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ABSTRACT: Pharmacokinetic research plays an important role in
the development of new drugs. Accurate predictions of human
pharmacokinetic parameters are essential for the success of clinical
trials. Clearance (CL) and volume of distribution (Vd) are
important factors for evaluating pharmacokinetic properties, and
many previous studies have attempted to use computational
methods to extrapolate these values from nonclinical laboratory
animal models to human subjects. However, it is difficult to obtain
sufficient, comprehensive experimental data from these animal
models, and many studies are missing critical values. This means
that studies using nonclinical data as explanatory variables can only
apply a small number of compounds to their model training. In this
study, we perform missing-value imputation and feature selection on nonclinical data to increase the number of training compounds
and nonclinical datasets available for these kinds of studies. We could obtain novel models for total body clearance (CLtot) and
steady-state Vd (Vdss) (CLtot: geometric mean fold error [GMFE], 1.92; percentage within 2-fold error, 66.5%; Vdss: GMFE, 1.64;
percentage within 2-fold error, 71.1%). These accuracies were comparable to the conventional animal scale-up models. Then, this
method differs from animal scale-up methods because it does not require animal experiments, which continue to become more
strictly regulated as time passes.

■ INTRODUCTION
Pharmacokinetic evaluations play an important role in the
development of new drugs throughout the entire process.1

Clinical trials are particularly important in drug development,
and improving the success rate of these requires the estimation
of effective clinical dosages that produce the best drug effect
profile. Therefore, it is necessary to accurately predict human
pharmacokinetic parameters from nonclinical experimental
data before transitioning to human clinical trials.2 In general,
the parameters that have a large effect on the blood
concentration profile of a drug during intravenous admin-
istration are the volume of distribution (Vd), which quantifies
the distribution of the drug inside the human body, and total
body clearance (CLtot), which shows the drug processing
capacity within the body as a whole.

Vd is determined by the physical properties of the drug, such
as protein binding and membrane permeability, and
predictions from machine learning models using chemical
structures (CS) have been relatively accurate.3 When non-
clinical animal experimental values are available, the difference
between the predicted and experimental values is maintained
within approximately a 2-fold error using animal scale-up
methods.4 However, since this kind of highly accurate

prediction method uses data from large animals such as dogs
and monkeys, it is difficult to use this approach because of their
high cost and ethical implications of large animal models.5

Predicting CLtot is much more difficult than Vd because
there are multiple drug CL pathways, including metabolism
mainly by the liver and gastrointestinal tract, bile excretion of
the unmetabolized drug, and its excretion in the urine. In one
method, the intrinsic CL obtained in in vitro studies using
human hepatocytes and microsomes was scaled up to
determine hepatic CL. However, in many cases, the data
cannot be accurately scaled because of issues around
differences in the experimental systems and variations in lots
between human specimens. Furthermore, there are currently
no suitable in vitro experimental systems for other organs.6 The
empirical CLtot predictions method using the animal weight
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power law showed accurate at an average of approximately 2-
fold error. However, verification has not been performed on
external datasets.7,8

For predicting CLtot, several studies have already inves-
tigated using machine learning.9 Then, some reports used
related experimental values to CLtot as explanatory variables.10

We proposed using a machine learning method based on
multimodal learning that takes the CS and nonclinical data for
predicting human CLtot.

11 The main point of this method to
note is that the human CLtot prediction accuracy is increased
using both CS data and animal experimental data, suggesting
that it may be possible to further improve human CLtot
prediction accuracy using not only rat CLtot but also the
CLtot values from various animals (e.g., dogs and monkeys)
and in vitro experimental values such as the protein binding
ratio for each animal species as explanatory variables. However,
these experimental values are often missing from the
compound datasets.

Missing-value imputation is a well-known method for
resolving this issue. Methods that use machine learning, such
as kNNimputation,12 multivariate imputation by chained
equations,13 and missForest,14 are established imputation
methods known for their ability to provide improved accuracy
in these types of applications. The prediction of drug
repositioning with high accuracy has been made possible by
the addition of missing-value imputation based on the
similarity of compound structures.15 Missing data related to
activity values for different compound targets were predicted
using the Random Forest method, and a QSAR model was
constructed, which uses the data from these imputed missing
values as explanatory variables.16

In this study, first, we constructed machine learning models
for predicting the missing nonclinical data using chemical
compound descriptors. Next, we predicted the missing
nonclinical data and then we constructed our machine learning
model for predicting human CLtot and Vdss, which used the

nonclinical data with imputed missing values and CS data as
explanatory variables. XGBoost and Deep Tensor,17 a deep
learning method that can learn graph data, were used as the
bases for these machine learning models. As a result, the
prediction accuracy of this method is comparable with the
many animal scale-up methods. Different from the conven-
tional methods, since these models do not need new
experimental data, it seems to be appropriate for predicting
the human parameters in not only the clinical stage but also the
early drug discovery stage.

■ MATERIALS AND METHODS
Workflow. The workflow used in this study consisted of the

following three steps: (i) gathering of the chemical compound
and nonclinical data; (ii) imputing the missing values in the
nonclinical data using ADMEWORKS (https://www.fujitsu.
com/jp/solutions/business-technology/tc/sol/admeworks/
index.html); and (iii) selecting features by XGBoost or
Random Forest and constructing the prediction model (Figure
1).

Gathering Chemical Compounds, Nonclinical Data, and
Data Preprocessing. We obtained 741 sets of human CLtot
data with CS data, and 751 sets of human Vdss data with CS
data from JCP20134,7 and ChEMBL23.18 We also obtained
various sets of animal experimental data (CLtot, Vdss, and
fraction-unbound data for rats, dogs, and monkeys) and human
fu data for each of these compounds.4,7 In addition, we
collected the pKa acid, pKa base, solubility, and caco-2
permeability data including the calculated values for each
compound from PubChem19 and DrugBank.20 Caco-2
permeability is a positive/negative binary value, and the values
denoted as predicted values were also collected (Table 1). This
left us with 46 CLtot and 45 Vdss compounds that recorded all
11 data items for CLtot: rat CLtot, dog CLtot, monkey CLtot,
human fu, rat fu, dog fu, monkey fu, pKa acid, pKa base,

Figure 1. Workflow of our novel human CLtot and Vdss prediction method. (A) CLtot analysis flow. (i) There were 741 compounds with human
CLtot data and 46 that had values for all 11 features. (ii) All feature values were estimated via prediction using ADMEWORKS. (iii) Feature
extraction was performed using XGBoost or Random Forest, and a prediction model was constructed. (B) Vdss analysis flow. (i) There were 751
compounds with human Vdss data and 46 that had values for all 11 features. (ii) All feature values were estimated via prediction using
ADMEWORKS. (iii) Feature extraction was performed using XGBoost or Random Forest, and a prediction model was constructed.
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solubility, and caco-2 permeability; and Vdss: rat Vdss, dog Vdss,
monkey Vdss, human fu, rat fu, dog fu, monkey fu, pKa acid,
pKa base, solubility, and caco-2 permeability (hereinafter
defined as “nonclinical data”). These sets of compounds were
labeled the “evaluation dataset” and the sets of compounds not
in the “evaluation dataset” were labeled the “training dataset”
for human CLtot or Vdss (dataset.xlsx). In addition, the set of
compounds formed by removing the “evaluation dataset” from
the set of compounds that had rat data were labeled “training
dataset (rat)” for the human CLtot and Vdss data. Note that
although the excretion pathways have not been identified in
most of the compounds used in this study, when the data from
Lombardo et al., who gathered drug data,7 and Varma et al.,21

who investigated human kidney excretion, were compared,
kidney excretion of 50% or less of the CLtot was found in 157
of the 231 remaining compounds. Furthermore, although data
were gathered during intravenous administration of eptalo-
prost, there are errors in the cited references, and it has been
shown that the human data are for oral administration.

The gathered data were then preprocessed as follows before
applying each of the machine learning calculations described in
the next section. First, the CLtot, Vdss, and solubility data
underwent a logarithmic transformation and then all of the
data except the caco-2 permeability values were standardized.
It is worth noting that the data used in the animal scale-up
method evaluations were the raw data without data
preprocessing.

Missing-Value Imputation Using ADMEWORKS. Some of
the 11 features of the nonclinical data were missing for some of
the compounds in the “training dataset” (Table 1). Therefore,

we created machine learning models using existing data for
each item and predicted the unknown nonclinical values for
these features using these models. ADMEWORKS was used to
complete the descriptor calculations, descriptor extractions,
prediction model construction, and prediction. First, com-
pound descriptors with a total of 1465 dimensions were
calculated from descriptors with 555 dimensions identified
from their atom/bond-related parameters, topology-related
parameters, and physiochemical parameters, and descriptors
with 910 dimensions were obtained by counting a partial
structure search of CS. Next, descriptors containing missing
values, calculation errors, and descriptors with a correlation
coefficient of 0.9 or higher (the default setting in ADME-
WORKS) were excluded. In addition, high-level feature
extraction (particle swarm optimization)22 was performed,
and a model was constructed using the remaining descriptors.
The machine learning model that maximized the percentage
within a 2-fold error in 5-fold cross-validation (maximized the
two-class accuracy of caco-2 permeability only) was then
adopted for downstream analyses. The nonclinical data for
each compound were then predicted using each prediction
model and the machine learning methods used for each item
and the learning model accuracies are listed in Table S1.

Feature Selection and Prediction Model Construction.
Feature Selection. Given the possibility that nonclinical data
may not be that useful for prediction and the possibility of
inappropriate missing-value imputation having an adverse
effect on prediction, specific items among the 11 nonclinical
data categories were selected as explanatory variables. This
selection was performed based on the importance of the
explanatory variable as determined during the construction of
the prediction model using the XGBoost or Random Forest
method.23 First, the prediction models for human CLtot and
Vdss were constructed with “training dataset” by the XGBoost
or Random Forest method using all 11 items from the
nonclinical data as explanatory variables. This allowed us to
evaluate the importance of each of the 11 variables within the
model. Next, the top k nonclinical data of importance were
selected as explanatory variables. The best k was determined by
the search using the initial k value where the total of the top k
importance exceeded 0.5 with each k evaluated in single-value
increments. For each k, 5-fold cross-validation using the
“training dataset” was performed using the multimodal model
described below, whose explanatory variables included the CS
and the top k nonclinical data of importance. This was
evaluated using the geometric mean fold error (GMFE) and
percentage within a 2-fold error, which are described below.
When either the GMFE or percentage within a 2-fold error
became worse than the previous value of k (i.e., k − 1), the
search was complete. Finally, the k that gave the best GMFE

Table 1. Details of the Compound Data

feature number of compounds source

human CLtot 741 JCP2013, ChEMBL23
rat CLtot 387 JCP2013, ChEMBL23
dog CLtot 284 JCP2013, ChEMBL23
monkey CLtot 129 JCP2013, ChEMBL23
human Vdss 751 JCP2013, ChEMBL23
rat Vdss 351 JCP2013, ChEMBL23
dog Vdss 274 JCP2013, ChEMBL23
monkey Vdss 125 JCP2013, ChEMBL23
human fu 577 JCP2013, ChEMBL23
rat fu 237 JCP2013, ChEMBL23
dog fu 179 JCP2013, ChEMBL23
monkey fu 88 JCP2013, ChEMBL23
pKa acid 334 Pubchem, DrugBank
pKa base 335 Pubchem, DrugBank
solubility 339 Pubchem, DrugBank
caco-2 permeability 307 Pubchem, DrugBank

Figure 2. Overview of the multimodal Deep Tensor model.
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and percentage with a 2-fold error within the search range was
considered the best k, and the nonclinical data at the best k
were selected for further evaluation.

Deep Tensor Model. To evaluate the effectiveness of the
missing-value imputation, a prediction model that uses only
the CS data as explanatory variables was constructed using
Deep Tensor for comparison. The “training dataset” was used
to construct this prediction model and the other conditions
were set to the same values as those used in the multimodal
Deep Tensor model described below.

Multimodal Deep Tensor Model. Prediction models for
human CLtot and Vdss were constructed using the CS and
nonclinical data as explanatory variables using the previously
described method11 for Deep Tensor,17 a deep learning
technology for structured graph data (Figure 2). For CLtot and
Vdss, four combinations of the nonclinical data were used as
explanatory variables with the training dataset used to
construct the prediction model: (1) rat data only + “training
dataset (rat)” (as CS + rat CLtot or Vdss in Table S2); (2) rat
data only + “training dataset” (as CS + rat CLtot or Vdss
imputed in Table S2); (3) all 11 nonclinical data points +
“training dataset” (as CS + 11 features in Table S3); and (4)
nonclinical data selected by the feature selection described
above + “training dataset” (as CS + selected features in Table
S3). The core tensor size was set at 50 × 50 and the neural
network structure consisted of two intermediate layers, 1000
neurons in each layer, and one neuron in the output layer. The
ReLU function24 was used as the activation function, and batch
normalization25 with a decay rate of moving average = 0.9,
epsilon value = 2 × 10−5, and dropout26 at a rate of 0.5 was
applied to produce the intermediate layers. Then, during
training, the number of epochs was set to 50, and the
minibatch size was set to 100.

XGBoost Model. To evaluate the effectiveness of the
missing-value imputation, we performed XGBoost calculation
as a traditional machine learning model. XGBoost was
implemented using scikit-learn of Python language.27 Pre-
diction models that used only the CS data and the CS data and
nonclinical data as explanatory variables were constructed. We
transformed the CS data into the extended connectivity
fingerprint with bond diameter four (ECFP4). The ECFP4
compound descriptor was calculated using RDKit with
parameters of radius 2 and 2048 dimensions.

Animal Scale-Up and Conventional Machine Learning
Methods. The single-species allometric scaling (SSS) method
for CLtot, which uses the CLtot values of any single model, rats,
dogs, or monkeys, the simple allometry (SA) method, which
uses all three species, and the fraction-unbound corrected
intercept method (FCIM)28 are often implemented as the
conventional method of human CLtot prediction. For the
construction of each model of SSS, the compounds that have
the value needed for each model are used from “training
dataset.” Then, each model is evaluated by the “evaluation
dataset”. For SA and FCIM that have no training process by
the training dataset, the parameters are tuned by the data of
each compound to be predicted. The number of compounds in
the training process for parameter selection for each method
and the equations for each method are shown in Table S4.

The SSS and SA method for Vdss uses the Vdss values similar
to the CLtot prediction models described above. Then, the
Øie−Tozer29 method was also used as the conventional
method of human Vdss prediction. The process of construction
and evaluation of each model of SA is similar to CLtot. For the

SA and Øie−Tozer method that have no training process by
the training dataset, the parameters are tuned by the data of
each compound to be predicted. The number of compounds in
the training dataset for each parameter and each method and
the equations for each method are shown in Table S5.

Performance Evaluation. GMFE and percentage within a
2-fold error were used as indicators for evaluating the
prediction accuracy of the method. When GMFE = X, the
mean error between the measured and predicted values can be
interpreted as an X-fold error. GMFE is expressed by the
following equation

GMFE 10mean log (predicted/observed)10= | |

where GMFE values closer to 1 indicate improved accuracy.
Furthermore, a percentage within a 2-fold error indicates the
proportion of data that are within a 2-fold error (1/2 × correct
value ≤ predicted value ≤ 2 × correct value). Values of
percentage within a 2-fold error closer to 100% indicate better
accuracy. When the evaluation results did not match for both
indicators, GMFE was used as the primary predictor of
accuracy as this is the more comprehensive indicator value.

■ RESULTS
Evaluation of the Usefulness of Missing-Value

Imputation. To clarify the effectiveness of missing-value
imputation, the accuracy was evaluated using rat data, which
had the fewest missing variables. More specifically, three
models were created: a model trained using only CS data, a
multimodal model using CS and rat CLtot or rat Vdss (CS + rat
CLtot or rat Vdss) data, and a multimodal model using CS and
rat CLtot or rat Vdss imputed data using predicted values (CS +
rat CLtot imputed or rat Vdss imputed), and the effectiveness of
the missing-value imputation was evaluated (Table S2).
Evaluation was performed using the evaluation dataset that
included established values for human, rat, dog, and monkey
CLtot or Vdss for 45 compounds for the CL prediction or 46
compounds for the Vdss data predictions. Note that variation
was inhibited in these evaluations due to the limited number of
compounds in the evaluation dataset; construction of the
models and evaluation using the evaluation dataset were
completed five times, and the mean values were used for the
evaluation.

Table 2 shows the results of the missing-value imputation for
CLtot prediction. First, the accuracies were compared for the
model trained using only CS and the multimodal model using
CS and rat CLtot (CS + rat CLtot). The training data for the
model using only CS consisted of 695 compounds excluding
those present in the evaluation dataset (only CS), the GMFE
was XGBoost: 2.53 and Deep Tensor: 2.44, and the percentage
within the 2-fold error was XGBoost: 45.7% and Deep Tensor:
45.7%. For the multimodal model including CS and rat CLtot,
taking the 343 compounds that had a rat CLtot value from the
695 compounds as training data (CS + rat CLtot), the GMFE
was XGBoost: 2.15 and Deep Tensor: 2.15, and the percentage
within 2-fold error was XGBoost: 52.2% and Deep Tensor:
54.8%. This finding confirmed that the accuracy was improved
by introducing rat CLtot values to the CLtot prediction. This
result is consistent with our previous report.11 Next, although
accuracy is generally increased by increasing the amount of
training data, there were fewer compounds for which
nonclinical data, such as rat CLtot values, were measured.
Therefore, we performed prediction using ADMEWORKS for
the compounds with no rat CLtot value data (see the Materials
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and Methods for more details). This meant that we could then
train the multimodal model using the CS and rat CLtot
imputed data with 695 compounds (CS + rat CLtot imputed).
This model produced a GMFE of XGBoost: 2.09 and Deep
Tensor: 2.09, and the percentage within 2-fold error was
XGBoost: 54.3% and Deep Tensor: 54.3%, making it the most
accurate model. These results suggest that model accuracy can
be improved by increasing the data used during training, even
if this is imputed data.

Next, Table 2 also shows the results of the missing-value
imputation for Vdss. When a comparison was performed using
training data for 706 compounds, excluding the evaluation
dataset, the model trained using only CS (only CS) and the
multimodal model using CS and rat Vdss (CS + rat Vdss, using
306 compounds) had GMFEs of XGBoost: 1.66 and 1.72,
Deep Tenor: 1.85 and 1.89, and percentages within 2-fold
errors of XGBoost: 82.2% and 75.6% and Deep Tensor: 62.2%
and 56.9%, respectively. This means that the model using only
CS (only CS) was more accurate than the multimodal model
using CS and actual nonclinical data (CS + rat Vdss). It is
known that the structure−activity relationship is stronger for
Vdss than CLtot for prediction from structure information,3 and
this suggests that the increase in structure alone in the training
data increases the accuracy of the prediction model.
Furthermore, when we evaluated the model produced using
the training data of 706 compounds with imputed nonclinical
data where there was no rat Vdss value, the multimodal model
using CS and rat Vdss imputed using predicted values (CS + rat
Vdss imputed) had a GMFE of XGBoost: 1.73 and Deep
Tensor: 1.75, and a percentage within 2-fold error of XGBoost:
68.9% and Deep Tensor: 64.4%, making it the most accurate
model.

Improving Accuracy Using Feature Selection. Im-
proved accuracy was achieved using multimodal machine
learning models and imputed values for the missing rat CLtot/
Vdss data. We then went on to evaluate the addition of
multimodal machine learning models designed to select
specific features from the 11 items of nonclinical data in
each dataset (Table S3).

We first created a set of learning models for each of the 11
items in the nonclinical data using ADMEWORKS, and
missing-value imputation was performed by prediction. Details
of the prediction model and model accuracy for each item of
the nonclinical data are shown in Table S1. Multiple models
were constructed for each item, and missing-value imputation
was performed by predicting the unknown clinical data using
the model with the highest accuracy.

We went on to complete feature selection using these 11
items with their imputed data for any missing values. The
importance of each item in the nonclinical data is shown in
Figures S1−S4. We then used their importance to select the
four items (rat CLtot, dog CLtot, human fu, and pKa acid)
critical for CLtot prediction (Figure S1 and Table S6) and the
five items (rat Vdss, dog Vdss, pKa acid, pKa base, and human
fu) identified for Vdss prediction (Figure S2 and Table S7)
from the nonclinical data using the XGBoost algorithm. We
then used their importance to select the four items (rat CLtot,
dog CLtot, human fu, and pKa acid) critical for CLtot prediction
(Figure S3 and Table S8) and the six items (dog Vdss, rat Vdss,
pKa acid, pKa base, solubility, and human fu) identified for Vdss
prediction (Figure S4 and Table S9) from the nonclinical data
using the Random Forest algorithm.

Finally, multimodal machine learning models were con-
structed using the selected nonclinical and CS data. The
accuracies of this model, five different conventional methods,
the model using only CS, and the multimodal model using CS
and all 11 items of nonclinical data were evaluated using the
“evaluation dataset.” We then repeated the dataset evaluations
five times for both the multimodal machine learning model and
the model using CS only, and the mean value was used for
evaluation, similar to the evaluation of the usefulness of
missing-value imputation. Table 3 shows the results of the
CLtot prediction using eight different models. Among the five
types of conventional models, models that use monkey CLtot
data, such as SSS monkey (GMFE: 1.93, percentage within 2-
fold error: 58.7%) and FCIM (GMFE: 1.99, percentage within
2-fold error: 52.2%) were the most accurate. Among the
multimodal models using nonclinical data with missing-value
imputation and CS as proposed in this research, the model
using all 11 items (CS + 11 features) presented with a GMFE
of XGBoost: 2.06 and Deep Tensor: 2.11 and a percentage
within 2-fold error of XGBoost: 58.7% and Deep Tensor:
52.2% that was equivalent to the conventional methods, while
the model using feature selection (CS + selected features) was
shown to be the most accurate with a GMFE of XGBoost: 1.98
and Deep Tensor: 1.92 and a percentage within a 2-fold error
of XGBoost: 50.0% and Deep Tensor: 66.5%. These results
indicate that predictive models can be improved by increasing
the number of compounds used for training and that these can
be enhanced by first imputing any missing data using
predictive values. In addition, these results suggest that a
better model can be constructed by performing feature
selection and training using only the important features from
the nonclinical data.

Table 2. Results of the Accuracy Evaluations for
Imputations of Rat CLtot Data

method GMFE
% of 2-fold

error

CLtot 695 compounds 2.53 45.7
XGBoost: only CS
343 compounds 2.15 52.2
XGBoost: CS + rat CLtot

695 compounds 2.09 54.3
XGBoost: CS + rat CLtot imputed
695 compounds 2.44 45.7
Deep Tensor: only CS
343 compounds 2.15 54.8
Deep Tensor: CS + rat CLtot

695 compounds 2.09 54.3
Deep Tensor: CS + rat CLtot imputed

Vdss 706 compounds 1.66 82.2
XGBoost: only CS
306 compounds 1.72 75.6
XGBoost: CS + rat Vdss

706 compounds 1.73 68.9
XGBoost: CS + rat Vdss imputed
706 compounds 1.85 62.2
Deep Tensor: only CS
306 compounds 1.89 56.9
Deep Tensor: CS + rat Vdss

706 compounds 1.75 64.4
Deep Tensor: CS + rat Vdss imputed
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Table 3 also summarizes the results from the Vdss
predictions. First, the Øie−Tozer method (GMFE: 1.46,
percentage within 2-fold error: 84.4%) was shown to be the
most accurate of the conventional methods evaluated and was
closely followed by SSS monkey (GMFE: 1.60, percentage
within 2-fold error: 80.0%). However, there were no significant
differences among the multimodal models using nonclinical
data with missing-value imputation and CS data, with CS + 11
features producing a GMFE of XGBoost: 1.64 and Deep
Tensor: 1.75 and a percentage within 2-fold error of XGBoost:
71.1% and Deep Tensor: 69.8% and the feature selection
model (CS + selected features) producing a GMFE of
XGBoost: 1.66 and Deep Tensor: 1.74 and a percentage
within 2-fold error of XGBoost: 71.1% and Deep Tensor:
74.2%, despite a small improvement in the overall accuracy as
described by the percentage within 2-fold error value. Unlike in
CLtot prediction, Vdss prediction was still more accurate using
the conventional Øie−Tozer method, which is based on
animal scale-up data.

■ DISCUSSION
Missing-Value Imputation (NA Imputation). This

research demonstrates that high-accuracy predictions of CLtot
and Vdss can be achieved via data extension facilitated by
missing-value imputation. Since this method does not require
new experimental values, it can be used from the initial stages
of drug development.

Although the effectiveness of imputation using this method
has been confirmed for rat data, it had not been evaluated for
other nonclinical data. Therefore, nonclinical data probably
exists where imputation is not effective, but rather reduces
prediction accuracy. Furthermore, nonclinical data may also
exist where imputation is appropriate but not effective for

prediction. With these possibilities in mind, we were careful to
select the explanatory variables in this study. Given this, it was
necessary to evaluate all combinations of the 12 candidate
explanatory variables, consisting of the CS data and 11 items of
nonclinical data, to select the explanatory variables that are
truly optimal for developing a multimodal Deep Tensor model.
However, since this would take a huge amount of time, this
study used a simplified version of these evaluations to select
the explanatory variables. More specifically, the CS data were
taken as always selected, and the required items from among
the 11 nonclinical data items were differentially applied. When
selecting the nonclinical data features, we determined that the
number of explanatory variables that should be selected were
evaluated based on the importance of the explanatory variables
(i.e., nonclinical data), as obtained from the XGBoost or
Random Forest evaluations (Figures S1−S4 and Tables S6−
S9). This allowed us to reduce the number of combinations of
explanatory variables that needed to be evaluated. Note that
the importance of the nonclinical data obtained from the
XGBoost or Random Forest method assumes that a prediction
model is constructed using the XGBoost or Random Forest
method. As a result, it is possible that these do not match the
importance of the multimodal Deep Tensor model. Fur-
thermore, in the XGBoost or Random Forest method, the
importance of each of the explanatory variables was calculated
using only the nonclinical data. As a result, when these are used
together with the CS data in the multimodal Deep Tensor
model, it is possible that their importance may change.
Therefore, we cannot definitively say whether we selected the
best explanatory variables.
Selected Explanatory Variables. The explanatory

variables selected for CLtot prediction (CS + selected features),
which had the highest prediction accuracy were CLtot rat, CLtot
dog, human fu, and pKa acid in both XGBoost and Deep
Tensor (Figures S1 and S3 and Tables S6 and S8). We believe
that the selection of CLtot for multiple species may help to
accurately reflect the inherent metabolic differences between
species.30 However, the fact that monkey CLtot was not
selected could possibly be due to problems with imputation
accuracy since the number of datasets used for missing-value
imputation for the monkey values was significantly smaller
than that of the other species. In addition, we believe that these
selections are valid as human fu was selected and this is a
common consideration for human CLtot prediction.7 The
addition of the pKa acid variable may help to accurately reflect
the allocation of the metabolism/excretion pathways depend-
ing on the compound’s physical properties.31

The explanatory variables selected for the most accurate
prediction of Vdss (CS + selected features) included rat Vdss,
dog Vdss, human fu, pKa acid, and pKa base in XGBoost
(Figure S2 and Table S7) and rat Vdss, dog Vdss, human fu, pKa
acid, pKa base, and solubility in Deep Tensor (Figure S4 and
Table S9). The Vd of multiple species is likely to reflect the
inherent differences in the Vd pathways between species32 and
the validity of these selections was similarly supported by the
addition of the human fu parameters.4 However, significantly
more physical property parameters (e.g., pKa acid, pKa base,
solubility) were included in the Vdss evaluations; this is likely
designed to reflect the fact that the Vd of various compounds is
determined by interactions between the compound and the
constituent components of the tissue (e.g., lipids, phospholi-
pids, acidic glycoprotein).33

Table 3. Results of Accuracy Evaluations

methoda GMFEb
% of 2-fold

error

CLtot SSS rat 2.36 43.5
SSS dog 2.30 39.1
SSS monkey 1.93 58.7
SA 2.33 45.7
FCIM 1.99 52.2
XGBoost: only CS 2.40 50.0
XGBoost: CS + 11 features 2.06 58.7
XGBoost: CS + selected features 1.98 50.0
Deep Tensor: only CS 2.44 45.7
Deep Tensor: CS + 11 features 2.11 52.2
Deep Tensor: CS + selected features 1.92 66.5

Vdss SSS rat 1.91 62.2
SSS dog 1.93 71.1
SSS monkey 1.60 80.0
SA 2.07 68.9
Øie−Tozer 1.46 84.4
XGBoost: only CS 1.70 77.8
XGBoost: CS + 11 features 1.64 71.1
XGBoost: CS + selected features 1.66 71.1
Deep Tensor: only CS 1.85 62.2
Deep Tensor: CS + 11 features 1.75 69.8
Deep Tensor: CS + selected features 1.74 74.2

aSSS: single-species allometric scaling; SA: simple allometry; FCIM:
fu-corrected intercept method; CS: chemical structure. bGMFE:
geometric mean fold error.
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Comparison with Animal Scale-Up Methods. Conven-
tional animal scale-up methods are known to be useful, offer
good accuracy, and are often used for human pharmacokinetic
parameter prediction during drug development.4,7 Here, we
showed that SSS monkey, which uses monkey data, had the
next highest accuracy for CLtot prediction after applying a
multimodal model with missing-value imputation + feature
selection (Deep Tensor: CS + selected features). This was
followed by the FCIM method, which uses data from rats,
dogs, and monkeys and XGBoost: CS + selected features.
Among the Vdss prediction methods, the Øie−Tozer method,
which is calculated based on the plasma and tissue binding
rates in rats, dogs, and monkeys, had the highest accuracy,
followed by an animal scale-up method using monkey (SSS
monkey) data and the proposed multimodal models with
missing-value imputation and features (XGBoost: CS + 11
features and Deep Tensor: CS + selected features), which had
slightly worse accuracy (Table 3). Given this, the prediction
accuracy of human CLtot and Vdss using monkey data can be
said to be valid for humans given the close genetic relationship
between these species.34,35 However, when the experimental
costs and ethical aspects of performing animal experiments are
considered, since monkey experiments tend to be completed at
later stages in the nonclinical development stage, employing
these in the initial stages of drug development is difficult.34,36

Therefore, the proposed multimodal model that includes
missing-value imputation and feature selection using existing
data can be applied in the initial stages of drug development
and is expected to contribute substantially to efficient drug
development.

■ CONCLUSIONS
This study constructed a set of high-accuracy CLtot and Vdss
prediction models using missing-value imputation and feature
selection for nonclinical data. Previous evaluations using
nonclinical data as explanatory variables were shown to be
less effective as the number of missing data points meant that
the final number of evaluated compounds was too small for
accurate machine learning. Therefore, we confirmed that the
accuracy of these models is improved as a result of increasing
the number of compounds used for training and increasing the
number of (nonclinical data) explanatory variables that can be
used by performing missing-value imputation on nonclinical
data. This method differs from animal scale-up methods in that
it does not require animal experiments, which have become
more strictly regulated in recent years. Although we used
XGBoost and Deep Tensor algorithms in this research, the
other machine learning algorithms could be applied because
this proposed method of imputation has no preference in
machine learning algorithms. The increased accuracy of the
CLtot and Vdss predictions produced by this method are
expected to facilitate the evaluation and identification of
candidate structures with improved pharmacokinetic proper-
ties at the earlier stages of drug discovery.
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