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Separating variability in healthcare
practice patterns from random error

Laine E Thomas1 and Phillip J Schulte2

Abstract

Improving the quality of care that patients receive is a major focus of clinical research, particularly in the setting of

cardiovascular hospitalization. Quality improvement studies seek to estimate and visualize the degree of variability in

dichotomous treatment patterns and outcomes across different providers, whereby naive techniques either over-estimate

or under-estimate the actual degree of variation. Various statistical methods have been proposed for similar applications

including (1) the Gaussian hierarchical model, (2) the semi-parametric Bayesian hierarchical model with a Dirichlet process

prior and (3) the non-parametric empirical Bayes approach of smoothing by roughening. Alternatively, we propose that a

recently developed method for density estimation in the presence of measurement error, moment-adjusted imputation, can

be adapted for this problem. The methods are compared by an extensive simulation study. In the present context, we find that

the Bayesian methods are sensitive to the choice of prior and tuning parameters, whereas moment-adjusted imputation

performs well with modest sample size requirements. The alternative approaches are applied to identify disparities in the

receipt of early physician follow-up after myocardial infarction across 225 hospitals in the CRUSADE registry.
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1 Introduction

Clinical studies frequently seek to improve the quality of care provided to patients by identifying discrepancies
between providers. Provider units may be individual physicians, clinics, or hospitals. The first step is to establish
that systematic variation exists and is of sufficient magnitude to justify a detailed investigation. Wide variation in
outcomes supports the hypothesis that institutional factors play a role in affecting outcomes. Variation in
treatment patterns suggests that the quality of care may be improved by identifying the practices of best
performing institutions and adopting them widely. If the discrepancies between providers are small,
improvement in quality will most likely come from new developments in care, rather than existing models.
Consequently, recent publications emphasize conclusions about the magnitude in variation across providers:
‘‘the degree of variability in clinical practice we observed represents a potential quality improvement
opportunity’’;1 ‘‘in-hospital major bleeding rates varied widely across hospitals’’;2 and ‘‘ICU admission rates
for heart failure (HF) varied markedly across hospitals’’.3

These data arise hierarchically, with a sample of providers, and within them, a sample of patients who
experience a binary treatment or outcome. The goal is to quantify variation at the provider level in the
proportion of patients who experience the outcome. Such data are commonly modeled by hierarchical logistic
regression with a Gaussian random effect for provider whereby the provider-level variance can be estimated. This
variance, measured on the log-odds scale, has limited the clinical interpretability, and the investigators prefer to
visualize the variation in provider probabilities on an absolute scale. Therefore, numerous examples in the
cardiovascular literature include a histogram of provider-specific sample proportions.3–5 For example, Hess
et al.5 sought to identify disparities in the receipt of early follow-up (within seven days) with a physician after
myocardial infarction. Across 225 hospitals enrolled in the CRUSADE registry, the hospital-specific sample
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proportions of early follow-up ranged from 2.6% to 51.6% (interquartile (IQR) range: 17.7%–29.1%). Such
observed variation in sample proportions is predictably larger than underlying variation in provider
probabilities, as each sample proportion is subject to sampling error. To address this, the authors followed a
common convention of excluding sites with less than 25 patients.3–5 The convention is not sufficient. As an
illustration, Figure 1(a) shows a hypothetical distribution of proportions from 225 hospitals in which the
probability of receiving treatment is randomly generated and ranges between 20% to 33%, with an
interquartile range of 3%. Figure 1(b) shows raw proportions that are observed if patient outcomes are
sampled from these hospitals, with the number of patients-per-hospital randomly selected from the observed
hospital sizes in the CRUSADE registry. As can be seen by comparing Figure 1(a) and (b), the raw
proportions overstate the variation by nearly three-fold.

There is a large body of literature on methods for hospital monitoring and profiling,6,7 including recent
recommendations from a panel of experts commissioned by the Committee of Presidents of Statistical Societies.8

These sources review, in detail, the alternative methods for profiling individual hospitals. Hierarchical models and
shrinkage estimators are advocated as a strategy to remove the excessive sampling error in estimates for small sites
and are widely used in the medical literature.6–8 However, the objective of making predictions for individual sites differs
from the specific goal of estimating the magnitude of variation across sites. For the latter objective, estimating potentially
hundreds of nuisance parameters (the performance of each hospital) and then pulling them back together to form a
distribution results in more error than is necessary, in the form of either over-dispersion (exhibited in the raw
proportions above) or shrinkage toward the mean. Although provider-specific sample proportions are over-dispersed,
the distribution of shrinkage estimators is too narrow relative to the distribution of true provider performance.8–10

The fact that naive methods remain common in provider-variation studies may reflect that (1) the magnitude of
the problem is not well appreciated and (2) the relative advantages and/or limitations of alternative methods are
not clear in this context. Although several approaches for estimating and illustrating cluster-level variability in
hierarchical data have been proposed, prior studies have focused on different targets of inference,11,12 continuous
outcomes,11,13–16 or large cluster sizes.12,13

We consider three existing methods for binary outcomes: (1) Gaussian hierarchical models (GHM), (2)
Bayesian semi-parametric beta-binomial model with a Dirichlet process (DP) prior,17 and (3) non-parametric
empirical Bayes (EB), smoothing by roughening (SBR).13 Alternatively, we propose that a recently developed
method for density estimation in the presence of measurement error, moment-adjusted imputation (MAI), can be
adapted for this problem.18 In Section 2, we describe the methods under consideration. In Section 3, the methods
are evaluated by simulation across a range of conditions that are motivated by clinical examples. Finally, the
methods are applied and interpreted in the CRUSADE example of early physician follow-up.
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Figure 1. Comparison of distributions across providers. (a) Simulated distribution of true proportions from 225 hypothetical

hospitals in which the true probability of receiving treatment ranges between 20 to 33%. (b) Simulated distribution of hospital-specific

sample proportions, from the same hospitals, where the number of patients-per-hospital is randomly selected from the observed

hospital sizes in the CRUSADE registry.
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2 Methods

For clarity of exposition, suppose we are interested in studying treatment variation across hospitals. Other
binomial outcomes of clusters could easily be substituted. Let i ¼ 1, 2, . . . ,N represent the ith hospital and
j ¼ 1, 2, . . . , ni represent the jth patient from the ith hospital, where N is the number of hospitals and ni is the
number of patients at the ith hospital. Denote Yij as a binary indicator for whether the jth patient from the
ith hospital receives treatment, taking a value of 1 if that patient received treatment, and 0 otherwise. The sum
of Yij over patients within the same hospital is denoted Yi. Yi may be viewed as independent, binomial counts
with a hospital-specific probability of receiving treatment, pi, and take observed values yi. With N hospitals,
there are p1, . . . , pN, potentially unique probabilities of treatment. The data can be described by a two-stage
sampling model:

Yij pi �
indep

Binomial ðni, piÞ

pijFp�
iid
ð�jgÞ

ð1Þ

The hospital-specific parameter pi comes from a population distribution, Fp, that depends on parameters g. Let
fp be the probability density function (PDF) associated with Fp. We are interested in estimating fp and its variance
�2p ¼

R
ðu� �pÞ

2fpðuÞdu, where �p¼
R
ufpðuÞdu.

As noted by Paddock and Louis,19 there are applications where the observed N hospitals constitute the full
population of interest. In that case, one is interested in the finite probabilities p1, . . . , pN, with variance
�2N¼

1
N

PN
i¼1 ð pi � �pÞ2 where �p ¼ 1

N

PN
i¼1 pi, and empirical distribution function (EDF), FNðxÞ ¼N�1

PN
i¼1 Ið pi�xÞ.

If p1, . . . , pN were observed, one might calculate �2N and FN as consistent estimators for �2p and Fp. Here, we focus
on the former, population-level inference, and address the problem that p1, . . . , pN are not observed. In accordance
with the CRUSADE early follow-up example, our conclusions about variability are meant to apply to hospitals
from a broader population, not limited to those participating in the registry.

2.1 Raw proportions

As described above, a standard approach to this problem is to obtain sample proportions for each hospital as
p̂i ¼ yi=ni. The sample variance of p̂i is �2p̂ ¼

1
N

PN
i¼1 ðp̂i �

�̂pÞ2 where �̂p ¼ 1
N

PN
i¼1 p̂i. The EDF is defined as

Fp̂ðxÞ ¼ N�1
PN

i¼1 Iðp̂i�xÞ, and the distribution of p̂1, . . . , p̂N is converted to a smooth density using a kernel
density estimate (KDE) with the default bandwidth in the R density() function, denoted fp̂.

2.2 Gaussian hierarchical model

The generic two-stage model for Yi is provided in Equation (1). Here, we focus on the Gaussian, logistic model by
adding parametric assumptions. The model assumes:

Yij pi �
indep

Binomialðni, piÞ
logitð piÞ ¼ �0 þ bi

bij�
2
b �
iid
Normalð0, �2bÞ

ð2Þ

where logit(x)¼ logfx=ð1� xÞg. A common goal is to estimate �0 and �2b , while acknowledging bi as a source of
variation; bi is integrated out of the likelihood, and not directly estimated as part of the model fit. When there is
interest in estimating or predicting pi (as a function of bi), a variety of approaches can be implemented in a second
phase of estimation.20,21 An empirical Bayes (EB) approach is widely utilized for this purpose.8,20 We denote the EB
predictions as p̂bi . The variance of p̂

b
1 . . . p̂bN, �

2
p̂b
is over-shrunk compared to �2p . Although this fact is well known, EB

predictions are nearly synonymous with hierarchical models in cardiovascular research. To emphasize the difference
between EBprediction and the following approach, �2

p̂b
is included in our simulation study of provider-level variance.

For the current application, we are not interested in the individual pi, but in describing their distribution. Given
that logit(p) is assumed to follow a normal distribution, Normalð�0, �

2
bÞ, we can estimate the parameters of this

distribution, plug them in, and parametrically estimate �2p and fp. Implementation is as follows. Using standard
statistical packages, fit the hierarchical model to obtain estimates of �0 and �2b . Substitute estimates for the
unknown parameters and generate q¼ logit(p) according to the normal distribution, Normal(b�0, �̂2b). This can
be done either by simulation or by applying the normal quantile function to a sequence of uniform probabilities
between 0 and 1. Then, convert to the probability scale by taking expðqÞ=f1þ expðqÞg ¼ ~p. By taking a large
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number of data points q, and therefore ~p, the density of these data will be arbitrarily close to the density of ~p, f ~p,
which is regarded as an estimator of fp. The variance of ~p, �2~p , is an estimator of �2p . Alternative methods could be
used to derive f ~p, such as the transformation theorem applied to the function expðqÞ=f1þ expðqÞg. This would also
have to be obtained numerically.

Clearly, f ~p is derived under the assumption that q has a normal distribution. In many cases, this is a reasonable
assumption. As with many natural phenomenon, it is plausible that hospitals would have symmetric variation
about a common mean on the log-odds scale. The Gaussian hierarchical model (GHM) approach, just described,
illustrates the result on a clinically meaningful scale. If normality is not plausible, estimating provider variation
may still be insensitive to such mis-specification, as previous authors have observed robust results, even when the
random effects distribution is mis-specified.22 The robustness of the variance parameter to violations of the
Gaussian assumption is explored below.

2.3 Semi-parametric Bayesian density estimation

Bayesian methods offer flexibility in the specification of hierarchical models and density estimation. Rather than
specifying a parametric prior distribution for cluster-specific probabilities, the Dirichlet process (DP) prior has
been widely used for parametric mixture modeling.11,12,14,15,17,23 Numerous options and software are reviewed by
Jara et al.23 The DPs mixture can approximate many smooth distributions by estimating the number of mixture
components according to the data. One such model, based on the methods of Escobar and West14 and Liu,17 is
implemented by the DPbetabinom function in R DPpackage.23 The function fits a semi-parametric version of the
beta-binomial model

Yij pi �
indep

Binomialðni, piÞ
pijFp � Fp j ¼ 1 . . .N
Fpj�,F0 � DPð�F0Þ

F0 ¼ Betaða1, b1Þ
�ja0, b0 � Gammaða0, b0Þ

For this study, we assume F0 � Uniformð0, 1Þ, i.e., a1 ¼ 1, b1 ¼ 1. The baseline distribution, F0, is conjugate in
this model which allows Markov chain Monte Carlo with Gibbs sampling for estimating the posterior density fpjY.
The posterior variance is defined as �2pjY¼

R
ðu� �pjYÞ

2fpjYðuÞdu, where �pjY¼
R
ufpjYðuÞdu. The posterior density

fpjY and �2pjY are estimators of fp, and �
2
p , respectively.

In preliminary studies, we evaluated potential values for the hyper-parameters a0 and b0 or the prior parameter
� (removing the hyper-prior). Plausible values for � range from 1= logN to N= logN (0.1 to 80 in the simulation
settings below).11 When � is near 0, the model places high probability on pi being all the same, and the posterior
density tends to be highly peaked around finite points. As � increases, this leads to a higher probability of more
unique values of pi, and the posterior density tends to be more smooth. Excessively large � will treat each
provider probability as if they are totally unique and tend toward a fixed effects model. The gamma hyper-
prior is employed to increase robustness by allowing � to be better adapted to the data. We considered
� 2 f0:1, 1, 5, 10, 20, 50g and multiple sets of hyper-parameters for the gamma prior on �. None performed
better than those of Paddock et al.,15 a0 ¼ 4 and b0 ¼ 4 (subsequently denoted DP-1) and a0 ¼ 10 and
b0¼ 0.10 (subsequently denoted DP-2). We therefore focus on this specification in the subsequent evaluation.
Given a sample of 100 hospitals, 95% of the prior mass on the number of clusters in the DP mixture for these two
pairs of hyper-parameters falls on 10 or fewer clusters (DP-1) and between 53 and 83 clusters (DP-2). Results for a
fixed �¼ 20 are also displayed as DP-3.

2.4 Smoothing by roughening

Rather than specifying a parametric prior distribution for the provider-specific parameters, Laird24,25 developed a
non-parametric maximum likelihood (NPML) estimator of the prior, Fp. Despite numerous advantages, this
approach yields discrete priors with too narrow support and under-dispersion,13 motivating the adaptation of a
non-parametric EB alternative called ‘‘smoothing by roughening’’ (SBR).13,26 The process starts with a smooth
prior distribution, that is not necessarily correct, and uses the EM algorithm to update it in the direction of the
NPML. Fewer iterations results in a more smooth distribution, while increasing iterations are successively closer to
the NPML. To speed up computation, the initial smooth density is discretized at a large number of mass points
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a¼ ða1, . . . , aMÞ
T, with initial probabilities f0ðaÞ ¼ ½ f0ða1Þ, . . . , f0ðaMÞ�

T. The distribution of a is updated over
� ¼ 1, . . . , �N steps, as follows:

f�þ1ðamÞ ¼
1
N

PN
i¼1

f�ðamjYiÞ ¼
1
N

PN
i¼1

f�ðam,YiÞ

f�ðYiÞ
ð3Þ

for m ¼ 1, . . . ,M. This can be expanded further as

f�þ1ðamÞ ¼
1
N

PN
i¼1

f ðYijamÞ f�ðamÞPM

m¼1
f ðYijamÞ f�ðamÞ

ð4Þ

where f ðYijamÞ ¼Binomialðni, amÞ, f�ðYiÞ ¼
PM

m¼1 f ðYijamÞ f�ðamÞ and f�ðam,YiÞ ¼ f ðYijamÞ f�ðamÞ. The initial density
f0 is taken to be Uniform(0, 1). After �N iterations, the algorithm stops, and f�N is the SBR estimator of fp. The posterior
variance, defined as �2�N ¼

R
ðu� ��NÞ

2f�NðuÞdu, where ��N ¼
R
uf�NðuÞdu, is the SBR estimator of �2p .

When iterated to convergence, the SBR algorithm produces the NPML estimate; however, the goal of SBR is to
produce a smooth distribution by the selection of finite �N. The appropriate choice of �N is unclear, though Shen and
Louis13 provide some guidance. They suggest that ‘‘There is no need to be too strict on the exact value of �N, as long
as for large N, �N is of order log N, . . . For small or moderate samples, we recommend N=3 � �N � 2N.’’ In the
sample sizes considered below, log N would be about 6, whereas N=3 would range from 30 to 150, and 2N would
range from 200 to 1500. Several values of �N are compared in online Supplemental Appendix E. We selected �N ¼ 50
as it yielded superior results in a variety of cases, but no value of �N was observed to be universally preferable.

2.5 Moment-adjusted imputation

By viewing this as a measurement error problem, additional options become available. Thomas et al.18 introduced
moment-adjusted imputation (MAI) which replacesmis-measured data,W, with estimators that have asymptotically
the same distribution as a latent variable of interest,X, up to some finite number of moments. They show thatMAI is
related to other measurement error methods but has superior performance in many settings. MAI is applicable
whenever the error in W is due to added noise; Wi¼XiþUi, where Ui is normally distributed random error with
mean 0 and variance �2ui. This type of error arises as a result of device error or biological fluctuations but also by
randomsampling error in parameter estimates. To see thatMAIapplies to the present applicationwe can view p as the
unobserved latent variable (X) and p̂ as a mis-measured version (W). p̂i can be written as piþUiwhereUi is a random
error withmean 0 and variance �2ui¼ pið1� piÞ=ni. For hospitals with a reasonably large number of patients, the error
in p̂i is approximately normal. When the number of patients per site is small, this approximation may not hold. The
performance across a range of finite site sizes is evaluated by the simulation given below.

The details of MAI have been described previously, with application to a broad variety of problems.18 Here, we
review a special case of MAI that is applicable to the current focus on cluster-specific proportions. For the clarity
of exposition, we use general MAI notation in this section and refer to X and W. The objective is to construct-
adjusted versions of theWi, say X̂i, where the firstM sample moments of X̂i unbiasedly estimate the corresponding
moments of Xi; that is, EðN

�1
PN

i¼1 X̂
r
i Þ ¼EðXrÞ, r ¼ 1, . . . ,M. The distribution of X̂i approximates that of Xi up to

M moments. In particular, the variance of X̂i will be unbiased for the variance of Xi. Unbiased estimates, m̂r, for
the moments, EðXrÞ, are derived according to the assumption of normal, additive error, and variance �2ui. The
adjusted X̂i is obtained by minimizing

PN
i¼1 ðWi � XiÞ

2 subject to constraints on the moments. Using Lagrange
multipliers ð�1, . . . , , �MÞ ¼ �, the objective function is

QMðX1, . . . ,Xn,�Þ ¼ N�1
XN
i¼1

1

2
ðWi � XiÞ

2

þ
XM
r¼1

�r
r

N�1
XN
i¼1

Xr
i � m̂r

 !

The adjusted data are obtained by taking the derivative of QM with respect to ðX1, . . . ,XN,�Þ, equating this to
0, and solving for ðX̂1, . . . , X̂N, �̂Þ by the Newton–Raphson method. This process has been integrated into an R
function (online Supplemental Appendix A). Once the adjusted data X̂i are obtained, they can be ‘‘imputed’’ in
place of Xi. In particular, the data points X̂i can be displayed in a histogram or kernel density plot and will
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resemble the distribution of Xi up toM moments. At a minimum, the mean and variance of X̂i will be unbiased for
Xi when M � 2.

For the current application, MAI can be applied directly to the ‘‘mis-measured’’ p̂i, which takes the place of Wi,
and the measurement error variance estimated by �̂2ui¼ p̂ið1� p̂iÞ=ni. Adjusted values, p̂MAI, will have M moments
that are consistent for the corresponding moments of Fp, as both ni and N get large. The sample variance, �2p̂MAI

,
EDF, Fp̂MAI

, and density fp̂MAI
are calculated as for p̂, but substituting adjusted values p̂MAI.

Thomas et al.18 provide an extensive simulation study of MAI, with application to kernel density estimation.
They recommend matching an even number of moments (two or four). When p has a normal distribution, it is
adequate to match two moments, when p has a Chi-square or bi-modal distribution, it is necessary to match four
moments in order to capture unique features. The tradeoff between matching two versus four moments is a bias-
variance tradeoff. Higher order moments are estimated with less precision, and MAI uses estimated moments.
Matching higher moments reduces bias but adds variation. Thomas et al.18 show that matching four moments
strikes a good balance in many reasonable scenarios. As the advantage of MAI is the flexible handling of non-
normal distributions, a general recommendation is to match four moments.

2.6 Small sites

From a subject matter standpoint, excluding hospitals with very few eligible patients is clinically reasonable;
researchers do not expect to characterize a hospital based on a handful of patients. The ad hoc convention is
to exclude ni< 25. Although this exclusion is insufficient, it can be relaxed when the methods considered here are
employed. However, there is a limit to the feasibility of recovering fp when hospital sizes become small. Effectively,
the ratio of noise to signal becomes very large; a scenario in which fp cannot be identified without strong
parametric assumptions.27 Thus, we do not expect good performance of non-parametric or semi-parametric
methods for the estimation of fp with extremely small hospital sizes. Preliminary simulations indicate that a
minimum ni 4 10 and median ni> 20 is sufficient to avoid numerical problems and poor performance. We
focus our attention on applications such as CRUSADE where it is reasonable to require ni> 10, and the
typical cluster size is at least 20. Even so, we consider cluster sizes that are smaller than have been previously
evaluated (to the best of our knowledge). A recent tutorial on Bayesian methods for a similar application (hospital
comparisons) excluded sites with less than 20 patients (median ni¼ 295).12 Another example focused on even larger
clusters (cities).13

3 Simulation studies

In this section, we compare the preceding methods by simulation across a range of conditions, including (1)
number of providers N: 100, 300, and 500; (2) number of patients per provider ni: 20, median � 25, 30, median
� 65; (3) distribution of logit ð piÞ (i.e., bi in Equation (2)): Normalð0, �2bÞ; �

2
df¼1, standardized to have mean 0

and variance �2b ; and a bi-modal mixture of normals; and (4) variation across providers �2b : 0.05 (small) and 0.50
(large). Two settings of ni involve heterogeneous patients per site, taking values similar to those observed in two
databases. Histograms of ni are available in online Supplemental Appendix B. The first represents a
distribution of ni from the CRUSADE early follow-up study which, as a large registry, tends to have larger
numbers of patients per site (median � 65, IQR: 38–126). The second replicates the distribution of site sizes
from a recent clinical trial, more heavily weighted toward a small number of patients (median� 25, IQR: 17–
43). In both, we have excluded sites with ni 5 10 (less than 15% of hospitals and less than 1% of patients). In
each simulated data set, a sample of N provider probabilities, p1, . . . , pN, is generated according to the
distributions described above. At each hospital, ni patient responses are generated according to a Bernoulli
distribution with probability pi.

3.1 Illustration

In Figures 2 and 3, the simulation settings are demonstrated along with select results for single simulated data sets.
For this illustrative example, we fix the number of providers at 300 and the number of patients per provider at 20.
Densities f ~p and fp̂MAI

corresponding to the GHM and MAI are shown in Figure 2, with comparison to fp and fp̂.
The densities based on SBR and DP-2 are displayed separately, in Figure 3, although applied to the same data set
and compared to the same fp and fp̂. Each density is displayed for both small and large variation across providers.
These figures emphasize four things: (1) that our simulation conditions cover a wide range of provider
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Figure 2. Comparison of methods for estimating the distribution of probabilities across providers. Results from a single, simulated

data set for three provider probability distributions and two magnitudes of provider variation: (a-c) small underlying variation,

�2
b ¼ 0:05; (d-f) large underlying variation, �2

b ¼ 0:5. Methods: Reference, underlying density of provider probabilities fp (thick solid

line); KDE of raw portions (thin solid line); estimated density from the Gaussian hierarchical model (dotted line); KDE of MAI

proportions (dashed line). (a) Normal distribution. (b) Bi-modal distribution. (c) Chi-square distribution. (d) Normal distribution. (e)

Bi-modal distribution. (f) Chi-square distribution.
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Figure 3. Comparison of methods for estimating the distribution of probabilities across providers. Results from single, simulated

data sets with three provider probability distributions and two magnitudes of provider variation: (a-c) small underlying variation,

�2
b ¼ 0:05; (d-f) large underlying variation, �2

b ¼ 0:5. Methods: Reference, underlying density of provider-probabilities fp (thick solid

line); KDE of raw portions (thin solid line); smoothing by roughening f�N
with �N ¼ 50 (dotted line); Bayesian density estimation DP-2

with hyper-prior parameters a0¼ 10 and b0¼ 0.1 (dashed line). (a) Normal distribution. (b) Bi-modal distribution. (c) Chi-square

distribution. (d) Normal distribution. (e) Bi-modal distribution. (f) Chi-square distribution.
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distributions; (2) variation across providers is severely over-estimated by raw proportions when true variation is
small, but not when the true variation is large; (3) the adjustment methods can achieve clinically meaningful
improvement; and (4) SBR and DP-2 appear to create false modes in some cases. These examples orient us to the
simulation settings and illustrate the potential advantages and disadvantages of alternative approaches. A full
Monte Carlo (MC) simulation is conducted in order to establish performance over repeated samples and different
conditions.

3.2 Monte Carlo simulation

In B¼ 1000 simulated data sets, a sample of N providers is drawn, with probabilities of outcome generated
according to the distributions for logit(p) described above. For each data set and method, we obtain estimates
of �2p , Fp, and fp. Success in estimating the provider-level variance is measured by bias and mean squared error
(MSE). Bias is quantified by comparing the MC average of provider-level variance estimates, 1

B

PB
b f�̂

2
p,bg, to the

true �2p . The MSE is given by 1
B

PB
b f�̂

2
p,b � �

2
pg

2. The Euclidean distance (ED) is calculated between cumulative
distribution function estimates and Fp (ED-CDF), as well as between PDF estimates and fp (ED-PDF). In a single
data set ED-CDF¼

ffip R
fF̂ðtÞ � FpðtÞg

2dt and ED-PDF¼
ffip R
ff̂ ðtÞ � fpðtÞg

2dt, where F^ and f^ are replaced by the
estimate for each method. Results are shown in Figures 4 to 6 for N¼ 300 providers. Relative performance did not
vary substantially based on N. Full results are in online Supplemental Appendix C.
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Figure 4. Cluster-level variance estimate; averaged over 1000 simulated data sets and plotted on the log scale, as a ratio, relative to

the true variance, �2
p . Black vertical reference line at 1, indicating no bias in the estimate. Fixing N¼ 300 clusters and varying (1) four

cluster sizes, ni: 20, mixture with median 25, 30, and mixture with median 65; (2) underlying variation: small and large with

�2
b ¼ 0:05 and 0:50, respectively; (3) underlying distribution of cluster-level probabilities: Normal, Chi-square, Bi-modal. Methods:

Raw, raw proportions; GHM, Gaussian hierarchical model; EB, empirical Bayes from GHM; MAI, moment-adjusted imputation; SBR,

smoothing by roughening; DP-1, Beta-binomial hierarchical model with Dirichlet prior with hyper-prior parameters favoring

roughness; and DP-2, same with hyper-prior parameters favoring smoothness; and DP-3, same with fixed prior parameter favoring

smoothness.
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Figure 4 shows the MC average provider-level variance estimates plotted as a ratio, relative to the true variance,
on the log scale. The ratio is taken so that different underlying distributions and magnitudes of variance can be
plotted on a common scale. Ratios less than 1 reflect estimators that under-estimate the variance, whereas ratios
greater than 1 reflect estimators that over-estimate the variance. The log scale is used so that a 50% under-estimate
is the same distance from 1 as a 200% over-estimate. Figure 4 shows that the naive method, based on raw
proportions, substantially over-estimates the variance. As expected, the Gaussian EB predictions are just as
bad, in the opposite direction. The candidate adjustment methods, GHM, MAI, SBR, and DP-1, are almost
perfectly unbiased. Of note, the GHM variance estimator is unbiased even when the underlying distribution is chi-
square or bi-modal and the Gaussian assumption is incorrect. However, the Bayesian semi-parametric method is
sensitive to the specification of prior parameters; priors DP-2 and DP-3 slightly over-estimated the cluster-specific
variance, particularly when the underlying variation is small. Results for the MSE track closely with bias and are
reported in online Supplemental Appendix C. Adjustment methods reduced the MSE, relative to raw proportions,
by 60% to 99%.

The ED provides a global measure of closeness between the estimated distributions and their target. Figure 5
shows the average over simulated data sets of ED-CDF for each adjustment method, plotted as a percent
reduction relative to the average ED-CDF for raw proportions. The goal is to quantify improvement in
estimating Fp compared to taking a naive approach. MAI is the only adjustment method that reduces the
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Figure 5. Euclidean distance between estimated distribution functions and the underlying distribution of cluster-level probabilities, Fp

(ED-CDF); average over 1000 simulated data sets and plotted on the log scale as a percent reduction relative to the ED-CDF for raw

proportions (naive method). Black vertical line represents no difference. Gray vertical lines represent 50% improvement (left) and

200% worse (right). Fixing N¼ 300 clusters and varying (1) four cluster sizes, ni: 20, mixture with median 25, 30, and mixture with

median 65; (2) underlying variation: small and large with �2
b ¼ 0:05 and 0:50, respectively; (3) underlying distribution of cluster-level

probabilities: Normal, Chi-square, Bi-modal. Methods: GHM, Gaussian hierarchical model; MAI, moment-adjusted imputation; SBR,

smoothing by roughening; DP-1, Beta-binomial hierarchical model with Dirichlet prior with hyper-prior parameters favoring

roughness; and DP-2, same with hyper-prior parameters favoring smoothness; and DP-3, same with fixed prior parameter favoring

smoothness.
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ED-CDF in all scenarios. As expected, GHM does best when the underlying distribution function is Gaussian,
but poorly otherwise. SBR performs similar to MAI, but in a few cases increases the ED-CDF. Investigation of
individual data sets (online Supplemental Appendix D) reveals that this can be attributed to SBR identifying too
many peaks or multiple modes when the target distribution is smooth. Among the DP methods, DP-2 and DP-3
perform better than DP-1. This makes sense considering that DP-2 and DP-3 favor a smooth distribution,
whereas DP-1 identifies too many peaks and modes rather than a smooth distribution (online Supplemental
Appendix D). The many peaks have minimal impact on the variance estimate but matter with respect to
estimating Fp.

The ED-CDF metric does not tell the full story. Provider variation is frequently illustrated by plotting a
density estimate, which may also be of interest. Even if the primary goal focuses on variation, a density estimate
with multiple modes or unique skew is likely to attract attention. Therefore, accuracy for density estimation is
important. Figure 6 shows the average over simulated data sets of ED-PDF, plotted as a percent reduction
relative to the average ED-PDF for raw proportions. On this metric, improving density estimation relative to
raw proportions is not guaranteed by any adjustment method. As expected, the GHM provides large
improvements only if the underlying distribution is Gaussian. Otherwise it is generally worse. MAI
improves the ED-PDF as much as 25% to 75% when the underlying distribution is normal or bi-modal,
though very little when the underlying distribution is Chi-square. In online Supplemental Appendix D, MAI

Median n_i = 65 n_i = 30 Median n_i = 25 n_i = 20

Normal

Chi−square

Bi−modal

Normal

Chi−square

Bi−modal

Normal

Chi−square

Bi−modal

Normal

Chi−square

Bi−modal

Normal

Chi−square

Bi−modal

Normal

Chi−square

Bi−modal

G
H

M
M

A
I

S
B

R
D

P
−

1
D

P
−

2
D

P
−

3

50 0 −200 −500 50 0 −200 −500 50 0 −200 −500 50 0 −200 −500
Percent Reduction in Euclidean Distance of PDFs

U
nd

er
ly

in
g 

D
is

tr
ib

ut
io

n

small large

Figure 6. Euclidean distance between estimated density function and the underlying distribution of cluster-level probabilities, fp (ED-

PDF); average over 1000 simulated data sets and plotted on the log scale as a percent reduction relative to the ED-PDF for raw

proportions (naive method). Black vertical line represents no difference. Gray vertical lines represent 50% improvement (left) and

200% worse (right). Fixing N¼ 300 clusters and varying (1) four cluster sizes, ni: 20, mixture with median 25, 30, and mixture with

median 65; (2) underlying variation: small and large with �2
b ¼ 0:05 and 0:50, respectively; (3) underlying distribution of cluster-level

probabilities: Normal, Chi-square, Bi-modal. Methods: GHM, Gaussian hierarchical model; MAI, moment-adjusted imputation; SBR,

smoothing by roughening; DP-1, Beta-binomial hierarchical model with Dirichlet prior with hyper-prior parameters favoring
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produces a rare outlier in the case of small ni and small, chi-square provider variation. The outlier was easily
recognizable for having mass on a few discrete points and may have skewed the average performance in this
scenario. This never occurred with larger ni (� 30), regardless of the underlying distribution. SBR and DP-1
increased the ED-PDF by as much as 500% in many cases. The problem was most severe in large variation
scenarios, worsened with increasing cluster size ni, and did not improve with increasing N. Investigation of
individual data sets (online Supplemental Appendix D) reveals density estimates with 10 to 20 modes, when the
underlying distribution had only one or two. DP-2 and DP-3 favor a more smooth distribution and yet the
same problem was apparent.

4 Analysis of early physician follow-up

To demonstrate these methods, we revisit the example of early physician follow-up described in Section 1. Using
the raw proportions, calculated within each provider, Hess et al.5 saw wide variation in early follow-up with a
physician after MI (Figure 7(a)). In Figure 1, we re-analyze the CRUSADE data and directly estimate the density
of the provider-specific proportion of patients receiving early follow-up using a GHM, MAI, SBR, and DP
methods. In Figure 7(c), SBR is displayed for �N ¼ 20 and 50, in order to visualize the sensitivity to the choice
of iterations. Each of the DP priors is included in Figure 7(d).

Comparing Figure 7(a) with 7(b) to (d), the standard deviation is smaller when chance variations are removed.
The adjusted distributions in Figure 7(b) to (d), have nearly identical spread. Compared to GHM, MAI preserves
some unique features of the raw distribution, such as slight bi-modality near the peak, whereas SBR and DP
methods create clusters of provider probabilities. Our simulation studies suggest that those clusters may be false
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and occur even if the underlying distribution of provider probabilities is smooth. Figure 7(b) to (d) conveys the
same essential information that the wide variation in the use of early follow-up observed by Hess et al.5 was largely
reflective of real variation.

5 Discussion

When the goal of an analysis is to estimate the magnitude of systematic differences among providers, the random
variation associated with observed rates muddies the picture. We illustrate the use of existing methods for this
purpose and assess their merits under settings that are representative of hospital variation studies, including
smaller cluster sizes than have previously been evaluated. Further, we demonstrate a novel application of MAI.
Our results emphasize that each has limitations. The choice of methods should be guided by the priorities of a
given study and the available data.

When the goal is to quantify cluster-level variation and flexible density estimation is not a priority, the GHM
performs well; its variance is unbiased regardless of whether the underlying distribution is Gaussian. This result
does not depend on the number of hospitals, N, or hospital sizes, ni. The GHM is particularly useful if the number
of providers is small (N � 100) and/or the number of patients per provider is small (median ni � 25), but the
parametric assumption imposed by the model must be acknowledged. If flexible density estimation is desired,
larger site sizes are needed. Otherwise all of the methods considered here have potential problems. With median
ni � 25, MAI may produce densities with mass on a few discrete points; while exceedingly rare, this cannot be
ruled out without the knowledge of the underlying density. With hospital sizes larger than 30, MAI performs well,
whereas SBR and DP methods estimate incorrect multi-modal densities. The gains in density estimation fromMAI
are modest, with a reduction in ED-PDF of 0 to 75%. However, this compliments a large improvement in variance
estimation (60%–95% reduction in MSE of the variance).

Although DP-1, DP-2, and DP-3 reduce bias in the estimation of provider-level variability, the resulting
densities are not accurate. Given that our motivating applications seek to illustrate variability via a density
estimate, this method could be misleading. The current analysis is based on a mixture of DPs that has been
proposed for the purpose of flexible density estimation and incorporated into software that is apparently
straightforward to use.14,17,23 Our specification of hyper-prior parameters is consistent with the previous
literature,15 and DP-1 is similar to fixing �¼ 1, which is default in the documentation of DPbetabinom().
However, the problems we observe are not easily resolved by modifying the hyper-prior parameters. We
explored a large number of hyper-prior parameters prior to focusing on DP-1, DP-2, and DP-3. Alternatives
were not superior. Therefore, our results are likely representative of a typical application of this software. This
does not implicate all Bayesian methods; a Bayesian analysis with Gaussian prior would be nearly identical to the
GHM. However, the Bayesian semi-parametric model based on a DP prior was frequently worse than naive
methods at estimating the provider-level density. This method does not appear suitable to hospital variation
studies that are similar to the settings we evaluate.

SBR exhibits some of the same problems as DP methods. Even with a large number of hospitals and many
patients per hospital, the SBR density estimate is often worse than the naive method, with false multi-modality.
Shen and Louis13 noted that the SBR estimate of Fp behaves similarly to the one based on the DP hyper-prior,
depending on the number of iterations �N. SBR converges to the nonparametric maximum likelihood estimator
(NPML) as the number of iterations increases. The NMPL has been criticized for being discrete, and frequently
under-dispersed. Therefore it is not surprising that SBR would exhibit similar features at some number of
iterations. Using fewer iterations of SBR is an option. Smaller �N will create more smoothing and avoid multi-
modality. However, the tradeoff, at least with an uninformative prior, is that the results remain over-dispersed.
This phenomenon can be seen in Supplemental Appendix E.

These problems observed with DP and SBR methods were not observed in previous studies that focused on
continuous outcomes, larger cluster sizes and estimation of CDFs. In these cases, where there is more information
in the data, results would not be as sensitive to choice of prior parameters or iterations. In addition, focusing on the
CDF (Figure 5) does not emphasize a problem because the ED-CDF (Figure 5) is insensitive to false modes, since it is
primarily driven by differences in center and spread. One advantage to SBR is that it is easy to investigate the
sensitivity of results to the choice of �N. By saving the output at each step, one can plot the results across a range
of �N. If the results were insensitive that might provide an additional level of confidence. In our settings, the results
were very sensitive. Therefore, there is a high risk of inaccurate results or the potential to pick and chose among them.

Compared to the DP and SBR methods, MAI does not involve decisions regarding hyper-prior or tuning
parameters. MAI does not directly target density estimation but ‘‘adjusts’’ the observed data to have unbiased
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moments up to a fixed number. However, the choice of how many moments to match is analogous to a tuning
parameter. We implemented MAI, as proposed by Thomas et al.,18 by fixing the number of unbiased moments at
four (mean, variance, skewness, and kurtosis). If the number of moments matched were increased, the results
would vary. For our purpose, MAI may be preferable because the decision regarding moments is easily interpreted
and related to the goals. In order to visualize variability across providers, without any strong parametric
assumptions, it may be adequate to have unbiased mean, variance, skewness, and kurtosis. Indeed, this
approach performed well across a range of scenarios.

There are a variety of opportunities for extensions and future research. For clarity, we have focused on the
example of variation in early follow-up across hospitals, but the same issues and methods apply to any binary
outcome and across different types of provider-based clusters (site, region, and physician). Occasionally, the goal is
to describe variation across providers, after adjusting for patient characteristics. It is relatively simple to adapt
MAI to allow for case-mix adjusted rates, as MAI starts with a set of noisy estimates (potentially adjusted) and
removes the noise. However, there are a lot of ways in which adjustment can be defined in terms of the target of
inference. This is more complicated because the variation in proportions depends on the mean; different methods
of adjustment that alter the center of the distribution may target different variance parameters. In addition, one
might consider whether fixed provider-level information could be used to augment the adjustment process.
Provider volume, for example, is often of interest. MAI was developed to target the joint distribution of
multiple variables including mis-measured and error-free variables. Moments and cross-products can be
targeted to achieve this end. MAI could be adapted to remove measurement error in a volume-specific way;
preserving the joint distribution between site-specific performance and volume. These extensions are an
important avenue for future research.

Quality improvement studies involve many objectives that are not considered here and excellent resources are
available.6–8 Different objectives within the same study may require different methods. Here, we provide methods
that may complement other analyses. Whenever the magnitude of variability is a key finding, it should be
estimated and illustrated unbiasedly.
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