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Although the classification of chest radiographs has long been an extensively researched topic, 
interest increased significantly with the onset of the COVID-19 pandemic. Existing results are 
promising; however, the radiological similarities between COVID-19 and other types of respiratory 
diseases limit the success of conventional image classification approaches that focus on single 
instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as 
a deviation from a normative distribution of typical pneumonia patterns. Using a population-
based approach, our approach utilizes distributional anomaly detection. This method diverges 
from traditional instance-wise approaches by focusing on sets of scans instead of individual 
images. Using an autoencoder to extract feature representations, we present instance-based 
and distribution-based assessments of the separability between COVID-positive and COVID-
negative pneumonia radiographs. The results demonstrate that the proposed distribution-based 
methodology outperforms conventional instance-based techniques in identifying radiographic 
changes associated with COVID-positive cases. This underscores its potential as an early warning 
system capable of detecting significant distributional shifts in radiographic data. By continuously 
monitoring these changes, this approach offers a mechanism for early identification of emerging 
health trends, potentially signaling the onset of new pandemics and enabling prompt public health 
responses.

1. Introduction

Since 2020, numerous studies have focused on the automated classification of COVID-19 cases from Chest X-ray Radiographs 
(CXRs) [3,4,35], yielding promising outcomes. Later, it became clear that there are several limitations to distinguishing CXRs of 
COVID-19 patients from those with other types of pneumonia [30]. Issues such as shortcut learning and dataset shifts, often due to each 
data class being collected from different sources, were key factors behind apparent successes in COVID-19 classification algorithms 
[11,32]. Traditionally, medical diagnostic systems have relied on binary or multi-class classification schemes to differentiate between 
classes. One-class learning diverges from this by offering a unique framework to model the normal variations within a dataset, 
enabling the detection of any deviant pattern that signals change from the known distribution. This is especially useful for identifying 
emergent diseases, distinct from those previously known, such as what happened when the COVID-19 disease emerged.
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Fig. 1. Comparison of instance-based and distributional methods for detecting radiographic changes associated with COVID-19 pneumonia. Panel A illustrates the 
overlap of individual COVID-negative and positive radiographs with the reference set of images (COVID-negative), highlighting the challenge of distinguishing cases 
on a per-image basis (the dot overlay on the distribution curve represents the position of a single test image against the reference distribution). Panel B showcases 
how distributional analysis can differentiate batches of COVID-negative and positive radiographs, demonstrating its superior capability in discerning between typical 
known (similar to reference data) and unknown (different from reference data) radiographic patterns.

The radiological findings in CXRs of COVID-19 patients can be similar to those seen in patients with other kinds of pneumonia, 
especially those caused by other viruses [9,38]. The CXRs of COVID-19 patients often show characteristic signature patterns that are 
more prevalent within COVID-19 cases, such as a diffuse, peripheral, and commonly bilateral distribution of opacities, mostly in the 
lower region of the lungs [25]. However, these patterns may also be present in scans depicting other types of pneumonia. Therefore, 
classifying individual instances of COVID-19 pneumonia in CXRs is challenging because of a lack of discernible diagnostic features.

1.1. Overview

We propose a distributional OOD (Out-Of-Distribution) detection approach that evaluates sets of new instances collectively rather 
than individually. This method conceptualizes COVID-19 pneumonia as a distribution shift from traditional pneumonia, rather than as 
a completely new OOD class, thus accounting for the absence of exclusive diagnostic features specific to COVID-19 pneumonia. While 
it may be challenging to differentiate a single COVID-19 pneumonia CXR from conventional pneumonia cases, examining a population 
of COVID-19 pneumonia CXR scans allows us to verify that these cases are sampled from a new, shifted distribution. This strategy is 
visually represented in Fig. 1, which compares instance-based and distributional settings. Panel A illustrates the overlap of individual 
COVID-negative and positive radiographs with reference images, highlighting the difficulty of discerning cases on an individual basis. 
Conversely, Panel B highlights the effectiveness of the distributional method in differentiating between typical (similar to reference 
data) and shifted distributions (indicative of COVID-19), emphasizing its superior capability in detecting significant radiographic 
shifts. Our method is designed not to replace existing traditional or AI-based diagnostic methods that analyze images individually, 
but to complement them by offering a practical application in monitoring population-level shifts in radiographic data. This approach 
serves as a strategic tool for early detection of emerging trends and abnormalities, enabling timely interventions and informed public 
health measures. It provides actionable insights that aid in identifying significant changes that may warrant further investigation or 
public health measures.

1.2. Contributions

In this study, an autoencoder is used to extract compressed feature representations of each scan. We start by comparing scans 
with signs of pneumonia of suspected COVID-19 cases, categorized as COVID-positive (COVID+) and COVID-negative (COVID−), 
using instance-based approaches widely adopted in existing literature, such as examining the autoencoder’s reconstruction loss and 
calculating the Mahalanobis distance in the feature space. We then take a novel distributional perspective, where the Maximum 
Mean Discrepancy (MMD), a well-known metric to compare data distributions, is computed between sets of COVID+ and COVID−
pneumonia scans. Finally, we illustrate how the proposed methodology can serve as a warning mechanism for detecting changes in 
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the radiographic manifestation of pneumonia. Our contributions can be summarized as follows:
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– We demonstrate that COVID-19 CXRs are not OOD in an instance-based manner when compared with CXRs depicting non-COVID-
19 pneumonia, as traditional instance-based approaches show poor performance.

– We show the superiority of a distributional methodology over an instance-based approach for effectively identifying COVID-19 
CXRs, by introducing a novel framework that uses MMD to detect changes in populations of CXRs.

– We demonstrate the effectiveness of the proposed approach in identifying emerging COVID-19 cases and monitoring deviations 
in radiographic patterns by simulating an unsupervised drift detection framework within a data stream context.

2. Related work

Computer-Aided Diagnosis (CAD) systems, especially those utilizing Deep Learning (DL) methods like Convolutional Neural Net-
works (CNNs), have greatly advanced medical image analysis [41]. With the availability of large-scale annotated CXR datasets [18,39], 
there has been significant progress in developing DL models for disease classification [26,42]. The COVID-19 pandemic further accel-
erated research on automated lung CXR analysis [4,34]. However, some studies faced challenges such as dataset construction flaws 
and biases, limiting the discriminative performance of models [11,32,30].

Many studies adopted the conventional approach of using CNNs or transformers for individual image classification in COVID-19 
detection, treating COVID-19 pneumonia cases as an independent data class distinct from other non-COVID-19 pneumonias [2,4]. 
Alternatively, this problem can also be framed as a one-class learning setting, where anomaly detection techniques such as those 
based on an autoencoder’s reconstruction loss [1,21] or on the Mahalanobis distance [27,40] are employed to detect anomalous (or 
OOD) samples. Compared to traditional classification approaches, anomaly detection frameworks improve versatility by aiming to 
detect any kind of deviation from the data on which a model is trained. By training models on non-COVID-19 data only, the detection 
of any kind of change from the pneumonia patterns in which the model was trained can be assessed, and not just those specific to 
COVID-19 pneumonia.

In medical imaging, dataset drift is a common issue [14,15], occurring when real-world data statistical properties diverge from 
training data, leading to performance decline. Drift may arise from variations in imaging equipment, patient demographics, or imaging 
protocols, along with actual changes in disease manifestation. This underscores the necessity of continuous data and model monitoring, 
as well as the development of strategies to adapt to these dynamic environments. The work of Rabanse et al. [31] investigated various 
methods for detecting dataset shifts, categorizing them into feature-based, classifier-based, and density ratio techniques. They use 
MMD as a robust metric for detecting distributional shifts due to its effectiveness in comparing complex, high-dimensional, and 
noisy data distributions. This metric has been successfully applied in various domains, such as bioinformatics [43], finance [7] and 
medicine [12], demonstrating its robustness and flexibility in machine learning for distribution comparison tasks [13]. Taking some 
of these concepts and applying them to the medical domain, Soin et al. [33] underscore the importance of real-time drift detection 
in medical imaging, studying medical dataset shift in a data stream context. They aimed to define drift metrics that correlate with 
the deterioration of a classifier’s performance, thereby serving as a warning mechanism for model deterioration. Koch et al. [23]
demonstrated how traditional methods for detecting OOD data points fail to capture subgroup shifts in histopathology images, arguing 
that such shifts can be instead detected on a population level by treating them as a distribution shift.

Building on the concepts introduced in this section, our work frames COVID-19 pneumonia as a distribution shift compared to 
typical pneumonia cases. Unlike existing methods that focus on classifying individual COVID-19 pneumonia images, whether in a 
traditional classification approach or an anomaly detection setting, the novelty of our work lies in the application of MMD to detect 
distribution shifts in a population of pneumonia chest radiographs, using COVID-negative pneumonia scans as a reference distribution. 
We demonstrate that our method can detect significant shifts towards a new distribution of COVID-positive scans by analyzing sets 
of images rather than individual ones. This population-based approach enables the early detection of emerging patterns that may 
indicate public health concerns or outbreaks.

Our approach differs from existing literature in two key aspects: firstly, by conceptualizing COVID-19 pneumonia as a distribution 
shift relative to non-COVID-19 pneumonia, rather than as a completely distinct data class; and secondly, by focusing on detecting 
COVID-19 at the population level instead of the individual instance level. We assess this shift using feature-based methods, both in 
scenarios with complete data availability, similarly to those in [31], and in a streaming context, where data is continuously analyzed 
as it becomes available, similarly to [33]. Contrary to the model-centric approach of [33], where metrics correlating with classifier 
performance were proposed, our vision is data-centric, focusing on detecting drift in the data itself, independently of any classifier. 
In summary, our goal is to identify data drift, enabling the identification of population-level changes, while staying agnostic to model 
performance.

3. Data

We used two datasets: the BIMCV-COVID19 [16,17], employed in the majority of the experiments, and the BIMCV-COVID19-
PADCHEST dataset [5] to perform experiments with external data. We chose this external data set because it was curated by the 
same authors and belongs to the same hospital network as BIMCV-COVID19, and both datasets were labeled using the same Unified 
Medical Language System (UMLS) tags [5], thus minimizing dataset shifts due to different image sources or inconsistent labeling. The 
UMLS tags were derived from radiology reports and clinical notes through a semi-automated process [16,17]. While both datasets 
belong to the Image Bank of the Valencian Community (BIMCV), the first consists of images from multiple hospitals, while the latter 
only contains images from one hospital. Both datasets and their preprocessing are described below. Table 1 shows the number of 
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patients, sessions (individual interactions between the patient and the healthcare provider), and scans included in the study after 
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Table 1

Datasets used in this study (after preprocessing and filtering). Note that all pa-
tients of BIMCV-COVID19-PADCHEST are COVID−, as this data set was collected 
prior to the pandemic.

Data set Cohort Patients Sessions Scans

BIMCV-COVID19 + 999 1,094 1,374
BIMCV-COVID19 − 1,344 1,636 2,072
BIMCV-COVID19-PADCHEST − 6,543 8,652 13,410

data preprocessing and filtering. All images were resized such that the smaller edge is 256 pixels, preserving the aspect ratio, and 
then center-cropped to 224 × 224 pixels (a size that balances computational efficiency while preserving enough image details).

3.1. BIMCV-COVID19

This dataset contains computed tomography and X-ray images, accompanied by the corresponding metadata, from patients ob-
served between April 1𝑠𝑡 2020 and June 30𝑡ℎ 2020, sourced from the BIMCV. These patients were under clinical observation due 
to suspected SARS-CoV-2 infection, for which a microbiological Polymerase Chain Reaction (PCR) or serological test was requested. 
Additionally, each patient underwent at least one frontal CXR within a week of a microbiological or serological test. The patients 
were categorized into two cohorts: COVID+, indicating those with at least one positive test result (PCR or serological), and COVID−, 
representing those with consistently negative results on all tests (PCR or serological). In addition to the UMLS tags, the “COVID-19” 
and “COVID-19 uncertain” (denoting high or low suspicion of COVID-19, respectively) labels were also present. Only the data relative 
to CXR images were selected. The images were provided in Portable Network Graphic (PNG) format. We discarded images if (1) pixel 
data were not readable, (2) metadata were missing, (3) from pediatric patients, or (4) they were corrupted, were of a body part other 
than the thorax, or were of insufficient quality (low signal-to-noise ratio). For the images included in the study, we performed the 
preprocessing steps outlined in Appendix A.

To ensure that both cohorts (COVID+ and COVID−) only contain scans that are relevant to the problem, the data was filtered. 
This step helps focus the dataset on relevant cases and ensures that all included images contain characteristic features pertaining 
to pneumonia. Both cohorts were filtered by the most frequent tags that relate to pneumonia: Increased density, Pneumonia, Alveolar 
pattern, Interstitial pattern, Infiltrates, Consolidation, Ground glass. The COVID+ cohort originally included images from months after a 
positive PCR that do not show signs of disease, and therefore we further restricted this cohort to images containing the “COVID-19” 
label and with an acquisition date that is up to ± 3 days from a positive PCR result. Additionally, we excluded images from the 
negative cohort containing the tags “COVID-19” or “COVID uncertain”, as these may likely be false negative instances.

3.2. BIMCV-COVID19-PADCHEST

This dataset is a subset of the PadChest [5], curated by the authors of BIMCV-COVID19. The images were collected at San Juan de 
Alicante Hospital from 2009 to 2017 and were extracted from the BIMCV. All patients of BIMCV-COVID19-PADCHEST are COVID-
negative, as this data set was collected before the pandemic. The authors curated this subset intending to select images containing 
findings related to COVID-19, to serve an additional COVID-negative cohort. The criteria used was the collection of CXRs tagged with 
pneumonia, infiltrates, or both. Images may be additionally tagged with other of the 174 labels in the PadChest dataset. A control 
group designated as normal, containing labels on other abnormalities unrelated to COVID-19 (such as cardiomegaly, support devices, 
or fractures) is also present. Corrupted and pediatric images were excluded and the data were filtered using the same tags used for 
filtering the COVID+ and COVID− cohorts of the BIMCV-COVID19 dataset, to ensure consistency.

4. Methods

In this section, we detail the methods, starting with the autoencoder used for obtaining the feature representations of data, followed 
by the notation and experimental setups used in the study.

4.1. Latent representation and reconstruction loss

To obtain a latent representation of each image, we use an autoencoder. This type of fully convolutional model relies on self-
supervised learning, where representation learning is achieved through the task of reconstructing the network’s input. An autoencoder 
comprises an encoder to transform input data into an efficient latent representation, and a decoder that aims to reconstruct the 
original input based on the bottleneck latent representation. After successful training, the model can generate meaningful latent 
representations of the inputs. We employ a pretrained autoencoder [10] that was trained on multiple CXR datasets [5,18,20,39]
using an elastic loss (the sum of the mean absolute and mean squared errors). The images are rescaled to the [−1024, 1024] range, 
which is a prerequisite of the TorchXRayVision, and then processed through the autoencoder to obtain their latent representation 
and reconstruction loss. The autoencoder’s bottleneck layer has shape [512, 3, 3] and global average pooling is performed over the 
second and third dimensions to obtain a single 512-dimensional feature vector. These latent representations are used in all experiments 
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Table 2

Approaches explored in this study and their main characteristics.

Distributional 
Approach

Uses 
Feature 
Vector

Data are separated 
into reference and 

test sets

Assumes test data are 
unlabeled and become 
available through time

Reconstruction loss ✗ ✗ ✗ ✗

Mahalanobis ✗ ✓ ✓ ✗

MMD bulk ✓ ✓ ✓ ✗

MMD stream ✓ ✓ ✓ ✓

Table 3

Notation used throughout the manuscript.

Notation Description

𝐷+ = {𝑥+1 , 𝑥
+
2 , 𝑥

+
3 ,… , 𝑥+

𝑛+
} Set of COVID+ scans from 𝑃 + patients of BIMCV-COVID19

𝐷− = {𝑥−1 , 𝑥
−
2 , 𝑥

−
3 ,… , 𝑥−

𝑛−
} Set of COVID− scans from 𝑃 − patients of BIMCV-COVID19

𝐷𝑝 = {𝑥𝑝1, 𝑥
𝑝

2, 𝑥
𝑝

3,… , 𝑥
𝑝
𝑛𝑝 } Set of external COVID-19 negative scans from 𝑃 𝑝 patients of BIMCV-COVID19-PADCHEST

𝑃 +∕𝑃 −∕𝑃 𝑝 Number of patients in 𝐷+∕𝐷−∕𝐷𝑝

𝑠𝑒𝑡𝑟 = {𝑥𝑡𝑟1 , 𝑥
𝑡𝑟
2 , 𝑥

𝑡𝑟
3 ,… , 𝑥

𝑡𝑟
𝑛𝑟
} Reference set with scans of data type 𝑡𝑟

𝑠𝑒𝑡𝑖𝑛 = {𝑥𝑡𝑖𝑛1 , 𝑥
𝑡𝑖𝑛
2 , 𝑥

𝑡𝑖𝑛
3 ,… , 𝑥

𝑡𝑖𝑛
𝑛𝑖𝑛
} In-distribution test set with scans of data type 𝑡𝑖𝑛

𝑠𝑒𝑡𝑜𝑢𝑡 = {𝑥𝑡𝑜𝑢𝑡1 , 𝑥
𝑡𝑜𝑢𝑡
2 , 𝑥

𝑡𝑜𝑢𝑡
3 ,… , 𝑥

𝑡𝑜𝑢𝑡
𝑛𝑜𝑢𝑡

} Out-of-distribution test set with scans of data type 𝑡𝑜𝑢𝑡
𝑡𝑖𝑛∕𝑡𝑖𝑛∕𝑡𝑖𝑛 ∈ {+,−, 𝑝} Data type in 𝑠𝑒𝑡𝑖𝑛∕𝑠𝑒𝑡𝑜𝑢𝑡∕𝑠𝑒𝑡𝑝
𝑏𝑖𝑛 = {𝑥𝑡𝑖𝑛1 , 𝑥

𝑡𝑖𝑛
2 , 𝑥

𝑡𝑖𝑛
3 ,… , 𝑥

𝑡𝑖𝑛
𝐵
} Batch of samples drawn from 𝑠𝑒𝑡𝑖𝑛

𝑏𝑜𝑢𝑡 = {𝑥𝑡𝑜𝑢𝑡1 , 𝑥
𝑡𝑜𝑢𝑡
2 , 𝑥

𝑡𝑜𝑢𝑡
3 ,… , 𝑥

𝑡𝑜𝑢𝑡
𝐵
} Batch of samples drawn from 𝑠𝑒𝑡𝑜𝑢𝑡

𝑅 ∈]0,1[ Reference percentage
𝑀 ∈ ℕ>0 Number of 𝑏𝑖𝑛∕𝑏𝑜𝑢𝑡 batches
𝐵 ∈ ℕ>0 Batch size
𝐾 ∈ ℕ>0 Number of Repetitions
𝐿 ∈ℕ>1 Window width
𝑆 ∈ ℕ>1 Window stride
𝑆0 ∈ [0, 𝑛𝑜𝑢𝑡] Number of infected patients in 𝑠𝑒𝑡𝑜𝑢𝑡 at time step 0
𝑅0 ∈ℝ>0 Basic reproduction number
𝐹 ∈ ℕ>0 Update frequency
𝑑𝑀 (𝑄, �⃗�) Mahalanobis distance between distribution 𝑄 and point 𝑥
𝑀𝑀𝐷(𝑃 ,𝑄) Maximum mean discrepancy between distributions 𝑃 and 𝑄

4.2. Problem setup and notation

Table 2 provides an overview of the approaches explored in this study, and Table 3 summarizes the notation used throughout 
the manuscript. As a baseline, we start by implementing conventional anomaly detection approaches previously described in the 
literature for this problem, namely, monitoring via reconstruction loss and Mahalanobis distance, applied to our curated version of 
BIMCV-COVID19. Subsequently, the proposed distributional approach is introduced, which relies on calculating the Maximum Mean 
Discrepancy (MMD) between two populations of data as detailed below.

For analyzing the reconstruction loss, the entire dataset is used collectively. For the remaining experiments, involving the Maha-
lanobis distance and MMD, the data are divided into reference data (𝑠𝑒𝑡𝑟) and test data. Batches of test data of size 𝐵 are compared 
to 𝑠𝑒𝑡𝑟. The in-distribution test set (𝑠𝑒𝑡𝑖𝑛) generates 𝑀 in-distribution test batches (𝑏𝑖𝑛), while the OOD test set (𝑠𝑒𝑡𝑜𝑢𝑡) generates 𝑀
OOD test batches (𝑏𝑜𝑢𝑡). The in-distribution test batches do not represent a drift from 𝑠𝑒𝑡𝑟 , while the OOD test batches are assumed 
to contain drifted data. The specific data (COVID-positive or negative pneumonia) contained in these sets depends on the specific 
experiment, with the main experiment defining the reference data and in-distribution test data as COVID-negative pneumonia, and 
the OOD test data as COVID-positive pneumonia, allowing for the effective detection of distributional shifts. For the Mahalanobis 
distance experiments (instance-based approach), data batches contain a single image, while for the MMD experiments (distributional 
approach), batches contain sets of images and are drawn with replacement.

Each of the three components detailed above (𝑠𝑒𝑡𝑟 , 𝑠𝑒𝑡𝑖𝑛, and 𝑠𝑒𝑡𝑜𝑢𝑡) can comprise COVID-negative data (𝐷− , 2,072 scans of 1,344 
patients), COVID-positive data (𝐷+, 1,374 scans of 999 patients), and alternatively, PadChest data (𝐷𝑝 , 13,410 scans of 6,543 patients, 
all COVID-19 negative) for experiments involving external data. The reference percentage 𝑅 ∈ [0, 1] determines the proportion of a 
given data type (𝐷−, 𝐷+, or 𝐷𝑝) to be utilized for generating 𝑠𝑒𝑡𝑟. The remaining 1 −𝑅 patients from the same data type, as well as 
patients from the other data types, remain available to constitute both 𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡. To eliminate unwanted sample size bias, 𝑠𝑒𝑡𝑖𝑛
and 𝑠𝑒𝑡𝑜𝑢𝑡 are made to have scans from the same number of patients. In the default scenario mentioned above, 𝑠𝑒𝑡𝑟 is drawn from 𝐷−, 
𝑠𝑒𝑡𝑖𝑛 comprises the scans of the remaining individuals from 𝐷− , and 𝑠𝑒𝑡𝑜𝑢𝑡 contains data from 𝐷+. This configuration can be flexibly 
5

altered in multiple ways to observe the system’s response and adaptations.
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Fig. 2. Implementation of the Mahalanobis distance (𝑑𝑀 ) calculation between reference data and individual test samples.

4.3. Instance-based experiments

We start by analyzing the reconstruction loss obtained from the autoencoder, a common method to detect OOD instances. A low 
reconstruction loss indicates similarity to the instances seen during training, while a large loss indicates difficulty in reconstructing 
the inputs differing from those seen in the training set. Assuming that COVID+ pneumonia instances are different from previous pneu-
monia cases in an instance-wise manner, we expect a higher reconstruction loss for CXRs depicting COVID-19 pneumonia compared 
to non-COVID-19 pneumonia cases, since the autoencoder’s training set does not contain COVID+ cases. We pass all 𝐷+ and 𝐷−

instances through the autoencoder and compare their reconstruction loss. The Area Under the receiver operating characteristic Curve 
(AUC) between the losses of 𝐷− and 𝐷+ scans is used for assessing the ability to distinguish scans. Although the AUC is typically 
associated with probability metrics, it can be applied to distance metrics to evaluate their ability to discriminate between different 
classes based on proximity. In this case, the AUC is calculated based on the true positive and false positive rates across different 
reconstruction loss thresholds. Ideally, the reconstruction loss of COVID+ cases would always exceed that of COVID− cases, resulting 
in an AUC of 1.0, while a random or poorly performing metric would yield an AUC of 0.5.

The last and main instance-based assessment relies on the Mahalanobis distance. This metric represents the distance between a 
data point and a data distribution in a multi-dimensional space. It measures how many standard deviations away a data point is 
from the mean of the distribution, adjusted for the correlations between the variables. Similarly to the reconstruction loss, it is also 
a popular choice of metric for detecting OOD samples, with the advantage that it leverages the vector latent representation of an 
image, instead of a single scalar. Given a probability distribution 𝑄 on ℝ𝑁 , with mean 𝜇 = (𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑁 )𝖳 and positive-definite 
covariance matrix 𝐶 , the Mahalanobis distance of a point �⃗� = (𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑁 )𝖳 from 𝑄 is presented in equation (1).

𝑑𝑀 (𝑄, �⃗�) =
√
(�⃗�− 𝜇)𝖳𝐶−1(�⃗�− 𝜇) (1)

For this approach, the data are divided into reference and test sets as detailed above, and each test batch is comprised of a single 
image (𝐵 = 1) without replacement. Under these conditions, the Mahalanobis distance [24] (Equation (1)) is calculated between 
each test batch (i.e., each image in the test data) and 𝑠𝑒𝑡𝑟 . The implementation is detailed in Fig. 2, where 𝑡𝑟𝑒𝑓 = −, 𝑡𝑖𝑛 = −, 𝑡𝑜𝑢𝑡 = +
and 𝑅 = 0.5. Since the data are limited, we perform the experiments 𝐾 times, resulting in different data partitions being randomly 
selected for each set of data each time, making the results more robust. We then compute the AUC between the 𝑑𝑀 of 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡
batches.

4.4. Distributional experiments

In the proposed distributional setting, batches containing more than one image (𝐵 > 1) are drawn with replacement. Our approach 
and design were based on that in [37]. The MMD [13] serves as a kernel-based statistic for comparing two probability distributions 
𝑃 (𝑋), with samples {𝑥𝑖}𝑛𝑖=1, and 𝑄(𝑌 ), with samples {𝑦𝑗}𝑚𝑗=1). In our experiments, a Gaussian kernel 𝑘(𝑥, 𝑦) = exp

(
− ‖𝑥−𝑦‖2

2𝜎2

)
is used 

(Equation (2)). The parameter 𝜎 controls the spread of the Gaussian kernel, which was set using the median heuristic, following [13]. 
While Mahalanobis distance relies on the assumption of data following a Gaussian distribution, MMD does not impose assumptions 
on the underlying data distribution, which can be advantageous when dealing with complex and irregular distributions that are often 
encountered in medical imaging. This flexibility makes MMD a suitable choice for our context.

𝑀𝑀𝐷(𝑃 ,𝑄) = 1
𝑛(𝑛− 1)

𝑛∑
𝑖≠𝑗

𝑘(𝑥𝑖, 𝑥𝑗 ) +
1

𝑚(𝑚− 1)

𝑚∑
𝑖≠𝑗

𝑘(𝑦𝑖, 𝑦𝑗 ) −
2
𝑛𝑚

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑘(𝑥𝑖, 𝑦𝑗 ) (2)

The MMD between 𝑠𝑒𝑡𝑟 and each 𝑏𝑖𝑛 (no drift) and 𝑏𝑜𝑢𝑡 (drift) batch is calculated. We implement the proposed distributional 
approach under two settings, which are further detailed below:

• Bulk: This setting considers that (1) all data are available at a given time point and (2) that we have a priori access to labeled 
6

drifted data (COVID-19 positive scans, in this case). The MMDs of all 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 batches are used to calculate the AUC.
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Fig. 3. Diagram of the Maximum Mean Discrepancy (MMD) calculation between reference data and batches of test data in bulk.

Fig. 4. Diagram of the Maximum Mean Discrepancy (MMD) calculation between reference data and batches of test data in stream.

• Stream: This scenario tries to better mimic a real epidemiological setting, where data are generated throughout time. This 
scenario considers that (1) we do not have access to all the data at a given time point, but rather that data become available as 
time passes and (2) we do not have a priori access to labeled drifted data. This implies that drift detection needs to be performed 
for a single data batch of unknown nature at each point in time. The MMD is used directly as a test statistic to perform statistical 
hypothesis testing for each batch, avoiding the need for labeled drifted data.

4.4.1. Bulk setting

In this approach, represented in Fig. 3, 𝑀 𝑏𝑖𝑛 batches are drawn from 𝑠𝑒𝑡𝑖𝑛 and 𝑀 𝑏𝑜𝑢𝑡 batches are drawn from 𝑠𝑒𝑡𝑜𝑢𝑡. Then, the 
MMD between each test batch and 𝑠𝑒𝑡𝑟 is calculated and, finally, the results are evaluated using the AUC between the MMD of 𝑏𝑖𝑛
and 𝑏𝑜𝑢𝑡 test batches. The default configuration in Fig. 3 has 𝑡𝑟 = −, 𝑡𝑖𝑛 = −, and 𝑡𝑜𝑢𝑡 = +, being therefore expected that 𝑏𝑖𝑛 batches are 
closer to the reference set than 𝑏𝑜𝑢𝑡 batches. Additional experiments explore scenarios where the data types of the sets are changed. 
For example, a scenario where 𝑡𝑟 = −, 𝑡𝑖𝑛 = −, and 𝑡𝑜𝑢𝑡 = − provides valuable insights into the concept of baseline drift, which refers to 
the anticipated level of separability between batches of the same data type, that may exhibit a non-zero offset due to inherent data 
characteristics. The experiments are implemented with parameters 𝐾 = 50, 𝑅 = 0.5, 𝑀 = 100, and 𝐵 = 50. The sensitivity analysis 
on these hyperparameters is shown in Section 5.3.

4.4.2. Stream setting

The stream approach only presupposes access to 𝑠𝑒𝑡𝑟 at the initial time step (0), simulating a data stream where additional data 
are introduced over time, according to a window size 𝐿 and stride 𝑆 (Fig. 4). Multiple test batches form a detection window, that 
moves in a sliding fashion. At each time step 𝑡 = (𝑡1, 𝑡2, 𝑡3, … , 𝑡2𝑀 ), a new data batch is pooled. At 𝑡 = 0, 𝐿 new samples form the 
initial detection window. For 𝑡 > 0, 𝑆 new samples are pooled, discarding the first 𝑆 samples from the previous window, creating a 
new detection window. In the first 𝑀 time steps, data batches 𝑏𝑖𝑛 are pooled from 𝑠𝑒𝑡𝑖𝑛, while during the last 𝑀 time steps, data 
batches 𝑏𝑜𝑢𝑡 are pooled from 𝑠𝑒𝑡𝑜𝑢𝑡, to simulate the emergence of a COVID-19-induced drift.

At each time step, we perform statistical hypothesis testing between the current detection window and the reference set, producing 
7

a new MMD value corresponding MMDs at the confidence levels 𝛼 = {0.01, 0.05, 0.1}. This is accomplished through a permutation 
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test, where under the null hypothesis, 𝑃 =𝑄. Intermingling data from both distributions to create two new distributions, 𝑃 ′ and 𝑄′, 
should result in MMD values similar to that between data from 𝑃 and 𝑄. By reshuffling data samples and recalculating the MMD, the 
Cumulative Distribution Function (CDF) of the MMD under the null hypothesis is estimated. If the original MMD value exceeds the 
1 − 𝛼 quantile of the empirical cumulative distribution function, we reject the null hypothesis; otherwise, we accept it. We perform 
1000 permutations to draw the CDF under the null hypothesis. The experiments are implemented with parameters 𝐿 = 100, 𝑆 = 25, 
and 𝑀 = 50, guided by the results of the sensitivity analysis performed in the bulk experiments, described in Section 5.3. We also 
explore varying 𝑆 , to see its impact on the results (Fig. 8 in Section 5.3).

4.4.3. Drift purity

The initial experimental setup utilizes 𝑠𝑒𝑡𝑟 and 𝑠𝑒𝑡𝑖𝑛 containing only COVID− samples, with 𝑠𝑒𝑡𝑜𝑢𝑡 comprising exclusively COVID+
samples. To replicate real-world scenarios, particularly at a pandemic’s onset, we modify 𝑠𝑒𝑡𝑜𝑢𝑡 to include COVID− scans, thereby 
reducing the purity of COVID+ cases in this set, which is essential for assessing detection capabilities under varying conditions. 
The COVID+ proportion in 𝑠𝑒𝑡𝑜𝑢𝑡 is adjusted to values ranging from 95% to 50%, influencing the composition of 𝑏𝑜𝑢𝑡 batches. This 
adjustment also affects the size of 𝑠𝑒𝑡𝑖𝑛 due to the limited patient data available.

𝐸𝑣𝑒𝑟𝑦𝐹 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∶ 𝑆𝑡 = 𝑆0[1 +𝑅𝑡
0 + 𝑡(𝑅𝑡−1

0 +⋯+𝑅1
0)] (3)

We explore both static and dynamic purity adjustments: static changes are implemented under the drift setting (section 4.4.1) and 
maintain a constant COVID+ ratio in 𝑠𝑒𝑡𝑜𝑢𝑡, whereas dynamic changes, implemented under the stream setting (section 4.4.2), expo-
nentially increase COVID+ cases in 𝑠𝑒𝑡𝑜𝑢𝑡 to simulate pandemic growth. To align our simulations with concepts from the field of 
public health, the exponential growth function is defined with three key parameters: the initial number of infected patients 𝑆0 , the 
basic reproduction number 𝑅0 and the frequency of the updates 𝐹 . The 𝑅0 is the average number of new cases stemming from a 
single infected individual. In real-world situations, this value is influenced by multiple external factors, including patient isolation 
and vaccination. For the sake of simplicity, our simulation disregards these external influences. Initially, both 𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡 consist 
entirely of COVID− scans. As time steps progress, the number of COVID+ cases in 𝑠𝑒𝑡𝑜𝑢𝑡 is increased according to Equation (3). 
Parameters 𝑆0, 𝑅0 and 𝐹 are initially set to 1, 2 and 5, respectively. In comparison to the previous experiments, 𝑅 was decreased 
from 0.5 to 0.3, guided by the sensitivity analysis in Fig. 7 (Section 5.3), to increase the availability of negative samples in the 𝑠𝑒𝑡𝑜𝑢𝑡
as purity decreases.

4.4.4. External data

To assess the generalization of the findings to other datasets, an external data source, the BIMCV-COVID19-PadChest (𝐷𝑝) dataset, 
was incorporated into the experimental framework. As detailed in Section 3, this dataset originates from a single hospital within the 
broader BIMCV network, whereas the BIMCV-COVID19 dataset comprises data collected from multiple hospitals within the network. 
Given that 𝐷𝑝 is a dataset collected before the emergence of the COVID-19 pandemic, it is reasonable to foresee that the distribution 
of 𝐷− data aligns more closely with the distribution of 𝐷𝑝 than that of 𝐷+. To test this hypothesis, external data are used to form 𝑠𝑒𝑡𝑟
and 𝑠𝑒𝑡𝑖𝑛 in some of the developed experiments under the bulk setting. In such cases, 𝑅 was reduced to 0.1 to enhance computational 
efficiency and align the size of 𝐷𝑝 more closely to 𝐷+ and 𝐷−. This external dataset is also introduced into the stream simulations, 
to build 𝑠𝑒𝑡𝑟, similarly as described above.

5. Results

In this section, we present and analyze the results of the experiments detailed in section 4, which aimed to identify the most 
effective method for distinguishing between scans of COVID+ and COVID− pneumonia.

5.1. Instance-based approaches

The first instance-based approach leverages the autoencoder’s reconstruction loss as a surrogate metric for detecting OOD scans. 
Given that the autoencoder was trained on data that did not contain COVID+ cases, and under the assumption that individual COVID+
scans exhibit instance-wise distinctive characteristics compared to COVID−, a higher reconstruction loss for COVID+ scans would be 
expected. However, our analysis yielded results contrary to this expectation, as there are no relevant differences in reconstruction 
loss between COVID− and COVID+ samples, evidenced by an AUC close to 0.5 reported in Table 4.

Evaluating the separability of single instances using the derived feature space may offer more comprehensive insights compared 
to relying solely on the reconstruction loss, given that features encompass a multidimensional space (512 dimensions) rather than a 
single scalar. The AUC of the Mahalanobis distance (where 𝑅 = 0.5, 𝐾 = 50, 𝐵 = 50, 𝑀 = 100, 𝑡𝑟 = −, 𝑡𝑖𝑛 = − and 𝑡𝑜𝑢𝑡 = +) for 𝑏𝑖𝑛 and 
𝑏𝑜𝑢𝑡 scans relative to 𝑠𝑒𝑡𝑟 set is also presented in Table 4. The results obtained using the features are consistent with those obtained 
with the reconstruction loss. Collectively, these findings support our initial hypothesis that COVID+ scans do not exhibit significant 
instance-wise differences compared to COVID− scans.

5.2. Distributional approaches

The results of the distributional approach are presented in the following subsections. We begin with the bulk analysis results, 
8

followed by those of the stream analysis.
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Table 4

AUC for the reconstruction loss and Maha-
lanobis distance metrics. Mean ± standard 
deviations are presented, where applicable.

Metric AUC

Reconstruction loss 0.463
Mahalanobis distance𝑎 0.469 ± 0.012

𝑎 𝑡𝑟 = −, 𝑡𝑖𝑛 = − and 𝑡𝑜𝑢𝑡 = +.

Table 5

AUC obtained for the distributional bulk approach (Fig. 3). 𝐾 = 50, 𝑀 = 100, 𝐵 = 50
and 𝑅 = 0.5. Multiple combinations of 𝑡𝑟 , 𝑡𝑖𝑛 and 𝑡𝑜𝑢𝑡 are tested. The default scenario is 
shown in bold.

𝑡𝑟𝑒𝑓 𝑡𝑖𝑛 𝑡𝑜𝑢𝑡 𝑛𝑟 𝑛𝑖𝑛 𝑛𝑜𝑢𝑡 AUC

− − + 1,032 ± 16 1,040 ± 16 925 ± 12 0.938 ± 0.031

− − − 1,031 ± 17 520 ± 15 522 ± 16 0.497 ± 0.063
− + − 1,032 ± 16 925 ± 12 1,040 ± 16 0.064 ± 0.033
− + + 1,037 ± 17 687 ± 8 687 ± 8 0.488 ± 0.129

Table 6

AUC obtained for the distributional bulk approach, when external data is used for 𝑡𝑟 and, 
optionally, 𝑡𝑖𝑛 . Multiple combinations of 𝑡𝑟 , 𝑡𝑖𝑛 and 𝑡𝑜𝑢𝑡 are tested. 𝐾 = 50, 𝑀 = 100, 
𝐵 = 50 and 𝑅 = 0.1.

𝑡𝑟𝑒𝑓 𝑡𝑖𝑛 𝑡𝑜𝑢𝑡 𝑛𝑟 𝑛𝑖𝑛 𝑛𝑜𝑢𝑡 AUC

𝑝 𝑝 − 1,340 ± 35 2,755 ± 46 2072 ± 0 1.000 ± 0.000
𝑝 𝑝 + 1,333 ± 25 2,040 ± 33 1,375 ± 0 1.000 ± 0.000
𝑝 − − 1,341 ± 31 1,034 ± 18 1,038 ± 18 0.509 ± 0.106
𝑝 − + 1,333 ± 25 1,542 ± 16 1,375 ± 0 0.978 ± 0.009
𝑝 + − 1,333 ± 25 1,375 ± 0 1,542 ± 16 0.024 ± 0.009
𝑝 + + 1,333 ± 31 686 ± 10 687 ± 10 0.500 ± 0.143

5.2.1. Bulk

Following the procedure outlined in section 4.4, we obtained the results presented in Table 5. In the most conventional scenario, 
characterized by 𝑡𝑟 = −, 𝑡𝑖𝑛 = − and 𝑡𝑜𝑢𝑡 = +, the MMD of the 𝑏𝑖𝑛 batches is consistently smaller than that of the 𝑏𝑜𝑢𝑡 batches, as 
underscored by the high AUC. Notably, when all sets of data are comprised of the − data type, the separability of MMD between 𝑏𝑖𝑛
batches and 𝑏𝑜𝑢𝑡 is close to 0.5, indicating no discriminant ability. Finally, when 𝑡𝑟 = −, 𝑡𝑖𝑛 = + and 𝑡𝑜𝑢𝑡 = − or 𝑡𝑟 = +, 𝑡𝑖𝑛 = − and 
𝑡𝑜𝑢𝑡 = +, the AUC is close to zero, as the MMD of the 𝑏𝑖𝑛 batches is consistently larger than that of the 𝑏𝑜𝑢𝑡 batches (the problem is 
“inverted”), again indicating a good result. We performed a sensitivity analysis on 𝐾, 𝑀, 𝐵 and 𝑅 (Section 5.3). The results of this 
analysis guided and supported the selection of hyperparameters.

Table 6 presents the results using external data 𝐷𝑝 (BIMCV-COVID19-PadChest) as reference data. Some inherent and uncon-
trollable dissimilarities exist between BIMCV-COVID19-PadChest and BIMCV-COVID19, encompassing variations in data acquisition, 
scanning devices, etc., leading to dataset shift. Consequentially, the MMD between data from different sources will always be greater 
than that between data from the same source. As a consequence, when 𝐷𝑝 is employed both for 𝑠𝑒𝑡𝑟 and 𝑠𝑒𝑡𝑖𝑛, a very strong drift 
(AUC=1.0) will consistently emerge relative to data from BIMCV-COVID19 in 𝑠𝑒𝑡𝑜𝑢𝑡 , regardless of it being 𝐷− or 𝐷+ (first and second 
lines of Table 6), due to dataset shift. However, when 𝐷𝑝 is used for 𝑠𝑒𝑡𝑟 but 𝑠𝑒𝑡𝑖𝑛 is made of COVID− data and 𝑠𝑒𝑡𝑜𝑢𝑡 of COVID+, 
the AUC is still high, meaning that the MMD between 𝑠𝑒𝑡𝑟 and 𝑠𝑒𝑡𝑖𝑛 (with 𝐷− data) batches is smaller than that between 𝑠𝑒𝑡𝑟 and 
𝑠𝑒𝑡𝑜𝑢𝑡 (with 𝐷+ data) batches, allowing their discrimination. This indicates that the distribution of 𝐷− data is closer to 𝐷𝑝 than to 
𝐷+. These results highlight the need for threshold calibration, further discussed in Section 6.

Considering the default scenario in Table 5, where 𝑡𝑟 = −, 𝑡𝑖𝑛 = − and 𝑡𝑜𝑢𝑡 = +, decreasing the drift purity (the percentage of 
COVID+ samples in 𝑠𝑒𝑡𝑜𝑢𝑡) implies that 𝑏𝑜𝑢𝑡 batches will no longer consist solely of 100% COVID+ cases. Fig. 5 illustrates how 
reducing the purity of 𝑠𝑒𝑡𝑜𝑢𝑡 leads to a decline in the AUC. This is expected because, as the drift’s purity decreases, 𝑏𝑜𝑢𝑡 batches 
become more similar to the COVID− reference set, leading to a reduced MMD. The MMD of the 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 relative to the reference 
set becomes more similar, thus reducing their separability. At the bottom of the figure, the sizes of 𝑠𝑒𝑡𝑟 , 𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡 are displayed. 
While the size of 𝑠𝑒𝑡𝑟 is constant, as defined by 𝑅, those of 𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡 fluctuate with changes in purity since lower purity requires 
the use of negative cases to construct the 𝑠𝑒𝑡𝑜𝑢𝑡, which, in turn, reduces the pool of negative samples available for creating the 𝑠𝑒𝑡𝑖𝑛 . 
When purity is at 50%, 𝑠𝑒𝑡𝑜𝑢𝑡 comprise 12 COVID− and 12 COVID+ cases and there is no discriminative power.

5.2.2. Stream

In all stream experiments, 𝑡𝑖𝑛 = − and 𝑡𝑜𝑢𝑡 = +. Initially, we set 𝑡𝑟 = − and 𝑅 = 0.3 (Fig. 6a), and subsequently switch to 𝑡𝑟 = 𝑝 and 
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𝑅 = 0.1 (Fig. 6b). In both cases, 𝐿 = 100, 𝑆 = 25 and 𝑀 = 50. Section 5.3 explores the impact of varying 𝑆 on the results. In addition 
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Fig. 5. Effect of changing drift purity in the AUC. The lower panel indicates the size of 𝑠𝑒𝑡𝑟 (𝑅 = 0.3), 𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡 for different levels of purity.

Fig. 6. MMD of data batches over time steps (𝐿 = 100, 𝑆 = 25 and 𝑀 = 50). The lower bar shows the percentage of COVID+ patients in the data pool from which 
batches are being sampled (𝑠𝑒𝑡𝑖𝑛 during the first 𝑀 steps and 𝑠𝑒𝑡𝑜𝑢𝑡 thereafter).

to presenting the MMD score at each time step, the plots also display the MMD corresponding to the 0.1, 0.05, and 0.01 confidence 
thresholds at each time step. These values vary slightly over time because, as described in Section 4, they are calculated based on a 
permutation test between 𝑠𝑒𝑡𝑟 and the data at time step 𝑡, which varies over time. In Fig. 6a, it is easy to discern the moment when 
the data transitions from being sampled from the 𝑠𝑒𝑡𝑖𝑛 to being drawn from the 𝑠𝑒𝑡𝑜𝑢𝑡. Given that 𝑆 = 25 and 𝐿 = 100, this transition 
unfolds gradually over four time steps. The batches drawn from a distribution containing approximately 25% COVID+ scans (first 
transition point) exhibit MMD values below all the specified confidence thresholds. Conversely, for batches drawn from a distribution 
with approximately 75% COVID+ scans (last transition point), the MMD exceeds both the 0.1 and 0.05 confidence thresholds, which 
is consistent with Fig. 5, where a purity of 70% already results in an AUC value of approximately 0.7.

Unlike the previous AUC-based assessment from Section 5.2.1, here, MMD serves directly as a test statistic for hypothesis testing, 
making its magnitude relevant. When 𝑡𝑟 = 𝑝, confidence thresholds, calculated under the null hypothesis, become inadequately low 
for deciding on test batches from another dataset due to dataset shift. In Fig. 6b, all confidence thresholds are surpassed. However, 
the MMD for COVID+ data is consistently larger than that for COVID− data. With proper calibration, it becomes feasible to establish 
an MMD threshold to distinguish 𝑏𝑖𝑛 batches from 𝑏𝑜𝑢𝑡 batches. This will be further addressed in Section 6.

Previously, in Section 5.2.1, the concept of drift purity was also explored. However, since the temporal progression of data was 
not a component in the bulk experiments, the purity of the 𝑠𝑒𝑡𝑜𝑢𝑡 was adjusted in a static manner. Here, in the stream simulations, 
where the temporal progression of data is considered, dynamic purity changes were implemented. Fig. 6c illustrates how, compared 
to past experiments, the impact of drift becomes noticeable later, as purity is incrementally increased slower and over a longer period 
of time, following Equation (3), with 𝑆0 = 1, 𝑅0 = 2, and 𝐹 = 5 (there is one initial case, and every five steps, each case generates an 
additional two cases). Other simulations with different values of 𝐼 , 𝑅 and 𝐹 are in Section 5.3.

5.3. Sensitivity analyses

This section presents the results for the sensitivity analyses. For the bulk experiments, we analyze how the AUC varies when 
varying each hyperparameter in the following ranges: 𝐾 ∶ {5, 10, 25, 50, 75, 100} (default: 50); 𝐵 ∶ {5, 10, 25, 50, 75, 100} (default: 
50); 𝑀 ∶ {1, 25, 50, 75, 100, 125, 150, 175, 200} (default: 100); 𝑅 ∶ {0.1, 0.25, 0.5, 0.75, 0.9} (default: 0.5). The analyses provide valuable 
insights on the effects of hyperparameters, summarized in Fig. 7. This figure shows that the patterns observed in Table 5 are robust 
across the range of hyperparameter values. Fig. 8 shows the effect of increasing (a) or decreasing (b) the stride on stream simulations, 
and Fig. 9 shows two additional configurations for the exponential growth of cases. Note that for Fig. 8b, 𝑀 was increased to 100 
to allow the last batches to achieve a purity of 100%. Note the relationship between 𝐿 and 𝑆 parameters in the stream experiments 
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and 𝐵 in the bulk experiments; the sensitivity analyses performed for 𝐵 informed the choice of 𝐿.
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Fig. 7. Sensitivity analysis for the number of repetitions (𝐾), the batch size (𝐵), the number of batches (𝑀) and the reference percentage (𝑅), for 𝑡𝑟 = −, 𝑡𝑖𝑛 = −, 
𝑡𝑜𝑢𝑡 = − (left) and 𝑡𝑟 = −, 𝑡𝑖𝑛 = −, 𝑡𝑜𝑢𝑡 = + (right).

Fig. 8. Additional streaming simulations with strides 100 (a) and 1 (b). The lower bar shows the percentage of COVID+ patients in the data pool from which batches 
are being sampled (𝑠𝑒𝑡𝑖𝑛 during the first 𝑀 steps and 𝑠𝑒𝑡𝑜𝑢𝑡 thereafter).

Fig. 9. Additional streaming simulations under exponential growth. The lower bar shows the percentage of COVID+ patients in the data pool from which batches are 
being sampled (𝑠𝑒𝑡𝑖𝑛 during the first 𝑀 steps and 𝑠𝑒𝑡𝑜𝑢𝑡 thereafter).

6. Discussion

In this section, we delve into the findings of our study and their implications. We discuss results, frame them into the context of 
existing literature and explore the limitations of our approach.

6.1. Instance-based approaches

The obtained results show that there are no relevant differences between the reconstruction loss of COVID− and COVID+ pneumo-
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nia scans (Table 4, AUC near 0.5), implying that this metric has little discriminative power in this problem. It could be hypothesized 
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that COVID− cases, being more similar to the autoencoder’s training data, would exhibit a lower reconstruction loss. However, al-
though some past studies were relatively successful using this approach [1,21], our study did not replicate these outcomes under our 
specific experimental conditions and design. Using Mahalanobis distance as an anomaly detector also failed to effectively separate 
COVID− and COVID+ cases. This contrasts with the results from [6], which motivated our use of this distance, where it is applied 
to varied features from multiple convolutional layers, targeting distinct anomalies like various body regions and pediatric scans. The 
differing contexts and anomaly types might explain why our application of this method produced different results. Together, these 
results suggest that instance-wise anomaly detection approaches are insufficient for distinguishing COVID-19 pneumonia cases from 
those of non-COVID-19 pneumonia.

6.2. Distributional approaches

Comparing COVID+ and COVID− test data to a COVID− reference set with MMD showed effective separation of the two types of 
data, yielding promising results (first line of Table 5). Additional results from the same table also show that when 𝑡𝑟 = −, 𝑡𝑖𝑛 = −, and 
𝑡𝑜𝑢𝑡 = − the AUC is around 0.5, meaning that 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 are not distinguishable, which is expected, considering that they are made 
up of the same type of data. These results suggested that our distributional approach is effective in discriminating between sets of 
COVID− and COVID+ images, supporting our proposal of favoring it over instance-wise approaches for identifying COVID-19-related 
changes.

Early access to a substantial volume of labeled drifted data is often unfeasible since data are generated through time and labels 
will typically not be available. Moreover, in day-to-day practice, the unpredictable nature of emerging drifts, including those from 
new and unrelated diseases, underscores the value of keeping our system agnostic to specific drifts. The stream experiments were 
introduced to address these concerns, considering gradual data batch availability and no assumptions regarding the nature or labels 
of test data. Fig. 6 shows a clear separability in terms of MMD among batches generated from 𝑠𝑒𝑡𝑖𝑛 (the first 50 time steps) and 𝑠𝑒𝑡𝑜𝑢𝑡
(the last 50 time steps), especially after the transition phase (where the batches comprise a mixture of COVID− and COVID+ data), 
when data stops being sampled from 𝑠𝑒𝑡𝑖𝑛 and starts to be sampled from 𝑠𝑒𝑡𝑜𝑢𝑡. Despite a relatively high standard deviation, there is 
minimal overlap between these two types of batches.

The sensitivity analyses show that results stabilize with increased repetitions 𝐾 and the impact of batch size 𝐵 on discrimina-
tive power, finding that smaller batches led to reduced discrimination, while larger batches increased standard deviation in some 
cases. This analysis provided valuable insights on the minimum viable number of COVID+ data samples essential for establishing 
a distinguishable distribution from that of COVID− scans. These insights guide us on how many samples we need to accumulate 
before conducting a new test to check for drift. Instead of using physical time, which can vary significantly between different clinical 
environments, we ought to reassess based on the number of CXRs accumulated. This approach offers a more universally applicable 
method because the rate at which CXRs are gathered differs widely between hospitals, making our strategy adaptable to varying 
operational workflows. The reference dataset’s size has limited influence on the results, except in extreme scenarios where 𝑅 is very 
small (it lacks representativeness) or 𝑅 is too large (leaving too little data for testing). In the streaming analyses, a smaller stride 
results in smoother transitions when we start sampling from 𝑠𝑒𝑡𝑜𝑢𝑡 , while the opposite happens for larger strides.

The existing COVID-19 classification and detection methods outlined in the literature predominantly adopt an instance-based 
rather than a distributional approach. As detailed in Section 2, some existing studies [8,28,30] fail to incorporate the negative cohort 
of the BIMCV-COVID19 dataset, which was released later than that of the positive cohort, and therefore select COVID+ and COVID−
data from disparate sources, which may impact the reliability of the results. The study in [29] combines data from various sources, 
including BIMCV, for COVID-19 anomaly detection, achieving an AUC of less than 0.8. In [19], the same data as in [29] are used, 
and an AUC of 0.77 is reported. The results of our distributional approach are therefore competitive with the instance-wise methods 
reported in the literature. The most meaningful comparison between methodologies can be drawn against our baselines, given that 
we use the same data under the same conditions for all experiments.

6.2.1. Simulating an emerging pandemic

The discriminative ability of MMD drops as the drift purity (percentage of COVID+ cases in 𝑠𝑒𝑡𝑜𝑢𝑡) decreases. The distributions of 
𝑠𝑒𝑡𝑖𝑛 and 𝑠𝑒𝑡𝑜𝑢𝑡 converge as purity decreases, making 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 batches more similar. The simulations in Fig. 6 depict a scenario where 
COVID+ instances emerge gradually and follow an exponential growth pattern, providing valuable insights into how early a drift of 
this nature could be detected. Notably, the detection of COVID-19-related changes appears to become feasible around 80% purity. 
Detecting subtle drifts is challenging, with discriminative power emerging only when more than half of 𝑠𝑒𝑡𝑜𝑢𝑡 samples are COVID+
(Fig. 5). This is particularly relevant for COVID+ cases, where images aren’t drastically different from 𝐶𝑂𝑉 𝐼𝐷− pneumonia cases, 
rendering point-wise comparisons ineffective. Detection timing will vary for different shift types, occurring earlier or later depending 
on the visual characteristics of the drift in the scans.

6.2.2. Calibration and transferability

The use of BIMCV-COVID19-PadChest as an external non-COVID pneumonia data source raised important calibration issues. When 
BIMCV-COVID19-PadChest was used for both 𝑡𝑟 and 𝑡𝑖𝑛 in Table 6, the MMD scores consistently indicate drift to both 𝐷+ and 𝐷−

data due to the dataset shift between sources, which limited our ability to differentiate the BIMCV-COVID19 cohorts based on MMD 
values. However, when employing PadChest for 𝑠𝑒𝑡𝑟, COVID− data for 𝑠𝑒𝑡𝑖𝑛, and COVID+ data for 𝑠𝑒𝑡𝑜𝑢𝑡, the AUC is high (fourth 
line in Table 6), indicating that the MMD between the PadChest reference and data from 𝐷− is smaller than the MMD between the 
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PadChest reference and data from 𝐷+. Using external data as a reference yields increased absolute values of the MMDs, but the AUC 
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evaluates class separability based on ranking, and not magnitudes. Therefore, a high AUC is maintained as data separability remains 
intact despite greater magnitudes.

The same patterns emerge in the stream simulations; using 𝑡𝑟 = 𝑝 yields higher MMD scores (Fig. 6b) than using 𝐷− as a reference 
(Fig. 6a), but proper calibration enables establishing an MMD threshold to distinguish between 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 batches. Collectively, 
these results suggest the need for system calibration during deployment. This is the main reason why in this work, we refrain from 
discussing a specific rule or threshold for defining a “drift alarm”. Instead, we present a series of results stemming from multiple 
simulations and leave it up to the prospective user to define the most pertinent and effective approach for their specific context. The 
simulations presented serve as guiding benchmarks for the evolution of a prospective system grounded in this approach. Our findings 
demonstrate the applicability of our results to new data while emphasizing the importance of calibration with different data sources, 
such as data originating from a different healthcare facility.

6.3. Limitations

While our study offers valuable insights, it is focused exclusively on pneumonia cases. Although this problem is more complex than 
separating COVID-19 cases from normal CXRs, if this system were to be implemented in a fully automated manner, a previous model 
to identify CXRs showing signs of pneumonia should first be available. Our goal was to use pneumonia as a well-known reference 
disease and to identify deviations that might indicate the presence of a novel pathogen with analogous features. Another limitation 
worth considering is the potential impact of external factors, unrelated to the pathological features observed in the scans, on the data 
of the positive and negative cohorts. However, this should not be the case since both cohorts were collected similarly. If present, 
such distributional differences could also be viewed as information rather than as biases. If discernible patterns exist within these 
differences, capturing them may be desirable. One potential approach to address these uncertainties and inaccuracies in radiographic 
images could be the incorporation of fuzzy classification techniques. These techniques could merge similar images in a fuzzy sense, 
extracting a single representative image for each group [36]. Classification would then compare the similarity values between the 
images to be classified and the representative images of each group in a fuzzy sense.

7. Conclusions

In this study, we explored the challenge of distinguishing COVID-19 pneumonia cases from other pneumonia types using chest 
X-rays. We initially investigated instance-based out-of-distribution detection approaches, such as autoencoder-based reconstruction 
loss and Mahalanobis distance, but found that these methods were ineffective at discriminating between COVID-19 and non-COVID-
19 cases, mostly due to the radiological similarities between different pneumonia types. We introduced a distributional approach, 
utilizing maximum mean discrepancy to compare populations of COVID-19 and non-COVID-19 cases. Our findings demonstrated the 
effectiveness of this populational approach in distinguishing COVID+ from COVID− cases, when compared to a COVID− reference 
set. Rather than targeting individual cases, our approach is designed to act as an early warning system, signaling noteworthy shifts 
within a population that may warrant further investigation. This approach showed promise in scenarios of gradual changes in the data 
distribution occur, revealing its potential in monitoring and flagging emerging pandemics with evolving characteristics. However, we 
emphasize the importance of calibration when using external reference datasets, as dataset shifts can affect the absolute maximum 
mean discrepancy values. Calibration becomes especially crucial when deploying the method across different healthcare settings.

Although our study has some limitations, it provides valuable insights into the challenges and potential solutions for improving the 
accuracy of identifying COVID-19-related changes in chest radiographs. Ultimately, this research offers a framework for addressing 
similar problems and monitoring changes in radiographic manifestations across various clinical scenarios in the future, such as the 
anticipation of a new pandemic caused by a pathogen whose infection causes lung-related manifestations.

Building on the success of the proposed distributional approach, future research should explore several avenues to address its 
limitations and enhance its practical application. More specifically, the implementation of these methods in real-world healthcare 
settings should be assessed. Adapting and testing the methodology across diverse clinical settings and various imaging modalities, 
such as CT scans, would be beneficial. The integration of multimodal data, including clinical parameters like patient history and 
demographic details, could potentially improve the results, particularly in detecting early-stage changes. Further exploration of 
alternative metrics beyond the maximum mean discrepancy could also contribute to enhancing the framework. Moreover, we could 
also explore the use of incremental model updates to manage changes in data, which could improve the sensitivity of the detection 
system. Collaborative efforts with clinical practitioners will be crucial to tailor the model’s development to real-world applicability 
and to ensure that it effectively complements existing diagnostic tools.
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Appendix A. Preprocessing of the BIMCV-COVID19 dataset

As mentioned in Section 3, we started by manually discarding images that were missing metadata, corrupted, from wrong body 
parts, of insufficient quality, or from pediatric patients. After creating the dataset, its authors found a set of patients from the negative 
cohort that were also in the positive cohort. They realized that these were false positive instances wrongly examined in the early 
stages of the pandemic, and later released a list of the common subjects (i.e., a subject with two IDs, one in each cohort). All scans 
from patients in this list were also discarded. For the images included in the study, we first performed histogram-based contrast 
enhancement, to improve under/over-exposed images. Then, we selected the region of interest by detecting and removing (when 
present) black/white framings around relevant image data. Finally, the images were normalized to the 0-255 range. After manual 
inspection, we found that the information on the images’ monochrome is sometimes incorrect, resulting in inverted images. To 
address this, an automatic inversion classification CNN identified and corrected inverted images. The model was trained on the 
BIMCV-COVID19-PADCHEST dataset, where half the images were randomly inverted, using a 90/10 train/test split. It trained for 10 
epochs using ADAM [22] and a learning rate of 10−4 on an NVIDIA GTX 1080 GPU.
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