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Abstract: Initially, natural antisense transcripts (NATs, natRNAs, or asRNAs) were considered repres-
sors; however, their functions in gene regulation are diverse. Positive, negative, or neutral correlations
to the cognate gene expression have been noted. Although the first studies were published about
50 years ago, there is still much to be investigated regarding antisense transcripts in plants. A sys-
tematic review of scientific publications available in the Web of Science databases was conducted to
contextualize how the studying of antisense transcripts has been addressed. Studies were classified
considering three categories: “Natural antisense” (208), artificial antisense used in “Genetic Engineer-
ing” (797), or “Natural antisense and Genetic Engineering”-related publications (96). A similar string
was used for a systematic search in the NCBI Gene database. Of the 1132 antisense sequences found
for plants, only 0.8% were cited in PubMed and had antisense information confirmed. This value
was the lowest when compared to fungi (2.9%), bacteria (2.3%), and mice (54.1%). Finally, we present
an update for the cis-NATs identified in Saccharum spp. Of the 1413 antisense transcripts found in
different experiments, 25 showed concordant expressions, 22 were discordant, 1264 did not correlate
with the cognate genes, and 102 presented variable results depending on the experiment.

Keywords: plants; asRNA; cis-NAT; systematic review; artificial antisense; transgenic plants; sugarcane

1. Introduction

Although most of the eukaryotic genome has been transcribed, a tiny part encodes
proteins [1,2]. Besides the protein-coding genes and the well-studied regulatory RNA-
coding genes, almost the entire eukaryotic genome has occasionally been transcribed,
albeit in low amounts [3]. Most of these non-canonical transcripts are yet to be deeply
investigated, especially in plants.

With the advancement of genomics and transcriptomics in the last few decades, un-
precedented data have been obtained, such as the 1000 Plant Genomics and Transcrip-
tomics Initiatives [4–6]. The revealed genes and transcripts are usually included in the
NCBI [7] or plant-specific databases such as Phytozome [8], TAIR [9], and SUCEST-FUN
(https://sucest-fun.org), providing information for gene expression studies. New tran-
scripts are continually being documented and characterized, fast expanding the list of
known RNAs. Several of these RNAs seem to have regulatory roles, positively [10,11] or
negatively [12] regulating the expression of other genes, such as the natural antisense tran-
scripts (NATs). NATs are transcribed in the opposite orientation and are complementary
to the sense transcripts (with mismatches or perfect matching) in the same (cis-NAT) or
another locus (trans-NAT) [13]. In general, cis-NATs are easily identified in transcriptome
studies, and most of the well-known NATs belong to this class. Cis-NATs are widespread in
eukaryotes, and their observed frequency in human, Drosophila melanogaster, and Arabidop-
sis thaliana genomes was found to be 4–9%, 22%, and 10–20%, respectively [13–16]. The
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cis-NAT classification is based on their relative orientation and overlap with the sense gene
and may vary according to different authors. The five main classes defined by Osato [17]
are considered here, namely (I) “convergent or tail-to-tail”; (II) “divergent or head-to-
head”; (III) “fully overlapping”; (IV) “nearby tail-to-tail”; and (IV) “nearby head-to-head”
(Figure 1). The occurrence and the overlapping type might be considered to define the
assertive approach for cis-NAT identification. Reis and Poirier [13] recently proposed
a framework for identifying cis-NATs from classes I to III, considering the correlation
between the antisense and its cognate gene expression and its subcellular location.
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Figure 1. Schematic representation of the five main classes of cis-NATs adapted from Osato et al. [17].
Sense genes are presented in blue and antisense in gray. (a) Classes of the cis-NAT with overlapping
genes: (I) “Convergent or tail-to-tail” represents overlapping genes connected via their 3′ UTRs;
(II) “divergent or head-to-head” consists of overlapping genes connected by their 5′ UTRs; (III) “fully
overlapping” represents cis-NAT completely overlapping the sense gene in the opposite strand.
(b) Classes of the non-overlapping cis-NATs: (IV) “nearby tail-to-tail” when the 3′ UTR of one gene
is close to the 3′ UTR of the other gene; and (V) “nearby head-to-head” when the 5′ UTR of one gene
is close to the 5′ UTR of the other gene.

Other aspects should be considered in cis-NATs studies such as the coding capacity
of the cognate loci and its length. NATs may be transcribed either from protein-coding
or non-protein-coding regions [18,19] and are usually included in more general classes of
transcripts. NATs up to 200 nucleotides are classified as short non-coding RNA (sncRNA),
whereas the longer ones are long non-coding RNA (lncRNA) [18]. It is currently estimated
that over 90% of cis-NATs detected in plants are lncRNA [13]. Several approaches have
been used to investigate the different classes of NATs and are briefly presented here (Box 1).

NATs can be involved in either transcriptional or post-transcriptional regulation. They
were initially considered negative regulators of cognate genes [20]. However, the antisense
regulatory function seems to be more complex, acting in some cases as a positive regulator
of gene expression by enhancing translation [10]. According to their expression levels,
sense/antisense (SS/AS) pairs are classified into concordant or discordant expressions,
respectively, whenever they exhibit positive or negative correlations. For instance, in
Arabidopsis, it was reported that most NATs exhibit concordant expressions [21]. A total
of 21 NATs were selected for gene silencing experiments and, in line with the findings
mentioned above, most sense counterparts (15) were also found to be downregulated
upon NAT knockdown. In contrast, only a few of them were found to be upregulated
(3) or with no significant changes in their expression level (3). Paradoxically, collision
from RNA Pol II from SS/AS pairs at the same locus is thought to result in the abortion of
transcription [22], contradicting the observation that most NATs are positively correlated
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with the corresponding sense transcript. This apparent contradiction seems to be resolved
by differential expression from different alleles and/or differential expression at the indi-
vidual cell level, with trans factors playing additional roles that culminate in the concordant
expression [23,24]. NATs can alter chromatin structure and accessibility as they recruit
protein complexes involved in histone modification [21,23,25]. In post-transcriptional regu-
lation, one instance of siRNA formation from NAT induced by salt stress was described in
Arabidopsis [26].

Despite antisense transcription being first reported in a virus more than 50 years
ago [27] and in plants more than thirty years ago [28], the knowledge of these transcripts
and their functions is mainly related to cis-NAT and remains incipient [13,29].

These transcripts have been identified in several plant species playing different biological
roles, for instance, in plant development or response to biotic or abiotic stresses [21,23,30–33].
However, most of the cis-NAT identified in plants must be characterized. In this context,
our objectives are to present a systematic review of asRNA in plants, quantify the articles
published up to 2021 and the antisense genes available in the NCBI database, and update
this scenario for the published data on sugarcane.

Box 1. Techniques to study antisense transcripts.

Like other transcripts, NATs can be identified at the individual gene level or the genome-scale
level. For the screening of target genes, RT-PCR, RT-qPCR [34,35], dot-blot hybridization [36],
and Northern blot [37] techniques can be used. The strand specificity of the cDNA in RT-PCR is
essential for sense and antisense transcript detection. The use of different RT primers, i.e., reverse
PCR primer for the sense strands and forward PCR primer for the antisense strand amplification.
The main high-throughput approaches that have been used are SAGE (Serial Analysis of Gene
Expression)-derived techniques [38–43], microarrays [44,45], and tiling arrays [46–49] or strand-
specific RNA sequencing [50–55]. The details and usual procedures of those techniques have been
reviewed [56–58]. Until recently, strand-specific arrays were the standard techniques for detecting
and studying antisense transcripts in plants. Lately, RNA-Seq has become a widely adopted
technique to study transcripts at the genome-scale level. Strand-specific protocols that keep track of
strand orientation are necessary for detecting NATs. After reads have been mapped to a reference
genome, transcripts can be classified as antisense by a program (e.g., gffcompare, cuffcompare [59],
toRNAdo [60]) that systematically verifies if detected read overlaps with annotated genes that are
transcribed from the opposite strand. Finally, the protein-coding potential must be assessed by an
appropriate program (e.g., CPAT [61]) to distinguish between coding and non-coding RNAs.

Other sequencing-derived techniques targeting nascent RNAs have been used to successfully
detect NATs [62–66], such as the global run-on sequencing (GRO-seq) [63,67], native elongating
transcript sequencing (NET-seq) [64,67], and sequencing of short metabolically labeled RNA [65]
that was used to investigate unstable RNAs in Arabidopsis. With these methodologies, it is possible
to select the nascent RNA, which is purified, sequenced, and mapped to the genome. A high-
resolution map of Arabidopsis thaliana nascent transcripts showed that RNA Polymerase occupied
~4% of the nuclear genome in the antisense strand of the gene [63]. Szabo et al. [65] compared
steady-state and nascent 5-EU-labeled RNA (Neu-seq) libraries. They found a significantly higher
antisense detection by Neu-seq, indicating that sequencing approaches targeting unstable RNAs
are preferable in this type of study. NAT can also be investigated at the translational level using
polysome- or ribosome-profiling approaches [19,68].

The unprecedented amount of sequencing data has allowed some groups to use datasets already
available to identify antisense transcripts [31,59,69]. The functional role of antisense lncRNA can be
studied using loss-of-function tools and/or combining multiple molecular and cellular techniques.
Transcript silencing using siRNA has been used but with some unsuccessful results mainly due to
the low expression of lncRNA and its main localization [70]. A database of validated “Clustered
regularly interspaced short palindromic repeats-associated protein 9” (CRISPR/Cas9) single guide
RNAs for lncRNAs was created based on the curation of more than 200 published articles. However,
it was possible to include only one plant lncRNA, lncRNA1459 from Solanum lycopersicum [71], which
regulates tomato ripening [72]. Esposito and colleagues reviewed studies using the CRISPR-CAS9
genome editing tool as a screening method to identify functional lncRNA in cancer proliferation and
drug resistance [73]. The continuous improvement of this technique and the expansion of its use in
plants may help its application for screening lncRNA in plants. The combination of RNA fluorescence,
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Box 1. Cont.

in situ hybridization, and single-cell transcription kinetics quantification in Arabidopsis cells with or
without the COOLAIR, a cold-induced long antisense intragenic RNA, showed that the antisense
expression modulates the cell size dependency of the sense transcription [74]. A study of DNA
(de)methylation in response to hyperosmotic stress in Arabidopsis showed that antisense lncRNAs
are regulated by this stress and mediate the effects of stress-inducing differentially methylated
regions (DMR) [75].

2. Methods
2.1. Plants asRNA Systematic Review

To further our knowledge of asRNA, we conducted systematic searches in the Web of
Science (WOS) and NCBI databases for papers and sequences investigating the scientific
publications associated with genomic sequences related to asRNA currently available for
land plants. The systematic review of publications was performed in all databases of the
Web of Science using the Advanced Search tool with the following string (TS = ((“antisense
RNA” OR “antisense transcript” OR “natural antisense” OR “asRNA” OR “antisense ex-
pression”) AND plant*)). All years were selected for the timespan and English was defined
as the search language. The first search was conducted on 5 April 2020 and was updated
monthly. The last update was performed on 18 February 2022, considering only the articles
published up to 2021. Obtained records were filtered by document type and the documents
classified as patent, meeting, abstract, biography, and retracted publication were excluded.
The references were exported in “ris” format to the EPPI-reviewer software [76,77] and
were manually categorized. The strategy based on the PRISMA (Preferred Reporting Items
for Systematic reviews and Meta-Analyses) guidelines [78] is summarized in Figure 2. The
included records were classified as “Natural antisense”, “Genetic Engineering”, or “Natural
antisense and Genetic Engineering”-related publications.

The systematic search for gene sequences related to antisense expression started with
an advanced search in the Gene database from NCBI (https://www.ncbi.nlm.nih.gov/),
using the following string: plants [organism] AND (“antisense RNA” OR “antisense
transcript” OR “natural antisense” OR “asRNA” OR “antisense expression”). This search
was conducted on 18 February 2022. All genes were submitted to the classification workflow
(Figure S1). First, gene records associated with citations were obtained by the “PubMed”
standard filter. All the genes cited in PubMed were manually checked for antisense
transcription evidence based on (I) gene description; (II) graphical representation of the
antisense alignment; and (III) information available in the related articles. We performed
similar searches for fungi, bacteria, and mice to compare the availability of the antisense
sequence information in the “Gene” database for each organism.

2.2. Sugarcane asRNA

In order to update the antisense expression scenario in sugarcane, we explored
transcriptomic data from multiple published experiments. Eight published experiments
(Table 1) used the same oligo array [44] to study the gene expression of different sugar-
cane genotypes under greenhouse [44,79–81] or field conditions [33,82–84] and treatments
such as drought and ethylene pulverization. This customized oligo array (CaneRegNet—
Agilent Technologies) includes 21,901 probes in duplicate, which represent 14,522 different
sugarcane-assembled sequences (SAS) from the SUCEST database (Sugarcane Expressed Se-
quence Tag project) [85]. Among the probes, 7380 were designed to hybridize into antisense
transcripts.

https://www.ncbi.nlm.nih.gov/
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Table 1. Public oligo array datasets using a customized array for quantifying gene expression in both
sense and antisense orientations in sugarcane.

GEO
Series Experiment ID Experiment Description Number of

Hybridizations Reference

Ancestral Sugarcane ancestral genotypes: Saccharum
officinarum, S. spontaneum, and S. robustum 36 Ferreira et al. [82]

GSE42725 Circadian
I

Circadian rhythms of sense and antisense
transcriptions 22 Hotta et al. [79]

GSE129543 Circadian
II

Vast differences in organ-specific rhythms
of transcription in field-grown sugarcane 84 Dantas et al. [83]

GSE33574 Drought
I

Sugarcane expression data from stress
time series 6 Lembke et al. [44]

GSE125070 Drought
II

Sugarcane drought experiment under
field conditions 12 Diniz et al. [80]

GSE125069 Drought
III SP80-3280 drought and rewatering 12 Diniz et al. [80]

GPL22278 Ethylene Ethephon- and AVG-induced
transcriptional changes 48 Cunha et al. [81]

GSE124990 G and M 1 SP80-3280 growth and maturation under
field conditions 30 Souza et al. [84];

Wijma et al. [33]
1 G and M: Growth and Maturation.

We used the expression values from each mentioned experiment (Table 1) available at
the SUCEST-FUN database (https://sucest-fun.org/wsapp/, accessed on 6 March 2021) to
investigate the expression levels of antisense transcripts and their cognate SAS identified in
sugarcane leaves. The list of significantly expressed genes and their respective expression
value were downloaded using the “Search Significant Expressed Genes” tool (https://
sucest-fun.org/wsapp/searchSignificantExpressedGenes.do, accessed on 6 March 2021) in
the “Cane Gene Expression” module. The following projects were selected: CaneRegNet
Ethylene, CaneRegNet growth and maturation, CaneRegNet1 Ancestral, CaneRegNet1
Circadian, CaneRegNet1 Drought, and FCaneRegNet1 Drought. The expression value was
obtained for the biological replicates by selecting the option “Expressed Genes by Crossing”.

All data were filtered to keep genes with probes designed to capture the expression on
both sense and antisense orientations and with expression evidence on leaf samples in all
biological replicates evaluated in each experiment. SAS without antisense expression or
with evidence detected only in one biological replicate were not considered.

Filtered data were used to investigate global and gene-specific expression patterns
in two scenarios: when only sense transcripts were expressed and when both sense and
antisense transcripts were expressed in the same experiment. Finally, the global expression
analyses of the SS/AS pairs were performed for each experiment, aiming to identify the
expression profile of the sense transcripts in the presence and absence of the cognate
antisense expression. The differences in expression values were verified by a t-test (0.05)
corrected by FDR (false discovery rate).

All filtering, data plotting, and analyses were performed using packages contained
in the R version 4.0.3 software [86] according to the scripts available in the GitHub reposi-
tory (https://github.com/sucestfun/Sugarcane_Antisense_Expression, created on 15 Au-
gust 2022).

3. Results and Discussion
3.1. Plants as RNA Systematic Review

A total of 2371 records were obtained from the Web of Science databases and submitted
to filtering by document type. This first filtering step classified 391 records as patent,
meeting, abstract, biography, or retracted publications. The exclusion of these records

https://sucest-fun.org/wsapp/
https://sucest-fun.org/wsapp/searchSignificantExpressedGenes.do
https://sucest-fun.org/wsapp/searchSignificantExpressedGenes.do
https://github.com/sucestfun/Sugarcane_Antisense_Expression
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resulted in 1980 articles being manually screened according to the systematic workflow
(Figure 2). The classification procedure resulted in 1,101 articles being classified as “Natural
antisense”-related (208), artificial antisense used in “Genetic Engineering” (797), or “Natural
antisense and Genetic Engineering”-related publications (96). Our analysis confirmed that
56.6% of the articles (1101/1944) were related to antisense transcription in plants. The
oldest publications related to antisense transcription in plants and available in the WOS
databases were from the 1980s (Figure 3; Tables S1–S3).
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both categories “Natural antisense” and “Genetic Engineering”.

Initially, most of the articles on antisense in plants were dedicated to exploring the
complementarity of the sequences in Genetic Engineering as a tool for gene silencing in
several species [86–93]. A significant increase in this type of publication was observed in
the 1990s, with more than 50 published articles in 1994 and 1995. The first paper on NAT in
plants was published in 1988 [28]. However, a sharp increase occurred after 2005 due to
the greater availability of omics data in the 2000s [94]. An upward trend in the publication
of NAT-related articles has been identified in the last decade, surpassing 20 publications
in 2021. Articles classified in both categories that have been published since 1990 include
reviews and articles using the NAT sequences in Genetic Engineering (Figure 3). All
NAT and NAT and Genetic Engineering-related articles (304) were checked for the type
of publication (Table S4) and plant species they focused on (Tables S1 and S2). Most of
these publications were research articles (76%; 231/304), followed by reviews (23%; 70/304)
and book chapters (1%; 3/304) (Table S4). Regarding the classification by species, 70 plant
species were studied in these articles. However, only three species were represented in
45.5% of publications, Arabidopsis thaliana (33%; 111/304), Oryza sativa (9.5%; 29/304),
and Zea mays (3%; 10/304). These data indicate that the knowledge about antisense in
non-model plants is still limited.

Although most of the natural antisense detected in plants have not been character-
ized, we found that antisense transcription in response to myriad stimuli was briefly
exemplified. Matsui et al. [47] detected antisense transcription in A. thaliana under stress
caused by temperature, drought, salinity, and ABA treatment. Heat-responsive antisense
transcripts were found in Brassica rapa using RNA-seq and small RNA (sRNA) deep se-
quencing approaches [30]. Otherwise, NATs were detected by deep sequencing in Manihot
esculenta and Ricinus communis under chilling treatment [95]. Cold-responsive antisense
transcripts were also identified by sequencing in Solanum lycopersicum [96], B. rapa [97], and
A. thaliana [98,99].
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Light conditions also affect antisense transcription in plants. Oryza sativa subjected
to continuous dark treatment showed a decrease in the catalase gene (CatB) expression in
roots caused by an accumulation of CatB sense and antisense unspliced transcripts, detected
by RNA dot-plot hybridization [36]. In contrast, Tiwari et al. [100] used strand-specific
RNAseq to investigate small RNA induced by high light acclimation in A. thaliana and
detected NATs and double-strand RNAs derived from NATs.

Drought-responsive NATs were detected via oligo arrays in A. thaliana [47] and Saccha-
rum spp. [44] and via sequencing approaches in Musa spp. [101], Gossypium hirsutum [102],
M. esculenta [103], Zea mays [104], Populus trichocarpa [105], Solanum lycopersicum [106], and
Oryza nivara [107].

Natural antisense transcription was also associated with the response of plants to
chemical stress such as mercury (Medicago truncatula) [108], cadmium (O. sativa) [109],
boron (Z. mays) [110], and methyl methane sulfonate (A. thaliana) [111]. Additionally, salt-
response NATs were observed in M. truncatula [112], Z. mays [110], and Glycine max [112],
using RNA sequencing techniques.

Concerning biotic stress, NATs were identified in several plant–pathogen interactions,
such as O. sativa in response to Magnaporthe grisea, whose transcriptional profile was investi-
gated using RL-SAGE (Robust Long SAGE) methodology [113]. Other fungi response NATs
were found by RNA sequencing in Vitis pseudoreticulata and V. quinquangularis [114], Brassica
napus [115], and V. vinifera [116]. Muthusamy et al. [117] sequenced the transcriptome of
Musa spp. in response to Mycosphaerella eumusae and Pratylenchus coffeae and found several
differentially expressed NATs in resistant and susceptible genotypes.

The TalncRNA73 detected in a suppression subtractive hybridization (SSH) library in
wheat in response to rust is an antisense of a hypothetical protein [118], whose function
remains unknown [119]. In Malus × domestica, NATs were found in the ASGV (apple stem
grooving virus) infection transcriptome [120].

Furthermore, Wang et al. [121] used RNA sequencing to investigate herbivore-elicited
lncRNA in O. sativa. They observed a significant increase in NATJAZ10 expression in
response to herbivory, concomitant with the upregulation of its cognate gene, JAZ10
(Jasmonate-zim-domain protein 10).

Reproduction events in plants may be affected by antisense transcription. Several
differentially expressed NATs were detected during maize flowering [122], as well as in
the different development stages of florets of apomictic and sexual Paspalum notatum [123].
Moreover, an antisense transcript of the mitochondrial rice atp6 gene may be involved in
cytoplasmic male sterility (CMS) [124].

Organelle-specific antisense transcription has also been observed in plants. Ruwe
et al. [125] identified NATs in the chloroplast and mitochondrial transcriptomes of A.
thaliana. Similarly, NATs have been found in the chloroplasts of Salvia miltiorrhiza [126].

Evidence of antisense regulation in cellular programming and differentiation [52,127],
circadian rhythm [49], and growth and maturation [33] reveals that NATs play fundamental
roles in all biological processes.

The systematic search for gene sequences related to antisense expression in plants
resulted in 1,132 genes (Figures S1a and 4). Only 21 of these genes have been cited in
publications and the antisense transcription was confirmed for nine of them (Figure 4;
Table 2). The remaining 12 genes cited in PubMed represent spurious results due to the
word antisense in the complementary information on the gene description web page, in the
title, or in the abstracts of articles citing such genes.



Int. J. Mol. Sci. 2022, 23, 11603 9 of 21

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 22 
 

 

Evidence of antisense regulation in cellular programming and differentiation 

[52,127], circadian rhythm [49], and growth and maturation [33] reveals that NATs play 

fundamental roles in all biological processes. 

The systematic search for gene sequences related to antisense expression in plants 

resulted in 1,132 genes (Figures S1a and 4). Only 21 of these genes have been cited in 

publications and the antisense transcription was confirmed for nine of them (Figure 4; 

Table 2). The remaining 12 genes cited in PubMed represent spurious results due to the 

word antisense in the complementary information on the gene description web page, in 

the title, or in the abstracts of articles citing such genes. 

 

Figure 4. Antisense-related genes available for plants, mice, fungi, and bacteria in the Gene Database 

from NCBI. Recovered sequences in an advanced search using the string [organism] AND 

(“antisense RNA” OR “antisense transcript” OR “natural antisense” OR “asRNA” OR “antisense 

expression”). Available sequences (gray); sequences cited in PubMed articles (green); sequences 

with verified antisense transcription information (purple). The search was conducted in the Gene 

database from NCBI (https://www.ncbi.nlm.nih.gov/) on 18 February 2022. 

Compared to the other investigated organisms, the highest number of gene 

sequences was obtained for plants (Figurea S1a and 4). However, only 0.8% (9/1,132) of 

these genes were confirmed as being antisense-related (Table 2). Six genes were identified 

in A. thaliana and the most cited was the MIR398b (AT5G14545) with seven citations in 

PubMed (Table 2). The overexpression of this microRNA inhibits the expression of its 

cognate gene AtC2GnT (AT5G14550) and increases the susceptibility of A. thaliana to 

Phytophthora parasitica [128]. Another two MIR389 genes were identified in this search, the 

MIR389c from A. thaliana and the MIR389 from Brassica rapa, with four and three citations 

in PubMed, respectively (Table 2). 

Another relevant antisense gene detected in this systematic search was the COOLAIR 

(AT5G01675), responsible for repressing the FLOWERING LOCUS C (FLC) during 

vernalization in Arabidopsis [129–131]. The sense FLC (AT5G10140) is a well-studied 

antisense-regulated gene with 142 citations in PubMed (Table 2). 

The five remaining antisense genes were detected in A. thaliana [132,133], Solanum 

lycopersicum [134], and Zea mays [135]. They have been cited once in PubMed and their 

putative cognate genes are protein-coding (Table 2). 

Table 2. List of the antisense sequences of plants and their cognate sense genes, available at Gene 

database (NCBI) on 18 February 2022. All these antisense genes are associated with citations on 

PubMed. 

Antisense-Related Gene Cognate Sense Gene  

Gene ID 
Gene  

Symbol 

Gene 

Type 
Citations 1 Gene ID 

Gene  

Symbol 

Gene 

Type 
Citations 1 Species 

Figure 4. Antisense-related genes available for plants, mice, fungi, and bacteria in the Gene Database
from NCBI. Recovered sequences in an advanced search using the string [organism] AND (“antisense
RNA” OR “antisense transcript” OR “natural antisense” OR “asRNA” OR “antisense expression”).
Available sequences (gray); sequences cited in PubMed articles (green); sequences with verified
antisense transcription information (purple). The search was conducted in the Gene database from
NCBI (https://www.ncbi.nlm.nih.gov/) on 18 February 2022.

Table 2. List of the antisense sequences of plants and their cognate sense genes, available at Gene
database (NCBI) on 18 February 2022. All these antisense genes are associated with citations
on PubMed.

Antisense-Related Gene Cognate Sense Gene

Gene ID Gene
Symbol

Gene
Type Citations 1 Gene ID Gene

Symbol
Gene
Type Citations 1 Species

5008140 AT4G13505 ncRNA 1 826983 AMT1;1 protein-
coding 18 Arabidopsis

thaliana

5008149 AT4G20362 ncRNA 1 827784 RABE1b protein-
coding 30 Arabidopsis

thaliana

6241025 AT1G69572 ncRNA 1 843293 AT1G69570 protein-
coding 7 Arabidopsis

thaliana

28720403 AT5G01675 ncRNA 3 830878 FLC protein-
coding 142 Arabidopsis

thaliana

109115966 lncRNA16397 ncRNA 1 101250592 GRX22 protein-
coding 2 Solanum

lycopersicum

109461486 LOC109461486 ncRNA 1 100284505 LOC100284505 protein-
coding 4 Zea

mays

5008210 MIR398b ncRNA 7 831306 AT5G14550 protein-
coding 3 Arabidopsis

thaliana

28721157 MIR398c miscRNA 4 831308 NRT2.7 protein-
coding 5 Arabidopsis

thaliana

104795691 MIR398 ncRNA 3 103856086 LOC103856086 protein-
coding 0 Brassica

rapa
1 Number of citations in PubMed until 18 February 2022.

Compared to the other investigated organisms, the highest number of gene sequences
was obtained for plants (Figures S1a and 4). However, only 0.8% (9/1,132) of these genes
were confirmed as being antisense-related (Table 2). Six genes were identified in A. thaliana
and the most cited was the MIR398b (AT5G14545) with seven citations in PubMed (Table 2).
The overexpression of this microRNA inhibits the expression of its cognate gene AtC2GnT
(AT5G14550) and increases the susceptibility of A. thaliana to Phytophthora parasitica [128].
Another two MIR389 genes were identified in this search, the MIR389c from A. thaliana

https://www.ncbi.nlm.nih.gov/
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and the MIR389 from Brassica rapa, with four and three citations in PubMed, respectively
(Table 2).

Another relevant antisense gene detected in this systematic search was the COOLAIR
(AT5G01675), responsible for repressing the FLOWERING LOCUS C (FLC) during vernal-
ization in Arabidopsis [129–131]. The sense FLC (AT5G10140) is a well-studied antisense-
regulated gene with 142 citations in PubMed (Table 2).

The five remaining antisense genes were detected in A. thaliana [132,133], Solanum
lycopersicum [134], and Zea mays [135]. They have been cited once in PubMed and their
putative cognate genes are protein-coding (Table 2).

The low availability of well-characterized antisense sequences reinforces the idea that
the high-throughput data generated for plants remains understudied. Mice represented
the lowest number of available sequences (74) (Figure S1d); however, they were the best
characterized (Figure 4; Table S5). As mice are models for human studies, efforts have been
devoted to accurately characterizing their genes. Of 74 mice putative antisense-related
genes, 98.6% (73/74) were cited in PubMed, and 54.1% (40/74) were confirmed as antisense.
Twenty-three mice antisense genes had more than ten PubMed citations, with the most cited
being the Kcnq1ot1 (Table S5). This gene regulates several microRNAs that play essential
roles in the cell inflammatory response [136], cerebral ischemia and reperfusion injury [137],
diabetic cardiomyopathy, and other diseases [138].

Sequences of fungi and bacteria have also been poorly studied. Of 746 putative anti-
sense genes found for fungi, 7.2% (54/746) were cited in PubMed and 2.9% (22/746) were
confirmed as antisense (Figure S1b; Table S6). However, the cognate genes were identified
only for eight antisense genes from Saccharomyces cerevisiae and one from Schizosaccharomyces
pombe. The 13 remaining genes were identified in S. pombe as predicted antisense non-
coding RNAs [139]. These sequences have a provisional status and need to be characterized
(Table S6).

Among the four groups of organisms investigated here, bacteria presented the second
lowest precision in the antisense description (Figure 4). Only 5.4% (7/129) of the puta-
tive antisense genes were cited in PubMed and 2.3% (3/129) were antisense-confirmed
(Figure S1c; Table S7).

The Escherichia coli micA gene was the most cited bacterial antisense gene with 25 re-
lated articles in PubMed (Table S7). This gene stands out for being a post-transcriptional
regulator of several genes [140–142] and for acting in the mechanisms of virulence [143].
A vaccine produced with micA-derived OMVs (outer membrane vesicles) protected mice
against Salmonella typhimurium [143].

Our results show that information about antisense genes deposited in the Gene
database is still scarce. Curated information can be obtained mainly for mice antisense
genes and is explored in several publications (Table S5). On the other hand, the high-
throughput sequencing projects in plants generated massive datasets that are yet to be
characterized in depth. In particular, the 1132 antisense transcripts predicted in plants
(Figures S1a and 4) need to be experimentally investigated.

3.2. Sugarcane asRNA

Modern sugarcane varieties have a large size (10 Gb) and complex genome which
resulted from a historical process of interspecific crossing between several species [144–146].
The chromosomes present 8 to 13 copies each resulting in more than 100 chromosomes
(107–114) in total [147]. The auto-allopolyploid genome nature challenges genetics and
genomics studies when compared to diploid crops [148]. Despite the recent publications of
the genome sequencing of Saccharum spontaneum [149] and Saccharum spp. hybrids [84,150],
much remains to be studied about the genes and their expression regulation. The occur-
rence of NATs in sugarcane is of special interest as they can potentially be responsible for
differences in allele-specific expression.

To date, few articles have devoted attention to antisense transcription in sugarcane.
Sugarcane transcriptomes were obtained to study sense and antisense expression in dif-
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ferent tissues [33,82,151], in circadian regulation [79], and development [33,43]. Addition-
ally, high-throughput data on sugarcane NATs were investigated under drought condi-
tions [44,80]. Using quantitative PCR, Manimekalai et al. [152] and Narayanan et al. [153]
detected an increase in the Mybas (Myeloblastosis antisense) gene expression in sugarcane
under oxidative stress.

Sugarcane putative NATs were identified for the first time from a SAGE library ob-
tained from sample leaves of the 15-month-old field-grown SP80-3280 cultivar [43]. An-
tisense transcripts were defined based on their putative annotation and inverse matched
to a sense SAS or direct matched to an inverted hit-frame SAS. The functional annotation
of this SAGE library showed enrichment for photosynthesis and the carbon accumulation
process. However, the biological function of the potential NATs was not verified [43].

According to our search, the first experiment specifically designed to address sugarcane
NATs used a customized oligo array, including probes designed to quantify the expression
levels of antisense transcripts [44]. Almost 12% of the interrogated genes presented antisense
expression and in most cases, the SS/AS pairs presented co-expression [44]. The same oligo
array was used to study sugarcane gene expression in several conditions [79–84,154,155] but
the data on antisense expression was not always addressed. The antisense expression was
observed in eight experimental data publications (Table 1), which are briefly presented here.

Ferreira et al. [82] investigated the expression profile of leaves and immature, interme-
diate, and mature internodes from Saccharum officinarum, S. robustum, and S. spontaneum
genotypes and the commercial hybrid RB867515. The authors observed antisense expres-
sion in all of the evaluated genotypes. Functional annotation revealed the presence of NATs
in several carbohydrate metabolism pathways; however, the expression of NATs was more
representative in amino acid metabolism pathways.

Hotta et al. [79] studied the circadian sugarcane transcriptome in leaves of the RB855453
variety grown in a greenhouse. Sense and antisense expression were found to be circadian-
regulated in different ways. Antisense transcripts tended to peak at subjective dawn and
sense transcripts at the subjective middle of the day. Furthermore, circadian-responsive
NATs were functionally classified in photosynthesis, carbohydrate metabolism, amino acid
metabolism, and genetic information processing pathways.

Dantas et al. [83] studied the circadian sugarcane transcriptome in leaves and upper,
maturing, and mature internodes of field-grown plants of the variety SP80-3280. Although
the authors did not discuss antisense transcription in their article, we used their published
dataset to investigate SS/AS expression.

Our group has also performed multiple experiments to investigate the transcriptional
changes of sugarcane plants under drought conditions. The expression of sense and anti-
sense transcripts was detected in the leaves of the SP90-1638 variety after one, three, and
five days of water withholding [44] and in leaves and roots from the variety SP80-3280
after four and six days of water withholding followed by two days of rewatering [80]; both
experiments were performed under greenhouse conditions. The transcriptomes of the leaf
and upper internodes from three different varieties (RB86-7515, RB92-579, and RB85-5536)
were investigated under field conditions without watering [80]. Lembke et al. [44] ob-
served a time course increase in the detection of antisense transcripts in sugarcane samples
subject to drought compared to irrigated samples. After one day, the number of antisense
probes with significant expression was the same in the non-irrigated and control samples.
Three days of treatment resulted in a slight increase in antisense detection in the drought
samples. However, in five days, antisense transcription was almost three times higher in
drought than in control samples, suggesting an antisense role in the sugarcane response
to dehydration. Antisense expression was confirmed by qPCR for the following genes:
fructose-1,6-bisphosphatase I, alpha galactosidase 1, ATAF1 protein, photosystem II 10kDa polypep-
tide, photosystem I reaction center subunit V, magnesium chelatase subunit, ribonuclease, and
nucleolar protein Nop56 [44]. Studying co-expression modules in sugarcane under drought
conditions, Diniz et al. [80] identified antisense expression in four SAS classified in the
photosynthesis co-expression module (M1) and another four SAS allocated to the serine
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family amino acid metabolic process (M5). These results suggest the importance of NATs in
regulating photosynthesis and amino acid metabolism pathways in sugarcane, as presented
by Hotta et al. [79] and Ferreira et al. [82].

Cunha et al. [81] investigated the effects of two ethylene-based growth regulators
(ethephon and AVG) on the transcriptional profiles of the leaves and upper internodes of
sugarcane variety IACSP95-5000 grown under greenhouse conditions. The authors focused
on the sense transcripts; however, antisense expression was also detected and the dataset
was investigated here.

Finally, the sugarcane transcriptome (SP80-3280 variety) of leaves and immature, inter-
mediate, and mature internodes was studied during plant development in the field [33,84].
The expression profile of NATs was divergent throughout the sugarcane development
in the two growing seasons (“one-year” and “one-and-a-half-year sugarcane”), with an
emphasis on antisense transcripts related to the phenylpropanoids and Phe, Tyr, and Trp
pathways [33].

For the present review, we took advantage of these multiple experiments performed
on the same oligo array platform and investigated the expression level of antisense tran-
scripts. A conservative approach was used to filter the dataset, considering only SAS with
significant SS/AS expression in all biological replicates, and a total of 1413 unique SAS
was identified. A higher number of SS/AS-expressed pairs was observed in the Circadian
I (729) followed by the Growth and Maturation (559) experiments (Table 3). Otherwise,
fewer SS/AS pairs were detected in the Drought III (48) and Ancestral (56) experiments
(Table 3). We observed that the overall mean expression of sense transcripts was higher
than the expression of the antisense transcripts in all experiments (Figure 5a). A similar
trend was previously found in sugarcane plants subjected to drought [44].

However, the expression level for each gene can be diverse regarding the presence
or absence of the cognate antisense transcript and the experimental conditions. Here,
three scenarios were observed in each experiment: (i) the average expression of the sense
transcript decreased when the antisense transcript was concomitantly expressed (n = 22);
(ii) the average expression of the sense transcript increased when the antisense transcript
was expressed (n = 25); and (iii) the average expression of the sense transcript was not
significantly altered when the antisense transcript was expressed (n = 1264). The first,
second, and third scenarios were, respectively, exemplified in the Ethylene, Circadian I,
and Ancestral experiments (Figure 5b). Most SAS with SS/AS expression herein identified
presented a neutral expression profile, i.e., sense and antisense expressions were non-
correlated. However, concordant (positive correlation) and discordant (negative correlation)
expressions were also verified (Table 3).

SS/AS pairs differentially expressed in sugarcane leaves under drought exhibited a
predominance of positive correlations, although some negatively-correlated or without-
correlation pairs were detected [44]. Similar results were found in Arabidopsis, whose
antisense mostly showed concordant expression to the cognate genes; however, some had
a neutral or discordant expression [21].

The requirements for statistical analysis may have influenced the proportion of genes
with neutral expression herein identified, because some genes with a putative significant
correlation (positive or negative) could not be analyzed. In situations where all biological
samples presented SS and AS expression, we did not have the average value of only the SS
expression for comparison. Likewise, when just one sample showed simultaneous SS/AS
or only SS expression, the mean expression values could not be calculated and the analysis
disregarded the cognate SAS.

A biological explanation for the high number of SAS with uncorrelated SS/AS expres-
sion was proposed by Hotta [79]. The authors used Spearman’s rank correlation coefficient
to investigate the expression patterns of circadian-rhythmic SS/AS pairs and detected
a bimodal distribution. These results suggested two regulatory mechanisms, one that
affects both SS and AS expression and another in which AS expression is independent of
its cognate SS [79].
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Considering the SAS with a positive SS/AS correlation, only 8% (2/25) showed the
same expression profile in the different experiments. SCCCAM2003F01.g showed concor-
dant expression in Circadian I and II, whereas SCJFRZ2013F03.g had a positive SS/AS
correlation in Circadian I and Drought I. The remaining SAS with a concordant expression
were detected in a unique experiment (Table S8). Similarly, only 18% (4/22) of discordant
SS/AS pairs were observed in more than one experiment. SCRFHR1006H10.g had the
most frequent discordant expression, identified in the Circadian I, Circadian II, and Ethy-
lene experiments. Discordant expression was detected twice for SAS SCSBAD1087B08.g,
SCJLRT1006H10.g, and SCCBSD2038H10.g (Table S8).

Comparing the concordant/discordant ratio in the same experiment, we can highlight
Drought II, which presented ten times more concordant SS/AS pairs. In contrast, in the G
and M experiment, the discordant pairs were nine times more frequent (Table 3).

Table 3. Total of sense/antisense (SS/AS) pairs and the expression pattern detected in each investi-
gated experiment.

SS/AS
Expression Ancestral Circadian

I
Circadian

II
Drought

I
Drought

II
Drought

III Ethylene G and M 1

Concordant 0 41 21 3 21 1 4 1
Discordant 1 37 12 5 2 0 9 9

Neutral 55 651 225 295 186 47 136 549
Total 56 729 258 303 209 48 149 559

1 G and M: Growth and Maturation.

When all experimental data were investigated, it was observed that the same sense–
antisense pairs may present concordant, discordant, or neutral expression, depending
on the experiment (Figure 5c; Table S8). This could reflect the different mechanisms of
antisense function and sense transcription regulation.

Another question regarding antisense transcription in polyploid genomes is if the tran-
scription occurs in all homo(eo)logs or if the expression regulation among homo(eo)logs
is different. The sugarcane ORFeome sequencing and the genome assembly to a copy-
resolved gene space revealed that few of the homo(eo)logs were transcribed in the antisense
orientation [84,151]. Differences in the regulatory sequences among the homo(eo)log pro-
moter regions (upstream to transcription starting site—TSS) may explain the differences in
antisense transcription regulation [84]. In Brassica napus and Gossypium barbadense, two poly-
ploid species, the expression of lncRNA, including the long noncoding natural antisense
transcript (lncNAT), was different among the two homoeologous subgenomes [156,157].
Additionally, the detection of antisense sequences with high expression levels seemed to be
strongly influenced by the sequencing methodology. Shen et al. [157] found lncNAT more
expressed than their cognate mRNA when transcription levels were analyzed in Brassica
napus by rRNA-depleted RNA seq, but the inverse expression pattern was observed using
poly(A) RNAseq.

The results discussed here reveal that the study of NATs is promising in gene expres-
sion investigation in sugarcane. However, more conclusive data on SS/AS expression
patterns depends on experiments specifically designed for this purpose.
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Figure 5. Expression distribution of the sugarcane-assembled sequences (SAS) that presented both
sense (SS) and antisense (AS) expression in sugarcane leaves detected in a customized oligo array [44].
The expression of SS/AS pairs was verified in 1413 SAS under different experimental conditions.
(a) The overall expression of antisense (AS) and sense (SS) transcripts in different experiments:
Ancestral, Circadian I, Circadian II, Drought I, Drought II, Drought III, Ethylene, and G and M
(Growth and Maturation). (b) Examples of three SAS SCRFLB1054D01.g, SCSBAD1052H02.g, and
SCBFRZ2017D06.g with concomitant expression of sense (SS) and antisense (AS) transcripts or only
sense transcripts (SS_only). SS/AS neutral expression is verified for SCRFLB1054D01.g (Ancestral),
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whereas concordant and discordant expressions are presented by SCSBAD1052H02.g (Circadian I)
and SCBFRZ2017D06.g (Ethylene), respectively. (c) Graphic representation of the sugarcane transcript
sets, grouped by their SS/AS expression correlation. Yellow: neutral expression correlation. Dark
blue: concordant expression. Red: transcripts with a discordant expression pattern. Light blue is the
intersection of the sets whose SS/AS expressions are neutral or concordant. Pink: antisense transcript
with neutral or discordant expression correlation with its cognate sense. Barplot indicates the total
number of SAS in each expression class. Color-filled circles indicate sets of transcripts with expression
correlations. Light gray circles: empty classification sets.

4. Conclusions

Regulatory RNAs, such as NATs, represent much of the complexity of gene expression
and are widely distributed in eukaryotic genomes including plants. NATs can modulate
gene expression, acting on epigenetic, pre-, or post-transcriptional regulation in response
to biotic, abiotic, and developmental stimuli. Studies on natural antisense in plants are
still scarce and more focused, especially on cis-NAT and model plants. On the other hand,
artificial antisense in Genetic Engineering, widely used in gene silencing, has been less ad-
dressed in publications in the last five years. Several transcriptomic approaches have been
used to study asRNA in plants; however, different techniques can present different results
of the antisense expression. It is essential to consider the type and cellular localization of the
target asRNA before choosing the identification methodology. Transcriptional data from
sugarcane show the occurrence of NAT in different growth conditions, varieties, tissues,
and treatments. Sugarcane NATs with concordant, discordant, or neutral expression with
sense cognate genes were identified. It is suggested that the antisense transcript plays a
role in regulating homo(eo)logs’ differential expression. The efforts to study NATs in plants
should cover the identification of known and new NATs, their mechanisms of action, and
possible functional roles, shedding light on and providing insights into the knowledge
of model plants to be tested on non-model plants. This is especially noted in the case of
cultivated plants with polyploid genomes. The differences in the expression of antisense
homo(eo)logs already observed in polyploid genomes add an extra layer to the expression
regulation complexity.
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