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COMMENTARY

SARS‑CoV‑2‑mediated inflammatory response in lungs: should we 
look at RAGE?
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In December 2019, a new type of coronavirus pneumonia 
(COVID-19) emerged in Wuhan, China, and spread rapidly 
all over the world, forcing the World Health Organization 
to officially declare on 30 January 2020, the COVID-19 as 
a global pandemic. Lung inflammation is the main cause 
of life-threatening respiratory disorders at the COVID-19 
severe stage [1, 2].

The etiological agent of this new pandemic is a novel 
coronavirus, the SARS-CoV2, which uses the angioten-
sin converting enzyme 2 (ACE2) molecule as the receptor 
for viral cell entry [3]. ACE2 plays an important role in 
the renin–angiotensin system (RAS), and the imbalance 
between ACE/Ang II/AT1R pathway and ACE2/Ang (1–7)/
Mas receptor pathway in the RAS system will lead to multi-
system inflammation [4].

It is well known that increased ACE and Ang II are poor 
prognostic factors for severe pneumonia [5]. Conversely, dif-
ferent studies including systematic review and meta-analysis 
have shown that ACE inhibitors/ARBs have a protective role 
[6, 7]. Furthermore, inpatient use of ACEI/ARB in hyper-
tensive hospitalized COVID-19 patients has been recently 
associated with lower risk of all-cause mortality compared 
with ACEI/ARB non-users [8].

Activation of the angiotensin II receptor type 1 (AT1R) 
by Ang II leads to the induction of NF-κB [9, 10], and sub-
sequent inflammation through pathways distinct from those 
mediating classical Gq-induced signaling [11].

The receptor for advanced glycation end-products 
(RAGE), initially recognized for its ability to bind to 

Advanced Glycation End-products (AGEs), was subse-
quently found to be a pattern recognition receptor able to 
recognize several danger signals, including high mobility 
group box-1 (HMGB1)/amphoterin, S100/calgranulins, and 
amyloid-β peptide [12, 13].

At present, this multiligand pattern recognition receptor 
is considered as a key molecule in the onset and sustain-
ment of the inflammatory response in many clinical entities 
[14–17]. Furthermore, activation of RAGE causes not only 
an inflammatory gene expression profile but also a positive 
feed-forward loop, in which inflammatory stimuli activate 
NF-κB, which induces RAGE expression, followed by a sus-
tained NF-κB activation [18].

The signaling cascades triggered by RAGE engagement 
are much more complex and diverse than initially thought, 
considering that RAGE-binding proteins located in either 
the cytoplasm and or on the plasma membrane can modu-
late RAGE-mediated signaling diversity, in addition to the 
conformational flexibility acquired after the engagement, 
ranging from homo-dimerization, homo-multimerization 
and even to hetero-dimerization [19, 20].

Noteworthy, a cognate ligand-independent mechanism for 
RAGE transactivation has been recently reported to occur 
following activation of the AT1R, in different cell types [21]. 
Activation of the AT1R by angiotensin II (Ang II) triggered 
the transactivation of the cytosolic tail of RAGE and NF-κB-
driven proinflammatory gene expression, independent of the 
liberation of RAGE ligands or the ligand-binding ectodo-
main of RAGE. Furthermore, the adverse proinflammatory 
signaling events induced by AT1 receptor activation were 
attenuated when RAGE was deleted or transactivation of its 
cytosolic tail was inhibited.

At this point, it is important to highlight that RAGE is 
expressed at a low basal level in most healthy adult tissues, 
and its expression is up regulated during pathologic pro-
cesses. However, pulmonary tissues express remarkably high 
basal levels of RAGE, where it seem to play a homeostatic 
physiological role in tissue morphology [22].
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Although RAGE has been defined as a specific marker 
of AT1 cells, after cell injury [23], RAGE may also be 
expressed in type 2 alveolar epithelial (AT2) cells [24]. In 
addition to lung epithelium, RAGE expression has also been 
noted in many crucial cell types in lung physiology, such as 
vascular smooth muscle cells [25], airway smooth muscle 
cells [26], and endothelial cells [27].

Considering the abundance of both AT1R and RAGE 
expression in lungs, the RAGE transactivation produced 
by Ang II-mediated AT1R activation can run continuously; 
while, the virus-mediated imbalance of the ACE/Ang II/
AT1R pathway is being produced by the binding of SARS-
CoV-2 to ACE-2 molecules, and, thus, limiting its function 
as a RAS counter-regulator.

This new transactivation mechanism opens new ques-
tions, considering that RAGE is a highly polymorphic 
protein, on the possibility that some polymorphisms can 
alter these intermolecular protein–protein interactions. Fur-
thermore, Ang II exerts several cytokine-like actions via 
the AT1R and by transactivation of several growth factor 
receptors, including EGF, platelet-derived growth factor, 
and IGF receptors [28, 29]. These conditions may then ren-
der a wide range of biological responses, as we are seeing 
in patients affected by COVID-19, where not all infected 
patients develop a severe respiratory illness.

Due to the compelling body of evidence supporting a 
crucial role of RAGE activation in many clinical entities, 
many efforts have been done to inhibit RAGE signaling, and 
although a very extensive variety of compounds of the most 
dissimilar nature has been reported as capable of inhibiting 
RAGE signaling, only a few have been evaluated in clini-
cal trials [30]. Due to the magnitude of this pandemic and 
its associated costs, and considering that lung injury with 
severe respiratory failure is the leading cause of death in 
COVID-19, science cannot afford to rule out any approach 
to confront this daunting scenario. Although, many vaccine 
candidates are under development and different anti-RNA 
viral drugs clinical trials are in course, due to the current 
urgency to stop the pandemic, it is important to highlight 
that the more the knowledge generated about inflammatory 
bronchoalveolar pathophysiology of this disease, the greater 
the success of the rational design and/or the use of drugs for 
its treatment.
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