paths to key points. Song et al.33 proposed an improved algorithm to solve the problem 
that traditional A* algorithm were constrained by map resolution.

In multi-objective planning, Melo et al.34 considered the presence of many objects in the environment to mini-
mize the time taken by all robots to reach the target location and to reduce the distance traveled by the robots. The 
problem is modeled as a graph problem in which a path is decomposed into segments and the robots dynamically 
choose the best path to execute greedily in a certain time. Faridi et al.35 proposed an evolutionary solution to the 
multi-intelligent, multi-objective navigation problem in an unknown dynamic environment. Combination of the 
improved artificial swarm and evolutionary planning is used to smooth remove the resulting intermediate feasible 
paths. Ayomoh et al.36 used the principle of the shortest distance between the robot and the target to calculate 
the order of access to the target point. This approach minimizes the path time of the mobile robot. Yang et al.37 
proposed an adaptive multi-objective genetic differential evolution algorithm for multi-objective scheduling to 
achieve multi-objective scheduling optimization of AGV systems under multi-constraint conditions.

Aiming at the problem that the A* algorithms were rarely used in multi-objective planning. Wang et al.38 
used a start-to-target cost function to rank target sequences and applied the improved A* algorithm to multi-
objective point planning. Yue et al.39 decomposed the AMR target region into multiple sub-target points and 
used an improved simulated annealing algorithm for multi-objective point path planning.

Environment modeling
Environment modeling is an essential step in the path planning of the A* algorithm and the basis for the subse-
quent steps. For A* algorithm, environment modeling is gridding the map. Therefore, the size of the grid of the 
rasterized map will affect the planning quality of the mobile robot8.

Grid modeling.  The principle of the grid method is to split the entire space into grids. Each grid represents 
the environmental information of its location. The modeling steps are as follows8:

	 (i)	 Splitting the whole space into grids of the same size;
	 (ii)	 Corresponding each grid to the location area in the actual environment space;
	 (iii)	 Set the status of each grid to distinguish whether the corresponding area can pass.

As shown in Fig. 1, the obstacle’s position is marked as the black part, which means AMR cannot pass, and 
the white area is the feasible area. The start point is represented by S, and end point is represented G. There are 
two ways to mark the grid position.

Figure 1.   (a) Schematic diagram of grid method (b) Paths generated by different distance functions.
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	 (i)	 Coordinate method: The horizontal and vertical axes are established with the two edges of the grid map. 
The horizontal direction is the x-axis and the vertical direction is the y-axis. Then the position of the 
grid can be marked by the coordinates (x, y).

	 (ii)	 Sequential method: Each grid is marked incrementally in a horizontal and vertical pattern, with each 
grid having its number.

The two marking modes can be transformed into each other and their correspondence is

where xi and yi are the horizontal and vertical coordinates of the grid map. N represents the grid number under 
the sequence method, n is the grid splitting fineness. [] is the rounding down operation.

The feasible route is shown in Fig. 1a. According to the coordinate method M1 and the sequence method M2, 
the grid number of the route can be expressed as:

M1 = [(1,1), (2,2), (2,3), (3,3), (4,3), (5,4), (6,5), (7,6), (8,7), (9,7), (9,8), (9,9), (10,10)].
M2 = [1, 12, 22, 23, 24, 35, 46, 57, 68, 69, 79, 89, 100].
In this paper, the coordinate method is used to represent the motion environment of AMR. The advantage 

of grid modeling is that it greatly reduces the difficulty of abstracting complex environments. The disadvantage 
is that grid modeling is difficult to determine the size of the grid division. If the grid is too small, it will increase 
the complexity of the subsequent search algorithm and take up a lot of memory. If the grid is too large, it will 
not correctly represent the real environment, and there is a possibility of collision in the subsequent planning 
of the AMR. Therefore, when using the grid method to model the path planning environment, it is necessary to 
weigh the actual environment and the requirements of the search algorithm to choose the division standard40.

Path planning objective function.  AMR needs to return to the charging station to recharge when the 
battery power is insufficient. At this time, two issues need to be considered: first, whether the remaining power 
can support the AMR to reach the recharge point; second, the current task performed depends on whether the 
AMR can be abandoned and what the trade-off is for urgent tasks.

Therefore, the remaining power of AMR must consider the most complicated situation. When the path is 
planned for the furthest case, the AMR should be able to return to the charging point while avoiding the obsta-
cles at the farthest target point. At this time, the total distance of the A* planning objective function is Lpath. The 
formula Lpath is as follows:

where (xi , yi) is the coordinates of the i-th target point in the path of the AMR. At the same time, the safe opera-
tion of the path planned needs the AMR to acquire an angle which smaller than the maximum turning angle:

where, ni-1, ni, and ni+1 are the previous node, the current node, and the next node, respectively. θmax represents 
the maximum safe turning angle of the AMR to avoid overturning due to running inertia, which can be set 
according to the actual situation.

Traditional A* algorithm
The traditional A* algorithm is a heuristic search algorithm that can realize path planning in a global static 
environment. The evaluation function of the A* algorithm is: F(n) = G(n) + H(n).

Valuation function of path algorithm.  G(n) and H(n) in the evaluation function are a kind of mutual 
restriction relationship. H(n) belongs to the heuristic function and is an important part of the evaluation func-
tion F(n). The choice of F(n) will directly affect the quality of the A* algorithm.

In the A* algorithm, if the estimated cost H(n) is too small, the actual cost G(n) is too large. The role of G(n) 
in the evaluation function F(n) takes the major part, the algorithm will be simplified to Dijkstra’s algorithm and 
the computational effort will increase. If the actual cost G(n) is too small and the estimated cost H(n) is large, 
the algorithm will be simplified to the BFS algorithm and the obtained path will not be guaranteed to be optimal.

Manhattan distance c1 , Euclidean distance c2 and diagonal distance c3 can all be used in the A* algorithm to 
calculate the cost function F(n). The manhattan distance c1 , the euclidean distance c2 , and the diagonal distance 
c3 are shown in formula (5):

(1)N = x + n× y

(2)
{

xi = [(Ni − 1)/n] + 1

yi = [(Ni − 1)/n] + 1

(3)Lpath =
m
∑

i=1

√

(xi+1 − xi)2 + (yi+1 − yi)2

(4)
{

θ(ni−1, ni , ni+1) ≤ θmax

180
◦−θ(ni−1, ni , ni+1) < 90

◦
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Here, the start node coordinate is 
(

xn, yn
)

 and the target coordinate is (xg , yg ).
As shown in Fig. 1b, the difference between the three can be clearly seen. The number of turns for Euclidean 

distance is 0, and the distance is also the shortest. Therefore, Euclidean distance is selected in this paper.

Based on the improved A* algorithm path planning
Evaluation function design based on obstacle information.  The A* algorithm is one of the effec-
tive algorithms for searching the shortest path in a static environment. The traditional evaluation function is 
F(n) = G(n) + H(n).

Therefore, the evaluation function is improved as follows:

where,

where C(n) is the information weight biased towards the target point and is the information value of the next 
node around the current node to the target point. The closer the next node is to the target point, the smaller the 
total H(n). r is the distance from the adjacent coordinate point of the current point to the target point. R is the 
distance from the start point to the target point.

I(n) is called the prediction function based on obstacle information. Where M is the number of obstacles on 
the path from the current node to the target point. I(n) represents the obstacle information in the expansion 
direction of the target point. The closer the current node is to the obstacle, the greater cost of moving along the 
current direction. This mechanism has a positive guiding effect on the path search and can guide the path to 
avoid near obstacles early. The more obstacles are distributed along the current expansion direction line, the 
more expensive it is for the node to expand along that direction. This mechanism also has a positive effect on 
path navigation, guiding the route to avoid density areas of obstacles at an early stage. These two mechanisms 
can reduce the number of extended nodes, thereby improving the search efficiency of the algorithm.

α and β are the weight values, and the value of β is the ratio of the line between the start points and target 
points about the contact with the obstacle. When β= 0 , there is no object on the path from the current node 
to the target point. So, the heuristic function H(n) weight can be increased appropriately to reduce the search 
range and improve the search efficiency. When β= 1 , all the obstacles exist on the path from the current node 
to the target point. So, the weight of the heuristic function H(n) is not changed to increase the search range and 
avoid falling into the local optimum.

Node optimization.  The traditional A* algorithm searches in 8 directions around the current node. The 
advantage of omnidirectional expansion is that the algorithm can adapt to more complex obstacle environ-
ments. But the disadvantage is that the number of expansion directions inevitably reduces the efficiency of the 
algorithm’s search. In most cases, the obstacles are not so complex that omnidirectional node expansion is not 
required to complete the route planning.

In this paper, an adaptive method of node search direction is proposed. First, find the angle θ formed by the 
line joining the current node (x0, y0) and the target point (xg , yg ) with the direction of the x-axis. θ is mainly 
judged based on the angle between the line at the start point, target point, and x-axis. θ can be obtained from 
formula (8).

where,

(5)















c1 =
�

�xg − xn
�

�+
�

�yg − yn
�

�

c2 =
�

(xg − xn)
2 + (yg − yn)

2
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(6)F(n) = G(n)+H(n)+ o(n)

(7)
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o(n) = −αC(n)+ βI(n)
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1

50

R − r

R
H(n)

I(n) =
1

20

M
�

i=1

1
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(xi − xs)
2 +
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yi − ys
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α + β = 1

(8)θ = arctan
yg − y0

xg − x0

(9)θ =














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

90◦ yg > y0 ∩ xg = x0
270◦ yg < y0 ∩ xg = x0

arctan
yg−y0
xg−x0

yg > y0 ∪ xg �= x0

180◦ + arctan
yg−y0
xg−x0

yg < y0 ∪ xg �= x0
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Second, the current node is expanded into a 90° sector with a radius r =
√
5 . If there are no obstacles in the 

identification area, the eight directional search sub-nodes are changed to 3 search directions, and the following 
steps are performed to further reduce the search time. The specific rules are shown in Table 1.

Otherwise, when there are less than four obstacles in the recognition area, five nodes are used to search for 
directions. The specific rules are shown in Table 2. In other cases, it is restored to 8 search nodes.

Route optimization.  Traditional A* algorithm path planning consists of continuous grid centroid connec-
tions, with many redundant nodes, the path turns, and unsmooth paths. The path smoothing optimization algo-
rithm is designed based on the Floyd algorithm idea to address these problems. The principle of path smoothing 
optimization is shown in Fig. 2. As an example, the path planned by the traditional A* algorithm is (S, 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, G), and there are many redundant nodes. The Floyd idea is used to retain the key nodes 
of the path and optimize the path by removing the redundant inflection points. The improved path is relatively 

Table 1.   Three-direction rule table.

θ Keep 3 directions Abandon direction

[337. 5°, 360°) ∪ [0°, 22. 5°) 315 T, 000 T, 045 T 090 T, 135 T, 180 T, 225 T, 270 T

[22. 5°, 67. 5°) 000 T, 045 T, 090 T 135 T, 180 T, 225 T, 270 T, 315 T

[67. 5°, 112. 5°) 045 T, 090 T, 135 T 000 T, 180 T, 225 T, 270 T, 315 T

[112. 5°, 157. 5°) 090 T, 135 T, 180 T 045 T, 225 T, 270 T, 315 T, 000 T

[157. 5°, 202. 5°) 135 T, 180 T, 225 T 000 T, 045 T, 090 T, 270 T, 315 T

[202. 5°, 247. 5°) 180 T, 225 T, 270 T 000 T, 045 T, 090 T, 135 T, 315 T

[247. 5°, 292. 5°) 225 T, 270 T, 315 T 045 T, 090 T, 135 T, 180 T, 000 T

[292. 5°, 337. 5°) 270 T, 315 T, 000 T 045 T, 090 T, 135 T, 180 T, 225 T

Table 2.   Five-direction rule table.

θ Keep 5 directions Abandon direction

[337. 5°, 360°) ∪ [0°, 22. 5°) 000 T, 045 T, 090 T, 270 T, 315 T 135 T, 180 T, 225 T

[22. 5°, 67. 5°) 000 T, 045 T, 090 T, 135 T, 315 T 180 T, 225 T, 270 T

[67. 5°, 112. 5°) 000 T, 045 T, 090 T, 135 T, 180 T 225 T, 270 T, 315 T

[112. 5°, 157. 5°) 045 T, 090 T, 135 T, 180 T, 225 T 270 T, 315 T, 000 T

[157. 5°, 202. 5°) 090 T, 135 T, 180 T, 225 T, 270 T 000 T, 045 T, 315 T

[202. 5°, 247. 5°) 135 T, 180 T, 225 T, 270 T, 315 T 000 T, 045 T, 090 T

[247. 5°, 292. 5°) 180 T, 225 T, 270 T, 315 T, 000 T 045 T, 090 T, 135 T

[292. 5°, 337. 5°) 225 T, 270 T, 315 T, 000 T, 045 T 090 T, 135 T, 180 T

Figure 2.   Schematic diagram of path smoothing optimization.
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smooth, while reducing the path length and inflection points. The steps of path smoothing optimization are as 
follows:

Step 1:	� Output the final path generated by the improved A* algorithm before optimization.
Step 2:	� Iterate through all nodes and determine the inflection point. Judge whether k1 and k2 are equal by 

formulas (10) and (11). When k1  = k2 , (xi , yi) is the inflection point. The original path keeps only the 
start point S and the target point G and the inflection point (1,2,4,6,8,9), and uses the new coordinates 
(xn, yn) to distinguish the inflection nodes.

where (xi−1, yi−1) , (xi , yi) , and (xi+1, yi+1) are the three adjacent nodes of the final path generated by the improved 
A* algorithm before output optimization.
Step 3:	� Iterate through the start point and the inflection points. Set the three adjacent inflection points 

(xn−1, yn−1) , (xn, yn) , and (xn+1, yn+1) as a group, and determine the relationship between the path d 
between the first and third inflection points and the path D between the three inflection points. D and 
d are shown in formulas (12) and (13). If d <  = D and d does not pass through obstacles, the first and 
third nodes are reserved; otherwise, three nodes are reserved.

where (xn−1, yn−1) , (xn, yn) , and (xn+1, yn+1) are three adjacent turning nodes.
Step 4:	� Extract the remaining nodes, output the optimized path. The algorithm ends.

In path planning, when AMR encounters an obstacle, it needs to perform a turning action. The turning angle 
of AMR is determined by using the formula (14).

Single objective verification
To verify the effectiveness and feasibility of the improved A* algorithm, the simulation software platform is 
PyCharm, and the hardware platform is Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 8 GB memory, 64-bit 
operating system, Windows 10 computer.

There are three main indicators for evaluating the quality of a planned path: path length, smoothness, and 
planning time. The path length is the main indicator and the fundamental problem of optimizing the path. The 
shorter the path length, the better the algorithm performance. The degree of smoothness affects the speed and 
safety of the AMR in practical applications. The degree of smoothness is reflected by comparing the total turn-
ing angle of the path planning. The planning time is whether the system can quickly make a response strategy 
when it affects the actual application.

Three different grid maps.  The traditional A* algorithm and the improved A* algorithm are verified on 
maps of 20 × 20, 30 × 30, and 50 × 50, respectively.

Simulate on three different grid maps.  In this paper, we will perform 10 simulations on three different 
grid maps to compare the performance differences between the A* algorithm and the improved A* algorithm. 
This requires determining the start point coordinates and the target point coordinates. In Fig. 3, the coordinates 
of the start point of grid map 1, 2 and 3 are all (1, 1) and are represented by the blue area S. The coordinates of 
the target points are (17, 17), (30, 30) and (47, 47), respectively. The target points are represented by the purple 
area G.

The algorithms were simulated 10 times on these maps to obtain the data in Table 3 and the path diagram 
in Fig. 4. In Fig. 4, the difference between the A* algorithm and the improved A* algorithm in planning out the 
routes in three different types of grid maps can be clearly seen. The red route and the blue route are produced by 
the traditional A* algorithm and the improved A* algorithm, respectively.

From Fig. 4a–c, it can be seen that the total turning angle, the number of turning points, and the total distance 
length of the improved A* algorithm are significantly reduced compared with the traditional A* algorithm. 
The improved path has no redundant turning points and is relatively smooth. The results of the runs on Fig. 4a 
show that the improved A* algorithm does not fall into local optima in the U-shaped obstacle environment, 
thus generating suboptimal paths. The planning time and the number of planning nodes have been reduced by 

(10)k1 =
yi − yi−1

xi − xi−1

(11)k2 =
yi+1 − yi

xi+1 − xi

(12)D =
√

(xn+1 − xn−1)2 + (yn+1 − yn−1)2

(13)d =
√

(xn−1 − xn)2 + (yn−1 − yn)2 +
√

(xn+1 − xn)2 + (yn+1 − yn)

(14)angle = arccos

(

(xn−1 − xn)(xn+1 − xn)+ (yn−1 − yn)(yn + 1 − yn)
√

(xn−1 − xn)2 + (yn−1 − yn)2
√

(xn+1 − xn)2 + (yn+1 − yn)2

)

.
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Figure 3.   Three different grid maps. (a) Map 1 (b) Map 2 (c) Map 3.

Table 3.   Comparison of three kinds of grid map experiment simulation data.

Map type Path parameter Traditional A* algorithm Improved A* algorithm Reduction ratio

Map1 (20 × 20)

Planning time/s 0.830 0.742 10.602%

Number of nodes 202 182 9.900%

run time/s 60.486 58.558 3.188%

Number of inflection points 4 1 75%

Total turning angle 405 100.620 75.156%

Total distance length 30.243 29.279 3.188%

Map 2 (30 × 30)

Planning time /s 2.055 1.935 5.839%

Number of nodes 365 401 − 9.863%

run time /s 94.912 90.732 4.404%

Number of inflection points 11 2 81.818%

Total turning angle 1440 429.448 70.177%

Total distance length 47.456 45.366 4.404%

Map 3 (50 × 50)

Planning time /s 6.548 6.505 0.657%

Number of nodes 853 796 6.682%

run time /s 77.355 71.948 6.990%

Number of inflection points 18 8 55.556%

Total turning angle 2700 934.270 65.397%

Total distance length 77.355 71.948 6.989%

Figure 4.   Comparison of the paths generated. (a) Map 1 (b) Map 2 (c) Map 3.
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about 10%. The total distance length has been reduced by 3.188%. The running results of Fig. 4b show that the 
improved A* algorithm can quickly plan the path, the planning time is reduced by 5.839%, the total distance 
length is reduced by 4.404%, and the turning angle is reduced by 75.156%. The results of running on Fig. 4c 
show that the planning time of the improved A* algorithm is similar to that of the conventional A* algorithm 
for running. But the turning angle is reduced by 65.4% and the total distance is reduced by 6.990%.

In order to verify the performance difference between the improved A* algorithm and other algorithms. 
In the environment of Fig. 3c, Bestfirst, BFS, RRT and Bidirectional-A* algorithms are used to compare with 
the improved A* algorithm. The experimental data are shown in Table 4. It clearly shows that the improved A* 
algorithm performs better in all aspects. Except the number of nodes is larger than that of the Bidirectional-A* 
algorithm. The path length and turning angle of the improved A* algorithm is significantly shorter.

Among them, the RRT algorithm generates paths by randomly sampling points, and its paths are not unique. 
In the environment of Fig. 3c, the RRT algorithm is run 10 times. The average path time is 10.183 s and the aver-
age path length is 89.161 m. Compared with the RRT algorithm, the improved A* algorithm reduces the average 
planning time and the average path length by 36.119% and 19.306%.

In summary, compared with other algorithms, the improved A* algorithm has a small reduction in single-
objective planning time. The planned path length and turning angle are significantly reduced. Smoothness is 
significantly improved.

Multi‑objective verification
The traditional A* algorithm is only suitable for searching a single target point and has the disadvantages of low 
efficiency and poor compatibility in performing multiple objective point searches. This is difficult to meet the 
application of AMR in daily life planning the optimal path of multiple objective points. Therefore, an improved 
A* algorithm combined with the idea of greedy algorithm is proposed in this paper. The A* algorithm is applied 
to multi-objective search and improves the planning efficiency of multi-objective nodes.

Improved A* algorithm combined with the greedy algorithm.  During the algorithm’s execution, 
n-m(m <= n/2) intermediate target points are randomly selected and all permutations. The F(n) function of the 
improved A* algorithm is used to calculate the node arrangement sequence solution with the shortest overall 
planning time. Then, the remaining m target nodes are inserted into the previous optimal path one by one 
through the mechanism of the greedy algorithm, and the planning of multiple objective points is achieved at 
once. Since circular paths are not allowed in this paper, a node can only appear at most once in a path.

In the multi-objective optimal path problem, find all Pareto optimal solution paths between Start and Target 
as follows: Start is the start point and Target is the final point of AMR. The path of the AMR can be represented 
as a set consisting of the starting point, the n target points passed in between, and the final point, which can be 
represented as: Path = {Start,X1,X2, ...,Xn,Target} . Where, the set P = {X1,X2, ...,Xn} is the path optimization 
objective between the start point and the final point; Xi(i = 1, 2, ..., n) is the path point between the start point 
and the final point, which is the target location point of the AMR to complete the task, and the coordinates are 
not in the position of obstacles, and the coordinates of each Xi are (xi , yi) .

The total path distance of multiple objective points is Lspath . The calculation formula of Lspath is as follows:

The specific steps of the improved multi-A* algorithm are summarized as follows:

Step 1:	� Randomly select n-m target points from m intermediate target points for full permutation, and add 
the start point coordinates at the beginning of each arrangement and the final point coordinates at the 
end. And the sequence of target points is fed into the improved A* algorithm to solve the path sequence 
with the shortest planning time from all the sequences.

Step 2:	� Choose a target point arbitrarily from the remaining m target points, insert it into the two adjacent 
target points of the optimal path sequence obtained by Step1, and use the improved A* algorithm to 
solve for the optimal path in the current case among the n-m + 1 possible path sequences.

(15)Lspath = min





n−1
�

j=0

s
�

i=1

�

(xi+1 − xi)2 + (yi+1 − yi)2





Table 4.   Comparison of different algorithm experiments.

Map type Path parameter Dijistar RRT​ BFS Bidirectional A* Improved A* algorithm Reduction ratio

Map 3 (50 × 50)

Planning time/s 6.925 10.183 10.897 6.600 6.505 1.439% ~ 40.305%

Number of nodes 1432 848 1432 664 796  − 19.880% ~ 44.413%

Run time/s 154.710 178.322 154.710 156.366 143.896 6.990% ~ 19.306%

Number of turning angles 17 89.3 (exclude) 21 18 8 52.941% ~ 61.905%

Total turning angle 2295 13,247.17 (exclude) 2700 2340 934.27 59.291% ~ 65.397%

Total distance /m 77.355 89.161 77.355 78.183 71.948 6.990% ~ 19.306%
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Step 3:	� Select an arbitrary target point from the remaining m-1 target points, insert it into the two target points 
of the optimal path sequence obtained by Step2, and use the improved A* algorithm to solve for the 
optimal path in the current case among the n-m + 2 possible path sequences.

Step 4:	� By analogy, until all m target points are selected, the path sequence obtained is optimal.
Step 5:	� Determine whether to traverse all target nodes. If yes, end the operation. Otherwise, repeat the above 

steps.

Take the current node path Path4 = {SP1P4P3P2G} , insert two nodes P5 and P6 , respectively. The specific 
expressions are as follows:

Verify the feasibility of the greedy algorithm.  This paper verifies the greedy algorithm’s feasibility 
using the traditional A* algorithm on a simple grid map of 50 × 30. The start and final points of the multi-
objective planning are (1,1) and (50,30), respectively. There are 6, 7, 8, and 9 intermediate target nodes between 
the start and final points.

The intermediate target nodes of the above four cases are fed into the traditional A* algorithm, and n-m 
intermediate target nodes are randomly selected for full permutation to plan the minimum time target sequence. 
In this paper, ten simulation experiments are conducted by using the greedy algorithm to insert the m intermedi-
ate target nodes into the current optimal sequence of n-m intermediate target nodes one by one and derive the 
average planning path time.

Table 5 shows that the average planning time of the algorithm gradually decreases with the insertion of 
more intermediate target nodes and reaches the minimum average planning time at the insertion of about n/2 
intermediate target points.

Using the greedy algorithm to insert the remaining intermediate target nodes one by one when approaching 
n/2 nodes, the greedy algorithm’s efficiency is the highest. After that, there is a slight rebound phenomenon. The 
reason is that the more nodes inserted, the more times the program needs to be run. Therefore, we choose to 
insert n/2 nodes in the follow-up of this experiment.

In summary, it is verifies that the greedy algorithm is feasible in path planning.

Greedy algorithm combined with improved A* algorithm.  The improved A* algorithm is fused 
with the greedy algorithm so that the improved A* algorithm can be applied in multi-objective path planning. 
The start point is (1,1), and the final point is (47,47). The coordinates of the intermediate target nodes are (13,13), 
(21,24), (30,27) and (37,40). The simulation of multiple intermediate target nodes is performed ten times in 
Fig. 3c. The specific run results are shown in Fig. 5.

In Fig. 5, the blue route is the path generated by the improved algorithm, while the red route is the route 
generated by the idea of applying the A* algorithm to multiple objective in the literature38. It can be seen intui-
tively that the length of the blue route is shorter than that of the red route. The specific data are shown in Table 6. 
Although the average planning operation time of the improved algorithm is increased by 14.694% compared 
with the method in literature38, the average path planning length and total turning angle are reduced by 4.931% 
and 62.641%, respectively. The significant decrease in the total turning angle improves the smoothness when the 
AMR moves, which is beneficial to the safety of the AMR and the cargo.

This method is suitable for AMR to process orders at multiple objective points. AMR can perfectly respond 
to emergency events or task changes. On the one hand, in a sudden emergency, the method can quickly insert 
coordinate task points into the task sequence to get a mobile target sequence. AMR will complete the current 
urgent task. For example, when the AMR is low on power and needs to be charged, the charging node is inserted. 

Path5 = min{SP5P1P4P3P2G, SP1P5P4P3P2G, SP1P4P5P3P2G, SP1P4P3P5P2G,
SP1P4P3P2P5G} = {SP1P5P4P3P2G}

Path6 = min{SP6P1P5P4P3P2G, SP1P6P5P4P3P2G, P1P5P6P4P3P2G, SP1P5P4P6P3P2G,
SP1P5P4P3P6P2G, SP1P5P4P3P2P6G} = {SP1P5P4P3P6P2G}

Table 5.   Average time table of inserted node planning path.

Total number of nodes

Number of inserted nodes 8 9 10

1 4.674 26.323 126.589

2 2.268 5.356 27.453

3 1.837 2.892 6.613

4 1.898 2.450 3.664

5 2.064 2.377 3.220

6 2.063 2.575 3.302

7 – 2.504 3.233

8 – – 3.137
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On the other hand, when dealing with newly added task target points, the task coordinate points can be quickly 
inserted into the obtained mobile sequence of AMR to get a new shortest mobile target sequence.

Algorithm complexity analysis.  The traditional A* algorithm has a worst-case scenario in which the 
actual cost function in the evaluation function takes the major part. In this case, the algorithm will be simplified 
to the Dijkstra algorithm, and the amount of calculation will increase. The algorithm needs to visit all unmarked 
nodes when selecting the shortest path node, which is inefficient. The running time of the entire algorithm for 
a single target point is o

(

s2
)

 , where s is the number of nodes. The time complexity of the literature38 is o
(

s2
)

 . 
Literature38 occupies an obvious advantage in planning speed, but the method only considers the direction of 
the start point toward the final point and cannot be used in an omnidirectional environment. When applied in 
the case that all target points are not in the same direction, the solved path is not necessarily the optimal solution 
with the shortest path length.

Compared to the globally optimal path planning obtained by traversing all intermediate target nodes using 
the exhaustive method, the time complexity of the entire algorithm for traversing all intermediate target nodes 
is o((n!)s2) , in the presence of a large number of intermediate target points. The method will spend a lot of 
time optimally ranking the path plan’s nodes. And the running time of the improved A* algorithm proposed in 
this paper is mainly determined by n-m target points, so the time complexity of the entire algorithm is about 
o
((

(n−m)!+
∑m

i=1 (n−m− i)
)

s2
)

≈ o
(

((n−m)!)s2
)

 . Therefore, the time complexity of the improved algo-
rithm proposed in this paper depends on n-m target points for full permutation, and then the improved A* 
algorithm is used to find the path node arrangement with the shortest time.

Conclusion
In order to improve the efficiency of AMR path planning under multi-objective conditions, this paper proposes 
an improved A* algorithm combined with greedy algorithm idea to realize the A* algorithm for multiple objec-
tive point planning. The combined algorithm allows path planning for multiple objective points. The efficiency 
of path planning is improved by improving the evaluation function. The nodes are also optimized to make up 
for the shortcomings of the traditional A* algorithm with poor timeliness. At the same time, the planned path 
length and turning angle are significantly shortened. Through comparative analysis, the effectiveness of the 
algorithm is verified. In the future, the path planning problem of mobile robots under multi-tasking conditions 
in dynamic environments and smulated annealing will be studied and the algorithm should be applied in AMR.

S

G

Figure 5.   Multi-objective path planning.

Table 6.   Comparison of multi-objective experiments.

Parameter Improved algorithm Literature38 Reduction ratio

Average planning time 1.686 1.470  − 14.694%

Average planned path length 79.015 83.113 4.931%

Total turning angle 1311.276 3510 62.641%

Number of nodes 207 250 17.2%

Average running time 158.030 166.226 4.931%
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