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Many Phoenix dactylifera (date palm) cultivars are grown in the arid and semiarid regions of the world, including Saudi Arabia. P.
dactylifera is highly tolerant to salinity stress. To investigate the response of Khalas cultivar of P. dactylifera, two-month-old plants
were treated with sodium chloride (50, 100, and 150mM NaCl) for three months. Our result showed that proline content was
higher in all treated plants compared to control plants. Thiobarbituric acid reactive substances (TBARS) were increased at 100
and 150mM NaCl treatments; however, the result was found nonsignificant between control and plants treated at 50mM NaCl.
Similarly, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were 0.805 and 0.722U/mg protein/min,
respectively, and were greater at 100 and 150mM NaCl treatments compared to the control plants. Total chlorophyll content
and fresh weight of shoots and roots decreased substantially with the increase of salinity. A cDNA start codon-targeted (cDNA-
SCoT) marker showed a variation in different gene expressions profiling between treated and untreated plants under various
NaCl concentrations.

1. Introduction

In recent decades, soil salinity has become a global agricul-
tural constraint [1, 2]. Salinity is increasing on Arabic land,
and more than 50% would be salinized by the year 2050, if
suitable corrections are not made [3]. Furthermore, the sali-
nized areas are increasing every year at a rate of 10% for dif-
ferent reasons including poor cultural practices, irrigation
with saline water, weathering of native rocks, high surface
evaporation, and low precipitation [4, 5]. Salt stress causes
average yield losses of more than 50% in major crops in
agriculture-based countries [6]. Reactive oxygen species
(ROS) are produced in plant cells under salinity stress [7],
which can damage the cells. It also affects many metabolic
and physical processes of the plant, and as a result, the
growth is hampered [8]. A high salinity stress causes osmotic
and ionic stresses in the plant cells, which lead to several
physiological and morphological modifications [9].

Phoenix dactylifera (date palm) is the main horticultural
fruit tree in many arid and semiarid countries in the Middle
East, North Africa, and Central America [10]. P. dactylifera
can survive under extreme abiotic stresses, including conditions
of drought, high temperature, and relatively high soil salinity
levels [11–14]. The salinity stress affected the large area of arid
and semiarid regions of agricultural field [15] and has impacted
more losses in P. dactylifera and other crop species [16].

The antioxidant enzyme activities such as catalase (CAT)
and superoxide dismutase (SOD) increase under salinity
stress for scavenging regenerated ROS to protect the cell from
damage [17, 18]. The enzyme SOD is found in various com-
partments of the cell and catalyzes the superoxide radicals
(O2

−) to H2O2 and O2 [19]. The H2O2 is removed from the
cell by peroxidases and catalase [19–22].

The proline, an osmoprotectant, is produced under
abiotic and biotic stresses [23] in plants. Heat and cold treat-
ments can result in a significant increase in proline level in
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the leaves and roots of P. dactylifera [14]. The changes
occurred in SOD and chlorophyll a/b-binding protein under
salt stress in P. dactylifera [24]. Thiobarbituric acid reactive
substances (TBARS), which are produced in the plant cells,
act as a potential indicator of damage under induction of
stresses [25]. An increase in TBARS content under salinity
stress can cause damage to membranes and also to particular
cell tissues [26–28]. Usually, osmotic or salt stress induces
TBARS accumulation [29]. TBARS accumulation in cowpea
leaves under salinity stress depends on exposure time [30].
However, a reduction in TBARS level under salinity stress
is poorly reported in the literature [31].

Different methods have been developed for the gene
expression study in plants or animals such as cDNAmicroar-
ray, cDNA-SRAP, cDNA-AFLP, serial analysis of gene
expression (SAGE), suppression subtractive hybridization
(SSH), representational difference analysis (RDA), and
mRNA differential display (DD) [32–42]. All these markers
have advantages and disadvantages based on the reproducibil-
ity of the results, available resources, technical expertise, and
cost of development.

A cDNA start codon-targeted (cDNA-SCoT) marker has
been used for the study of gene expression in Saccharum offi-
cinarum,Mangifera indica, Phoenix dactylifera, and Dendro-
bium officinale [43–46]. However, this marker has also been
used for the assessment of genetic diversity in various plant
species [47–50]. A high degree of variability has been found
among the germplasms of P. dactylifera under salinity and
drought stresses [51]. Knowledge of molecular mechanisms
under salinity and drought conditions in P. dactylifera is lim-
ited [52–57]. In the present study, we performed experiments
on the Khalas cultivar of P. dactylifera to determine the anti-
oxidant system response and gene expression profiling under
salinity stress.

2. Materials and Methods

A pot experiment was conducted in a growth chamber for
salinity stress treatments in four replicates. The pots were
filled with a mixture of sand and peat moss (3 : 1). The
healthy seeds of P. dactylifera were surface sterilized with
sodium hypochlorite solution (4.0% available chlorine) for
10min and washed thoroughly four times with distilled
water. The seeds were sown in plastic pots and watered at
regular interval to maintain moisture for better germination.
Salinity stress treatments were given to the two-month-old
plants of Khalas cultivar of P. dactylifera for three months.
Three concentrations of NaCl as low (T-50, 50mM), inter-
mediate (T-100, 100mM), and high (T-150, 150mM) were
used to treat the plants. Each concentration of salt solution
(100ml) was given to each pot after two-week time intervals.
100ml of 1/4 strength MS solution was added to each pot
after two-week time intervals. The pots were maintained
in the growth chamber at 26-27°C, photoperiod 16 h per
day, and relative humidity of 72%. The salt-treated and
untreated plants were harvested after three months. Bio-
chemical and molecular parameters were subsequently
taken to study the antioxidant system response of P. dac-
tylifera under salinity stress.

2.1. Biomass and Morphological Traits. Fresh leaf and root
weight and shoot and root length were measured after
three months of salinity treatment. Each treatment was
compared to control plants for the evaluation of their salt
stress responses.

2.2. Proline Estimation. The proline was estimated using the
method developed by Hanson et al. [58]. Fresh leaves
(0.3 g) were ground in 10ml of aqueous sulphosalicylic acid
(3%). The mixture was centrifuged for 15min at 9000×g.
The supernatant (2ml) from the above step was taken and
mixed with an equal volume of acid ninhydrin (1.25 g ninhy-
drin in 30ml acetic acid and 20ml of 6N H3PO4) and acetic
acid. The mixture was placed for 1 h in boiling water for
incubation. After incubation, the mixture was taken out from
the boiling water and immediately placed in an ice bath. 4ml
of toluene was added in the mixture (4ml) after taking it
from the ice water bath. The mixture was vortexed, and
chromatophore-containing toluene was separated from the
aqueous phase. The absorbance was taken at 520nm (Model
UB-1800, Shimadzu, Japan) to determine proline content.

2.3. Total Chlorophyll. Total chlorophyll was estimated
according to the Arnon method [59]. The leaves were
separated and washed with DDW; 0.1 g of chopped leaves
was placed in the test tubes for each treatment, and 10ml
of DMSO was added to each test tube. The tubes were
kept in an oven at 65°C. After 120 minutes, the tubes were
taken out and the absorbance of the solution was recorded
immediately at 663nm and 645nm on a UV-vis spectro-
photometer (Model UB-1800, Shimadzu, Japan). The
pigment concentration was calculated in μg/ml for treated
and untreated samples.

2.4. Superoxide Dismutase (SOD). The activity of superoxide
dismutase (EC 1.15.1.1) was measured according to the
method developed by Dhindsa et al. [60]. A fresh sample
(0.05 g) was homogenized in 2ml of extraction mixture con-
taining phosphate buffer (0.5M, pH7.3), 0.3mM-EDTA, 1%
Triton × 100 (w/v), and 1% PVP (w/v). The mixture was cen-
trifuged for 10min at 4°C at 10,000×g. The supernatant was
taken after centrifugation for the assay of SOD activity. The
assay mixture, consisting of 1.5ml reaction buffer, 0.2ml of
methionine, 0.1ml of each (1M-NaCO3, 2.25mM-NBT solu-
tion, 3mM-EDTA, riboflavin, and enzyme extract), and 1ml
of DDW, was incubated under the light. The blank mixture
containing all substances was kept in the dark. Absorbance
of samples along with the blank mixture was read at
560 nm using the UV-vis spectrophotometer (Model UB-
1800, Shimadzu, Japan). A 50% reduction in color was
considered as one enzyme unit (EU). The activity of SOD
was calculated in EU (mg−1 protein min−1).

2.5. Catalase (CAT). The activity of catalase (EC 1.11.1.6) was
determined in the leaves using the method of Aebi [61]. 0.5 g
of fresh leaf samples was ground in extraction buffer
(5ml) containing phosphate buffer (0.5M, pH7.3),
0.3mM-EDTA, and 0.3mM-H2O2. The mixture was cen-
trifuged for 20min at 10,000×g at 4°C. The reaction was
carried out in 2ml of reaction mixture (0.1ml, 3mM-
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EDTA, 0.1ml of enzyme extract, and 0.1ml of 3mM-
H2O2) for 5min. CAT activity was estimated at 240 nm
using the UV-vis spectrophotometer with the help of
extinction coefficient (R) 0.036mM−1cm−1 and expressed
in EU (mg−1 protein min−1).

2.6. Thiobarbituric Acid Reactive Substances (TBARS).
TBARS content was determined in the leaves using the
method developed by Cakmak and Horst [62] with minor
modification. The fresh leaf samples (0.5 g) were ground in
5ml of 0.1% (w/v) trichloroacetic acid (TCA). The centrifu-
gation was performed for 5min at 12,000×g for supernatant
collection. The supernatant was taken from the above step,
and 1ml of it was added to 4ml of 0.5% (w/v) TBA in 20%
(w/v) TCA. The mixture was placed for 30min at 90°C in
water bath, and thereafter, the reaction was terminated in
an ice bath. The centrifugation was performed for 5min at
10,000×g for supernatant collection. The absorbance of the
supernatant was read at 532 and 600nm wavelengths on a
spectrophotometer (Model UB-1800, Shimadzu, Japan).
The TBARS content was calculated using the following
formula:

TBARS nmol g−1 fw =
A532 − A600 ×V × 1000

155 extinction coef f icient ×W
,

1

where A532= absorbance at 532nm, A600= absorbance at
600nm, V=extraction volume, andW= fresh weight of tissue.

2.7. RNA Extraction for cDNA-SCoT Marker Profiling. Total
RNA was isolated from the control and salinity-stressed
plants using the RNeasy plant mini kit (Qiagen) according
to the instructions given in the manual. The quantity and
quality were measured using the spectrophotometer (Nano-
drop 8000, Thermo Scientific). High quality of cDNA was
prepared using the QuantiTect Reverse Transcription Kit
(Qiagen). The PCR reaction was performed in a total volume
of 25μl using the SCoT primers (Table 1) for the study of
expression profiling. These primers were selected from the
literature of monocot plant species [63]. The PCR bead (GE
Healthcare, UK) was used for PCR amplification. The cDNA
was diluted in RNase-free water to working concentration
50 ng for PCR amplification with SCoT primer (20 picomole
per reaction). PCR was performed in an AB Veriti 96-well
thermal cycler. The cycling profile was 94°C for 3min, 45
cycles at 94°C for 1min, 44.5°C for 30 s, 72°C for 1min, and
a cycle of 72°C for 5min. The amplified products were
resolved on 1.3% TBE agarose gel.

2.8. Statistical Analysis. The data recorded in all experiments
were statistically analyzed by using IBM SPSS STATISTICS
19. Data from each parameter was subjected to a one-way
analysis of variance (ANOVA); the post hoc comparison
for the observation was assumed by Duncan’s test. The data
shown are the averages of four replicates and were statisti-
cally significant at the p < 0 05 level.

3. Results and Discussion

Free radicals, or ROS, are produced in plant cells under stress
conditions and may react with pigments, lipids, proteins or
nucleic acids which leads to membrane damage, lipid perox-
idation, and inactivation of enzymes, thus affecting the cell
viability [64, 65]. Plant gene expression analysis is very
important in agriculture under biotic and abiotic stresses as
it promotes genetic improvement of other crops for their
yield and quality traits.

Fresh weight of shoot and root of P. dactylifera decreased
significantly as the salinity increased (Figures 1 and 2). High
salinity stress caused more reduction in the weight of shoot
and root (1.392 and 1.160 g) as compared to control plants
(2.697 and 2.201 g), respectively. Alkhateeb et al. [66] per-
formed experiments on P. dactylifera under salinity stress
and found that growth declined with increasing salinity
stress. Excess salinity affects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no effect of salinity observed
on the shoot length up to 50mM NaCl, and the plant grew
normally like a normal plant. Ramoliya and Pandey [69]
studied on some P. dactylifera varieties under salinity stress
and found that some varieties can tolerate high levels of soil
salinity (12.8 ds m−1) without a visible effect. Total chloro-
phyll content decreased significantly in all treated P.

Table 1: List of SCoT primer sequences used in the PCR reaction.

S.N. Primer code Primer sequence (5′-3′)
1 SCoT-1 CAACAATGGCTACCACCA

2 SCoT-2 CAACAATGGCTACCACCC

3 SCoT-3 CAACAATGGCTACCACCG

4 SCoT-4 CAACAATGGCTACCACCT

5 SCoT-5 CAACAATGGCTACCACGC

6 SCoT-6 CAACAATGGCTACCACGG

7 SCoT-7 CAACAATGGCTACCACGT

8 SCoT-8 CAACAATGGCTACCAGCA

9 SCoT-9 CAACAATGGCTACCAGCC

10 SCoT-10 AAGCAATGGCTACCACCA

11 SCoT-11 GCAACAATGGCTACCACC

12 SCoT-12 CATGGCTACCACCGGCCC

13 SCoT-13 ACCATGGCTACCACCGCA

14 SCoT-14 CCATGGCTACCACCGCAG

15 SCoT-15 ACCATGGCTACCACCGCA

16 SCoT-16 CCATGGCTACCACCGCAG

17 SCoT-17 CCATGGCTACCACCGCAC

18 SCoT-18 CCATGGCTACCACCGCCT
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dactylifera plants as the salinity increased. A low chlorophyll
content (27.241μg/ml) was observed in plants treated at high
salinity stress (Figure 6) compared to control plants
(47.873μg/ml). Similarly, chlorophyll a and b decreased
under salinity stress in a date palm [70].

Catalase activity increased significantly in the leaves of
date palm plants under 100 and 150mM NaCl treatments,
and it was 0.481 and 0.805U/mg protein/min, respectively
(Figure 7). However, a very low CAT activity (0.087U/mg
protein/min) was observed at 50mM NaCl nonsignificantly
compared to control plants. CAT activity induced at an
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Figure 1: Fresh shoot weight in Phoenix dactylifera grown in the pot
at different concentrations of NaCl. Data represent means of four
replicates± standard deviation. Different letters on bars represent
the significant values according to Duncan’s test (p < 0 05).
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Figure 2: Fresh root weight in Phoenix dactylifera grown at
different concentrations of NaCl. Data represent means of four
replicates± standard deviation. Different letters on bars represent
the significant values according to Duncan’s test (p < 0 05).
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Figure 3: Morphological variations in the root and shoot of
Phoenix dactylifera grown under different NaCl concentrations
(control: 0mM, T-50: 50mM, T-100: 100mM, and T-150:
150mM) for 3 months.
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Figure 4: Shoot length variation in Phoenix dactylifera grown at
different concentrations of NaCl. Data represent means of four
replicates± standard deviation. Different letters on bars represent
the significant values according to Duncan’s test (p < 0 05).
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Figure 5: Root length variation in Phoenix dactylifera grown at
different concentrations of NaCl. Data represent means of four
replicates± standard deviation. Different letters on bars represent
the significant values according to Duncan’s test (p < 0 05).
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Figure 6: Effect of salinity on chlorophyll content in Phoenix
dactylifera. Data represent means of four replicates± standard
deviation. Different letters on bars represent the significant values
according to Duncan’s test (p < 0 05).
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application of 100mM NaCl in wild Lycopersicon pennellii
[71]. SOD activity increased under 100mM NaCl and
150mM NaCl treatments compared to nontreated plants
(Figure 8). A very low SOD activity of 0.138U/mg protein/
min was found in plants treated at 50mM NaCl. A high
SOD enzyme activity of 0.667 and 0.722U/mg protein/min
was found significantly at 100mM NaCl and 150mM NaCl
treatments compared to the control plants, where SOD activ-
ity only reached 0.1U/mg protein/min. Our results were con-
sistent with earlier findings for P. dactylifera where catalase
and peroxidase activities increased under salinity treatments
[70]. The CAT and SOD activities also increased in P. dacty-
lifera Hillawi cv [72] under salinity stress. The activities of
CAT and SOD were enhanced at 100mMNaCl in wild Lyco-
persicon pennellii [71]. The responses of SOD and CAT were
high under salinity stress (120 and 240mM NaCl) in the
leaves of two-week-old seedlings of barley, and it was found
significant [73]. An increase in antioxidant enzymes under
stressful conditions plays an important role to overcome
the oxidative stress and often correlates to the type and mag-
nitude of the stress [65].

The proline accumulation varies in different plant species
and their organs under salinity stress. The proline content
increased significantly in the leaves of all treated plants of
P. dactylifera as the salinity increased (Figure 9). More
accumulation of proline (2106.20 and 2632.99μg/g FW)
was observed significantly under 100 and 150mM NaCl
treatments compared to control plants. Our findings
related to proline accumulation were consistent with the
results of Abdulwahid [72], who performed experiments
on P. dactylifera under salinity stress. The proline was
over accumulated in the roots and leaves of a date palm
plant under abscisic acid, drought, and extreme tempera-
tures and was remarkably high when leaves were exposed
to suboptimum salinity and temperatures stresses [13].
The cultivars of Phaseolus vulgaris (Canario 60 and Pinto
Villa) accumulated high proline content in leaves and
shoots under 150mM NaCl [74]. A high accumulation of
proline was found under salinity stress in mulberry [75],
green gram [76], Jerusalem artichoke [77], and canola
[78]. The production of proline under stress conditions
play an important role to protect the plant cells as it
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Figure 7: Catalase activity in Phoenix dactylifera grown at different
concentrations of NaCl. Data represent means of four replicates
± standard deviation. Different letters on bars represent the
significant values according to Duncan’s test (p < 0 05).
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Figure 8: Superoxide dismutase activity in Phoenix dactylifera
grown at different concentrations of NaCl. Data represent
means of four replicates± standard deviation. Different letters
on bars represent the significant values according to Duncan’s
test (p < 0 05).
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Figure 9: Proline accumulation in the leaf of Phoenix dactylifera
grown at different concentrations of NaCl. Data represent means of
four replicates± standard deviation. Different letters on bars
represent the significant values according toDuncan’s test (p < 0 05).
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Figure 10: Effect of salinity stress on TBARS accumulation in
Phoenix dactylifera. Data represent means of four replicates
± standard deviation. Different letters on bars represent the
significant values according to Duncan’s test (p < 0 05).

5International Journal of Genomics



acts as soluble nitrogen sink, a signal of senescence, an
osmoregulator, and an indicator of plant resistance [79].

TBARS level increased in P. dactylifera plants under
salinity stress as compared to control plants. A high
content of TBARS (11.151 nM/g FW) was found in plants
treated at 100mM NaCl (Figure 10), and thereafter, a
reduction was observed. However, result was found to be
nonsignificant between control and plants treated at
50mM NaCl. The plant species such as Solanum nigrum
[80], Artemisia annua [81], Glycyrrhiza uralensis Fisch
[82], and Gypsophila aucheri Boiss [83] showed increased
TBARS content under salinity stress.

We used cDNA-SCoT marker for the comparison of
treated and untreated plants under salinity stress as the

antioxidant system response and biomass of P. dactylifera
were changed at various concentrations of NaCl stress which
could be possible due to the expression of different genes. A
single primer cDNA-SCoT technique has been applied to
study gene expression in different plant species [43–45, 83–
85]. The oligo-dT-anchored cDNA-SCoT was used in M.
indica to study gene expression under abiotic stresses [44].
In our study, a different banding pattern was produced
between treated and untreated plants using the cDNA-
SCoT marker which indicated the expression of different
genes under NaCl stress (Figures 11, 12, and 13). Different
amplicons of size (1200, 950, 800, 780, and 300 bp) were pro-
duced in treated plants whereas were absent in control plants
(Figure 11). The amplicon of size 950 bp was produced at 50

300
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bp M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 11: cDNA-SCoT marker profiling generated from individual plant leaf of Phoenix dactylifera at different concentrations of NaCl
(SCoT primer 3). Lane M: 100 bp ladder; lanes 1, 2, and 3 (control); lanes 4, 5, 6, and 7 (50mM NaCl); lanes 8, 9, 10, and 11 (100mM
NaCl); lanes 12, 13, 14, and 15 (150mM NaCl).
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Figure 12: cDNA-SCoT marker profiling generated from individual plant leaf of Phoenix dactylifera at different concentrations of NaCl
(SCoT primer 18). Lane M: 100 bp ladder; lanes 1, 2, and 3 (control); lanes 4, 5, 6, and 7 (50mM NaCl); lanes 8, 9, 10, and 11 (100mM
NaCl); lanes 12, 13, 14, and 15 (150mM NaCl).
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and 100mM NaCl, whereas absent at 150mM NaCl. Simi-
larly, the amplicon size of 750 bp was produced at 100mM
NaCl and absent at 50 and 150mM NaCl. The size of
1200 bp amplicon was produced in all treated plants, whereas
900 and 500 bp were produced in control as well as in plants
treated at 50mMNaCl (Figure 12). The size of amplicons 500
and 350 bp were produced in control as well as in plants
treated at 50mM NaCl whereas absent in plants treated at
100mM NaCl (Figure 13). Similarly, the amplicon of size
340 bp was produced in plants treated at 150mM NaCl
(Figure 13). Thus, different NaCl concentrations impacted
the expression profile of various genes which led to change
in plant growth, biomass, and antioxidant system response.
The cold resistance-related genes have been studied in
sugarcane under cold stress using the cDNA-SCoT tech-
nique [84]. The differentially expressed genes in sugarcane,
induced by Leifsonia xyli subsp. xyli, was studied using the
cDNA-SCoT technique [85]. Wu et al. [43] used the
cDNA-SCoT technique on sugarcane for the differential
expression of gibberellin-induced genes for stalk elonga-
tion, which represented the upregulation and downregula-
tion of genes.

Thus, based on the above results, P. dactylifera can be
used by plant researchers to uncover the salt tolerant genes
and their application in a plant-breeding program.
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