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Abstract 

Temperate bat species use extended torpor to conserve energy when ambient temperatures are low and food 
resources are scarce. Previous research suggests that migratory bat species and species known to roost in thermally 
unstable locations, such as those that roost in trees, are more likely to remain active during winter. However, hiber-
nating colonies of cave roosting bats in the southeastern United States may also be active and emerge from caves 
throughout the hibernation period. We report what bats are eating during these bouts of winter activity. We captured 
2,044 bats of 10 species that emerged from six hibernacula over the course of 5 winters (October–April 2012/2013, 
2013/2014, 2015/2016, 2016/2017, and 2017/2018). Using Next Generation sequencing of DNA from 284 fecal 
samples, we determined bats consumed at least 14 Orders of insect prey while active. Dietary composition did not 
vary among bat species; however, we did record variation in the dominant prey items represented in species’ diets. 
We recorded Lepidoptera in the diet of 72.2% of individual Corynorhinus rafinesquii and 67.4% of individual Lasiurus 
borealis. Diptera were recorded in 32.4% of Myotis leibii, 37.4% of M. lucifugus, 35.5% of M. sodalis and 68.8% of Perimyo-
tis subflavus. Our study is the first to use molecular genetic techniques to identify the winter diet of North American 
hibernating bats. The information from this study is integral to managing the landscape around bat hibernacula for 
insect prey, particularly in areas where hibernating bat populations are threatened by white-nose syndrome.
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Introduction
The low ambient temperatures experienced by temper-
ate insectivorous bats during winter pose two energetic 
challenges. First, due to their small size and associated 
high surface area-to-volume ratio, cold winter condi-
tions make bats susceptible to high levels of heat loss and 
energy expenditure [1–3]. Second, once expended, their 
energy reserves are not easily replenished, as prey avail-
ability in winter is limited as low ambient temperature 
reduces prey activity and abundance [1, 4–6]. Therefore, 
temperate bats reduce their energetic costs in winter by 
engaging in periodic bouts of torpor, a physiological state 

characterized by low body temperature and metabolic 
rate, for prolonged periods of time [1, 7, 8].

Due to the physiological constraints of hibernation, 
hibernating mammals, including temperate bats [9], must 
periodically arouse to maintain homeostasis, with typical 
activities being urination and drinking of water [10, 11]. 
At higher temperate latitudes, where daily temperatures 
during winter rarely rise above freezing and there is lit-
tle opportunity to feed due to scarcity of prey [7, 12, 13], 
bats must survive on energy stored as fat and protein [2]. 
Under these conditions, arousals occur but are relatively 
infrequent [14–16]. In contrast, at lower latitudes where 
winters are milder, the hibernation season is shorter and 
prey abundance and activity are greater [17]. Therefore, 
winter foraging may provide bats the opportunity to 
replenish energy stores [2]. Periodic arousals and activity 
outside hibernacula during winter provide evidence for 
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winter foraging both in North American and European 
bat species [7, 13, 18–24].

Although optimal hibernation theory [2] suggests that 
sporadic foraging can be advantageous for bats hiber-
nating in milder temperate climates, it may become 
particularly important for North American cave-hiber-
nating species suffering from the disease white-nose 
syndrome (WNS). Pseudogymnoascus destructans (Pd), 
the fungal agent that causes WNS, invades the cuta-
neous membrane of a bat’s muzzle, wings, ears and tail 
membrane during hibernation, eroding the epidermis 
and underlying skin and connective tissue [25, 26]. Once 
invasion occurs, the fungus disrupts torpor cycles and 
metabolic processes leading to the depletion of energy 
reserves through increased arousals, ultimately leading to 
increased morbidity and mortality during winter [27–29]. 
Pseudogymnoascus destructans was first detected in the 
southeastern United States (U.S.) in 2009, with WNS 
documented in Tennessee the winter of 2011 [30].

Foraging during intermittent arousals from hiberna-
tion may benefit bats at winter roost sites infected with 
Pd by augmenting energy reserves. In the southeastern 
U.S., bats remain active throughout winter regardless 
of Pd prevalence, with levels of activity corresponding 
to ambient temperature at dusk [31, 32]. As Pd became 
established in the southeastern U.S., daytime and cold 
temperature flights became more prevalent [31], yet less 
than 50% of the bats captured at these sites were posi-
tive for Pd and WNS, suggesting that winter activity was 
not driven by infection [33]. Although some active bats 
likely arouse throughout winter because of the physio-
logical effects of WNS, many individuals with mild or no 
infection may be taking advantage of warm winter nights 
and higher prey availability to increase their energy 
reserves during hibernation. Therefore, it is important 
to determine what WNS susceptible bats are consum-
ing during winter to better inform conservation actions 
implemented to help minimize disease related declines.

To date, the winter diet of North American bat spe-
cies has been identified using traditional morphologi-
cal methods [13, 18–20]. However, molecular methods, 
such as Next Generation sequencing of DNA amplified 
from fecal pellets, allow for a more complete view of the 
diet of insectivorous bats [34]. Although molecular tech-
niques have been used to elucidate the diet of several 
insectivorous bat species [34–37], these studies have all 
been conducted during warm seasons. Our study is the 
first to examine the diet of North American insectivo-
rous bat species captured outside of caves during win-
ter. The rapid rates of digestion and defecation among 
bats [38] led us to infer that the fecal pellets provided by 
bats captured outside of hibernacula in winter (October–
April) would contain insect remains consumed during 

bouts of winter foraging. The objectives of our study 
were to (1) identify the dietary composition of bats cap-
tured throughout winter, (2) compare the composition 
of recently consumed prey among bat species, and (3) 
determine how the composition of each species’ diet var-
ied throughout the hibernation period (i.e., early-, mid-, 
and late-hibernation).

Materials and methods
Study area
During five winters (i.e., October–April of 2012/2013, 
2013/2014, 2015/2016, 2016/2017, and 2017/2018), we 
collected fecal samples from bats captured at six hiber-
nacula in middle and eastern Tennessee (Fig.  1). Two 
hibernacula in central Tennessee (Warren and White 
Caves) were located on the Cumberland Plateau, at 
340–350  m elevation. Two northeastern hibernacula 
(Campbell and Hawkins Caves) were located within the 
Cumberland Mountains, both at approximately 450  m 
elevation. Blount Cave 1 and 2 were located in the Great 
Smoky Mountains National Park (GRSM) at 525 m eleva-
tion. Mean nightly winter temperatures outside hiber-
nacula, measured from 30  min before dusk to 30  min 
after dawn using HOBO U-series data loggers (Onset 
Computer Corporation, Bourne, MA, USA), ranged 
from − 2.03 to 20.16 °C.

Bat captures
We deployed single-, double- and triple-high mist nets 
(Avinet Inc., Dryden, NY, U.S.; mesh diameter: 75/2, 
2.6  m high, 4-shelves, 6–12  m wide) at hibernacula 
entrances or across forest corridors within 100  m of 
hibernacula at least once per month from October – 
April during each winter of the study. We opened mist 
nets 30  min before civil sunset and left them open for 
five hours, or until we captured 30 bats or ambient tem-
perature dropped below 0  °C. After capture, we placed 
bats in individual brown paper bags and held them for 
30–60  min in an insulated box with four hand-warm-
ers (HotHands®, Dalton, GA, U.S.) to provide time for 
defecation. After holding, we identified each captured 
individual to species and determined sex, reproductive 
condition, forearm length (mm), weight (g), and wing-
damage index (WDI, Reichard and Kunz 2009). We col-
lected fecal pellets from the paper bags using sterile 
tweezers. We stored fecal pellets in 2.0  ml microcentri-
fuge tubes (Fisherbrand®, Fisher Scientific Co. L.L.C, 
Pittsburgh, PA, U.S.) with indicating silica gel desiccant 
(Grade 48, 4–10 mesh; Fisherbrand®, Fisher Scientific Co. 
L.L.C, Pittsburgh, PA, U.S.; [39]). Samples were frozen at 
-20 °C the night of collection and stored until analysis.

Field research followed U.S. Fish and Wildlife Services 
(USFWS) WNS Decontamination Guidelines [40]. All 
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capture and handling techniques were approved by the 
University of Tennessee Institute of Animal Care and Use 
Committee (IACUC 2026–0514 and IACUC 2253–0320) 
and were consistent with the guidelines put forth by the 
American Society of Mammalogists (Sikes and ACUC 
2016). We obtained federal (USFWS TE-71613A and 
USFWS TE-35313B, GRSM-2013-SCI1053; GRSM-2014-
SCI1053, GRSM-2016-SCI1253, GRSM-2018-SCI1253) 
and state (TWRA 3716, TWRA 3741, TDEC 2009–038, 
TDEC 2011–031) permits to capture and handle bats and 
collect samples at winter hibernacula.

Dietary analysis
The winter collection period was divided into three 
periods, which corresponded to the depth of winter 
(documented by mean nightly temperature) in Ten-
nessee: early-hibernation = October – November 
(14.01  °C ± 1.11 SE); mid-hibernation = December–Feb-
ruary (7.30  °C ± 1.05SE); and late-hibernation = March–
April (14.52  °C ± 1.09 SE). Fecal samples used in this 
analysis were selected based on size of sample (2–4 pel-
lets, up to 50 mg), species, sex, site, and winter collection 

period. We extracted DNA from feces using PowerSoil® 
(MO BIO Laboratories, Inc., Carlsbad, CA, U.S.) or 
QIAamp PowerFecal (Qiagen, Germantown, MD, U.S.) 
DNA Isolation Kits following the manufacturers’ pro-
tocols with one minor modification of increasing the 
first incubation period at 4  °C from 30  min to 12  h, to 
enhance removal of pigment from the DNA extraction 
product. We included one reagent-only control in each 
set of reactions (i.e., one control for every 24 samples) 
and stored extracted DNA at – 20  °C prior to Polymer-
ase Chain Reaction (PCR) amplification. We targeted the 
mitochondrial cytochrome c oxidase 1 (CO1) gene using 
insect primers developed by Zeale et al. [41] (ZBJ-ArtF1c 
and ZBJ-ArtR2c). Conditions for PCR amplification and 
library prep were similar to those listed in Divoll et  al. 
[42]. We amplified samples collected during the winters 
of 2012/2013 and 2013/2014 with primers modified for 
the Ion Torrent platform (Life Technologies, Carlsbad, 
CA, U.S.) with adapters and unique 10-base indexes, 
and samples collected during the winters of 2015/2016, 
2016/2017, and 2017/2018 with primers containing 

Fig. 1 Bat capture sites at cave hibernacula in middle and east Tennessee, U.S. Bats were captured during hibernation (October–April) 2012/2013–
2017/2018 at six cave sites using mist-nets deployed at least once per month for five hours starting 30 min before civil sunset
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adapters modified for the MiSeq platform (Illumina, San 
Diego, CA, U.S.).

During library preparation, we purified Ion Torrent 
samples with Agencourt AMPure XP beads (Beck-
man Coulter, Brea, CA, U.S.), prepared with an Ion Plus 
Fragment Library Kit (Life Technologies, Carlsbad, CA, 
U.S.), then size-selected for products of approximately 
300  bp on the Pippin Prep (Sage Science, Beverly, MA, 
U.S.) before re-purifying with AMPure beads. We con-
firmed the quality and quantity of final products on a 
Bioanalzyer (Agilent Technologies, Santa Clara, CA, 
U.S.), pooled at approximately equimolar concentrations, 
loaded on an Ion 318 chip to run on the ION Torrent 
at the University of Tennessee Genomics Core. Library 
preparation for the Illumina MiSeq samples involved 
purifying the PCR products with Agencourt AMPure XP 
beads, dual-indexing with Illumina Nextera XT indexes, 
and re-purifying with Agencourt AMPure XP beads. We 
confirmed the quantity and quality of final products on 
a Bioanalzyer, pooled at approximately equimolar con-
centrations, and loaded at 6 pM with 20% PhiX on a v2, 
500 cycle flow-cell reading 225 bases, paired-end, on the 
Illumina MiSeq at the University of Tennessee Genomics 
Core.

We analyzed sequences using the QIIME platform 
[43] and the workflows outlined in Divoll et al. [42] and 
Cravens et  al. [44], with an additional step to eliminate 
potentially chimeric sequences. Briefly, we demultiplexed 
samples and pooled sequences in the forward and reverse 
direction into one fasta file with the same orientation. 
We then clipped primer sequences and removed any 
sequence that did not contain both forward and reverse 
primer sequences from further analysis. We clustered 
sequences into operational taxonomic units (OTUs) 
using the SWARM method with a resolution of two. We 
extracted representative sequences from each OTU clus-
ter to create an OTU table based on abundance and used 
the ‘usearch’ command with denovo filtering in QIIME 
2 to remove potentially chimeric sequences from the 
clustered OTUs. We removed sequences shorter than 
147 bp or longer than 167 bp, representing ten bases on 
each side of the expected 157 bp. Due to potential index 
jumping, we conservatively removed any sequence that 
appeared in an individual bat less than 10 times for Ion 
Torrent data and less than 50 times for MiSeq data.

We ran the representative set of sequences through the 
COI database in the Barcode of Life Database (BOLD; 
[45]) using the package “bold” [46] in R [47]. We con-
sidered the first 40 records for each representative OTU 
and removed records with ≤ 99% similarity and country 
of collection outside of the U.S. and Canada [42, 44]. 
Where more than one identification for an OTU was 
present at ≥ 99%, we deferred to the next highest level 

of taxonomy for identification (i.e., multiple species 
within an order, we deferred to the order). We collapsed 
unique OTUs assigned to the same taxonomy into a sin-
gle OTU, representing one bat prey item. We also merged 
duplicate OTUs, identified via the same unique BOLD 
identification number or within 1–4  bp via Sequencher 
(Gene Codes Corporation, Ann Arbor, MI, U.S.). We 
ran sequences produced from both the IonTorrent and 
MiSeq through the BOLD identification pipeline together 
to ensure consistent taxonomic identifications.

Statistical analysis
We calculated the relative read abundance (RRA) of 
OTUs (i.e., the proportion of reads per each prey item 
in each sample) for each bat species following descrip-
tions by Deagle et al. [48] and Vesterinen et al. [49]. We 
assessed sample coverage using the iNEXT package 
[50] to determine accuracy in describing the diversity of 
arthropod prey in the bat diet with respect to our sam-
pling effort [51–53]. We plotted extrapolation curves 
using the entire sample set with all OTUs, including 
those that were not identified to any taxonomic level in 
BOLD, and used species richness (Hill number; q = 0) 
as the diversity measure [50, 52]. We used the VEGAN 
package [54] to test for variation in prey composition 
among bat species and hibernation periods using ANO-
SIM (Analysis of Similarity; [55] and PERMANOVA 
(Permutational Multivariate Analysis of Variance, adonis 
function) tests with 999 permutations. We grouped prey 
by family or order to minimize zero-inflated counts. To 
visually inspect the variation in prey consumption by 
arthropod species, family, and order consumed across 
bat species and hibernation periods, we used the ordi-
nation technique of nonmetric multidimensional scaling 
(NMDS) in VEGAN. We used a Bray–Curtis dissimilar-
ity distance measure to calculate distances among sam-
ples and assessed the fit of the NMDS by observing the 
“stress” value [54]. Finally, we used the bipartite package 
[56] to draw an interaction web for each bat species using 
RRA. All statistical analyses and visualizations were per-
formed using R [47].

Results
Bat captures
We captured 2044 individuals of 10 bat species over five 
winters. None of the 13 Lasionycteris noctivagans (sil-
ver-haired bat) captured provided fecal samples, there-
fore our analysis includes feces from nine species. We 
collected 518 fecal samples, on 84 of the 154 successful 
capture nights, with 25% of bats captured providing feces 
(Table  1). The mean nightly temperature on nights that 
samples were provided was 9.85 °C ± 0.87 SE, with tem-
peratures ranging from − 2.03 to 20.16  °C. Of the fecal 
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pellets collected, we selected 284 fecal pellet samples (117 
samples from 2012/2013 and 2013/2014, and 168 samples 
from 2015/2016, 2016/2017 and 2017/2018) that met our 
criteria for analysis (i.e., early-hibernation: n = 136, mid-
hibernation: n = 38, late-hibernation: n = 110).

Dietary analysis
After bioinformatics processing and clean-up, we clus-
tered and filtered sequencing reads to a total of 1209 
unique OTUs. Of the unique OTUs, we identified 716 
(59.2%) with matching sequences in BOLD, belong-
ing to 14 orders, 134 families, and 587 genera or species 
(Additional file 2: Table S1). We were unable to identify 
the remaining 493 OTUs, likely due to a lack of refer-
ence sequences in BOLD and GenBank (Additional file 3: 
Table S2). Sample coverage of dietary diversity for all bat 
species amounted to 0.7832 (± 0.011 SE; Fig. 2a) and spe-
cies diversity (Hill number q = 0) accumulation curve of 
arthropods detected in the diet in relation to the num-
ber of fecal samples was near its asymptotic point. Sam-
ple coverage for individual bat species varied (Fig.  2b). 
Of the unique OTUs, 762 were represented in (i.e., con-
sumed by) one bat each, with the remaining 447 OTUs 
represented in two to 62 bats (Additional file 4: Table S3). 
The number of OTUs per bat fecal sample ranged from 
one to 58 with a mean of 10.44 ± 0.495 SE OTUs per fecal 
sample.

The dispersion of diets varied weakly among bat spe-
cies (PERMANOVA:  R2 = 0.046, P = 0.001); however, 
diet composition was not significantly different (ANO-
SIM: R = 0.058, P = 0.400; Fig.  3). Diptera, Hemiptera, 
and Lepidoptera were consumed by every species of 

bat for which fecal samples were collected (n = 9). Over 
half of the samples of Corynorhinus rafinesquii (Rafin-
esque’s big-eared bat; 72.2%) and Lasiurus borealis (red 
bat; 67.4%) contained Lepidoptera. Diptera were the 
most common order of prey present in the diet of M. 
leibii (eastern small-footed bat; 32.4%), M. lucifugus (lit-
tle brown bat; 37.4%), M. sodalis (Indiana bat; 35.5%) and 
Perimyotis subflavus (tri-colored bat; 68.8%). Coleoptera 
and Neuroptera were consumed by eight bat species; 
Ephemeroptera, Psocodea, Psocoptera and Trichoptera 
by seven bat species; Araneae and Hymenoptera by six 
bat species; Plecoptera and Trombidiformes by four bat 
species; and Orthoptera by three bat species (Table  2). 
Every species of bat consumed at least one OTU that was 
unidentified, comprising 7–33.4% of all reads.

Myotis species had the most diverse diets among the 
five genera of bats examined, ranging from 11 to 14 
orders (Fig. 4). Excluding unidentifiable OTUs, C. rafin-
esquii had the least diverse diet (n = 6 orders), followed 
by L. borealis and P. subflavus (n = 8 orders), and E. fus-
cus (n = 11 orders). Eptesicus fuscus consumed the high-
est proportion of unidentifiable OTUs (33.4%).

The two Diptera species (Dicranomyia; Limoniidae) 
and an unknown Diptera were the most consumed OTUs 
detected in samples (Table 2). Four lepidopteran species 
were among the top 10 most common OTUs detected in 
samples, specifically, Machimia tentoriferella (Depres-
sariidae), Chionodes thoraceochrella (Gelechiidae), Sinoe 
chambersi (Gelechiidae), and Sitotroga cerealella (Gel-
echiidae). Four additional OTUs, which were not iden-
tified to Order, were also represented in the top 10 prey 
OTUs detected.

Table 1 Total number of bats captured in Tennessee during hibernation (October–April) 2012/2013 to 2017/2018

Each row represents the total number of individuals captured per species, including the total number of fecal samples collected and analyzed
a CORA = Rafinesque’s big-eared bat, EPFU = big brown bat, LABO = red bat, LANO = silver-haired bat, MYGR = gray bat; MYLE = eastern small-footed bat, MYLU = little 
brown bat, MYSE = northern long-eared bat, MYSO = Indiana bat, PESU = tri-colored bat
b % Fecal provided: percent of individuals that provided a fecal sample
c Samples analyzed: total number of fecal pellets amplified and sequenced

Speciesa Total bats captured Total fecal samples % Fecal  providedb Samples 
 analyzedc

Corynorhinus rafinesquii (CORA) 21 10 47.6 7

Eptesicus fuscus (EPFU) 121 18 14.9 11

Lasiurus borealis (LABO) 15 5 33.3 5

Lasionycteris noctivagans (LANO) 13 0 0 –

Myotis grisescens (MYGR) 754 156 20.7 65

Myotis leibii (MYLE) 288 130 45.1 85

Myotis lucifugus (MYLU) 54 17 31.5 9

Myotis septentrionalis (MYSE) 224 55 24.6 26

Myotis sodalis (MYSO) 350 110 31.4 65

Perimyotis subflavus (PESU) 204 17 8.3 10

Grand total 2044 518 25.3 283
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Eight of the top 10 prey species detected in the diet 
of C. rafinesquii were lepidopterans with four repre-
senting the Family Noctuidae (Table  2). The most com-
mon OTUs for E. fuscus were all lepidopteran species, 
including Argyrotaenia velutiana (Tortricidae). At least 
2 individuals from each species of Myotis consumed the 
lepidopteran, Chionodes thoraceochrella (Gelechiidae). 
The commonly detected OTU for P. subflavus was an 
unidentified OTU (Table 2).

The dispersion of diets varied among hibernation peri-
ods (PERMANOVA:  R2 = 0.01246, P = 0.001); however, 
diet composition was not significantly different (ANO-
SIM: R = 0.049, P = 0.7; Fig.  5). All 14 orders were con-
sumed throughout early- and late-hibernation. Twelve 
orders were consumed during mid-hibernation (Decem-
ber – February), where the most dominant orders were 
Diptera (28.3% of all reads) and Lepidoptera (21.5% of 
all reads). Dipteran and lepidopteran species were con-
sistently the most common food source throughout 

hibernation, ranging from 26.1% (late hibernation) to 
34.1% (early hibernation) for Diptera, and 28.3% (early 
hibernation) to 36.7% (late hibernation) for Lepidop-
tera. The largest proportion of unidentified sequenced 
reads were from mid-hibernation (31.6%). All orders 
except Orthoptera and Trombidiformes were consumed 
throughout winter.

Discussion
We found that bats actively forage and consume a wide 
diversity of prey during winter. Augmenting energy 
stores may be particularly critical for hibernating bats 
due to the ability to supplement energy stores lost during 
hibernation. This may be even more important due to the 
additional energetic burden of Pd infection and manifes-
tation of WNS. The similarity in the dietary breadth of 
insects consumed per species suggests that bats are not 
preferentially selecting large, calorie-rich prey [57, 58].

Fig. 2 a Sample coverage for arthropod prey detected in all nine bat species captured throughout hibernation (October–April) 2012/2013–
2017/2018 at cave sites in middle and east Tennessee, U.S. b Sample coverage by species diversity for each of the nine bat species captured. 
Interpolation (solid line segments) and extrapolation (dashed line segments) estimates of sample coverage were calculated as a function of 
sampling units produced in package iNEXT. We used Hill number q = 0 to calculate curves for species richness. 95% confidence intervals for each 
estimate are represented in shaded areas. Species acronyms: CORA: Corynorhinus rafinesquii (Rafinesque’s big-eared bat), EPFU: Eptesicus fuscus 
(big brown bat), LABO: Lasiurus borealis (red bat), MYGR: Myotis griscesens (gray bat), MYLE: Myotis lebii (eastern small-footed bat), MYLU: Myotis 
lucifugus (little brown bat), MYSE: Myotis septentrionalis (northern long-eared bat), MYSO: Myotis sodalis (Indiana bat), and PESU: Perimyotis subflavus 
(tri-colored bat)
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While opportunities for foraging during winter are 
likely a limiting factor when compared to insect abun-
dance in summer, we found that the RRA of the two most 
common orders, Diptera and Lepidoptera, remained con-
sistent across our sampling period (early to late hiberna-
tion). We also note that the presence of 14 insect orders 
and over 700 insect OTUs in the winter diet of bats is 
equivalent, if not greater, than what has been docu-
mented in molecular studies conducted in summer [34–
36]. This provides another line of evidence that bats may 
be eating whatever is available to them during winter.

Although the dietary composition across bat spe-
cies was not statistically different, the species-specific 
‘preference’ of prey based on their respective ecologies 
were consistent with diet studies conducted in sum-
mer (see 34–36). Corynorhinus rafinesquii consumed 
the narrowest range of prey, seeming to focus primarily 
on lepidopteran species. This species of bat is a known 
moth specialist, gleaning individuals off of the surface 
of vegetation and other substrates, and has been found 
to predominately consume species in the families Noc-
tuidae and Geometridae [59–63]. Although Noctuidae 
species comprised nearly half of the lepidopteran spe-
cies detected in winter (n = 8/18 species represented), 
we also detected multiple species from the families 

Depressariidae, Erebidae, Geometridae and Tortrici-
dae in samples from C. rafinesquii. We found three prey 
Orders, including Ephemeroptera, Hemiptera, and 
Trombidiformes, which, to our knowledge, have not been 
documented in previous dietary studies of the species 
(Additional file  4: Table  S3). All representative species 
were consumed during early or mid-hibernation.

The remaining eight bat species we sampled are con-
sidered predominately generalist insect consumers [64], 
and we found that Myotis species consumed the most 
diverse prey items. A large proportion of the OTUs 
detected in samples from M. grisescens and M. sodalis 
were comprised of aquatic species, including Diptera, 
Ephemeroptera, Hemiptera, Neuroptera, Plecoptera 
and Trichoptera, including 168 and 167 representatives 
in the diet of the two species, respectively. While our 
study was conducted during winter, these findings are 
consistent with the foraging ecology of the two bat spe-
cies [65, 66]. Visual identification of M. sodalis guano 
collected during the summer suggests the species fre-
quently consumes Diptera, Coleoptera, Lepidoptera and 
Trichoptera [67–70]. Research on the summer diet of 
M. grisescens indicates that the species forages low over 
streams and other bodies of water [71]. As these streams 
do not typically freeze during winter in Tennessee, the 
preferred prey of M. grisescens, aquatic-based insects, 
appear to be available year-round in the Southeast [71]. 
Thus, the year-round availability of aquatic-based insects 
in the Southeast appears to enable the species to main-
tain opportunistic selection of their preferred prey base 
throughout hibernation [71].

Interestingly, Araneae species were most commonly 
consumed by Myotis species, ranging from an individual 
record in M. lucifugus (Philodromus rufus vibrans) to 16 
Araneae species in M. sodalis. Anyphaena pectorosa, a 
species of ghost spider, was consumed by five M. soda-
lis during early hibernation. Interestingly, this species is 
typically active above-ground for a short period of time 
between mid-June to mid-July [72] and can often be seen 
in low foliage or under rocks [73]. Thus, the consump-
tion of this and other Araneae species most likely occurs 
opportunistically while bats are roosting in hibernacula 
[74].

Eptesicus fuscus, the largest of the nine species cap-
tured, was once considered a coleopteran specialist [75, 
76]. However, recent studies [35], including our own, 
place them more as generalist consumers throughout the 
year. Only five coleopteran species were consumed by E. 
fuscus, substantially less than the number of representa-
tives consumed by M. grisescens, M. leibii, M. septentri-
onalis, and M. sodalis. The lack of coleopteran species in 
the diet of E. fuscus could be attributed to seasonal vari-
ation and availability [35]. Alternatively, the seemingly 

Fig. 3 Food web of bat species and their arthropod prey species 
visualizing the similarities in the diet. The upper row represents 
arthropod orders consumed, with the blocks in the lower row the 
bat species. Lines connecting a bat species with an arthropod order 
represents the identification of consumption, and the thickness of the 
line represents the total number of times the order was represented 
in each bat species. Numbers correspond to 1: Araneae, 2: Coleoptera, 
3: Diptera, 4: Ephemeroptera, 5: Hemiptera, 6: Hymenoptera, 7: 
Lepidoptera, 8: Neuroptera, 9: Orthoptera, 10: Plecoptera, 11: 
Psocodea, 12: Psocoptera, 13: Trichoptera, and 14: Trobidiformes. 
Unidentified OTUs were not included in this figure
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low proportion of Coleoptera in the diet, especially when 
compared to the proportion of unidentified OTUs con-
sumed by E. fuscus, could be due to the specific primers 
we used or a lack of genetic information in BOLD for 
Coleopteran species active in winter.

The winter consumption of insects by bats has illumi-
nated the need for further research on the year-round 
foraging behavior of this diverse taxonomic group, as well 
as the activity and abundance of insects active through-
out winter. Although over 50% of the identified reads 
were dipteran and lepidopteran species, information on 
the specific behaviors of these insect orders during win-
ter is lacking. We collected a substantial number of sam-
ples for both early and late hibernation (136 and 109 bats, 
respectively), indicating that favorable weather condi-
tions and presumably increased prey availability allow for 
successful foraging. Although there is evidence that some 

lepidopteran species in temperate regions remain active 
as caterpillars [77–79], it is unclear how many species 
of adult lepidoptera remain active in winter. Both mor-
phological and molecular dietary studies have identified 
adult Lepidoptera in the diet of bats during winter, with 
many of those studies conducted in climates with more 
severe winters than in the southeastern portion of the 
U.S. [13, 22, 80–82]. Ultimately, there remains a signifi-
cant knowledge gap about the winter activity of insects in 
the southeastern U.S.

As we consider the conservation implications of peri-
odic activity and foraging throughout winter, we must 
also be cognizant of the plasticity in torpor of temper-
ate North American bats [5, 83]. Prior to the emergence 
of WNS in North America, the predominant theory was 
that most bat species entered hibernation in October 
and remained in hibernacula until March–April [31]. We 

Fig. 4 Relative read abundance (RRA) of arthropod Orders consumed by nine species of bat captured outside of caves in Tennessee during 
hibernation (October–April) 2012/2013 to 2017/2018. OTUs were identified to the finest taxonomic resolution possible using BOLD and GenBank. 
Those that were not identified are listed as “unidentified”. All years and seasons are combined. Species acronyms: CORA: Corynorhinus rafinesquii 
(Rafinesque’s big eared bat), EPFU: Eptesicus fuscus (big brown bat), LABO: Lasiurus borealis (red bat), MYGR: Myotis griscesens (gray bat), MYLE: Myotis 
lebii (eastern small-footed bat), MYLU: Myotis lucifugus (little brown bat), MYSE: Myotis septentrionalis (northern long-eared bat), MYSO: Myotis sodalist 
(Indiana bat), and PESU: Perimyotis subflavus (tri-colored bat)
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provide evidence that several bat species in the Southeast 
forage for aerial insects during winter. This knowledge 
is critical for natural resource managers, as it may allow 
for novel conservation actions that could enhance sur-
vival of overwintering bats (e.g., insect habitat manage-
ment or artificial lights near hibernacula to attract insect 
prey). By enhancing insect habitat and abundance near 
bat hibernacula, the energetic costs of foraging could be 
minimized, thereby increasing fat storage and survival, 
particularly amongst WNS-susceptible species. As we 
confront a rapidly warming climate, we expect winter 
activity of bats will increase in more northern latitudes 
[84, 85]. Therefore, increasing knowledge of the winter 
activity of bats will have importance even after WNS is 
deemed endemic in North America.
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