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Alternative polyadenylation (APA) occurs in the process of mRNA maturation by adding a poly(A) tail at
different locations, resulting increased diversity of mRNA isoforms and contributing to the complexity of
gene regulatory network. Benefit from the development of high-throughput sequencing technologies, we
could now delineate APA profiles of transcriptomes at an unprecedented pace. Especially the single cell
RNA sequencing (scRNA-seq) technologies provide us opportunities to interrogate biological details of
diverse and rare cell types. Despite increasing evidence showing that APA is involved in the cell type-
specific regulation and function, efficient and specific laboratory methods for capturing poly(A) sites at
single cell resolution are underdeveloped to date. In this review, we summarize existing experimental
and computational methods for the identification of APA dynamics from diverse single cell types. A future
perspective is also provided.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In eukaryotic cells, mature mRNA is generated from precursors
that undergo multiple molecular processing, including 50 end cap-
ping, splicing, and 30 end cleavage and polyadenylation [1]. The
location of the cleavage on the nascent RNA, followed by the syn-
thesis of a poly(A) tail, is termed polyadenylation site or poly(A)
site. It is well known that most protein-coding genes are tran-
scribed into diverse mRNA isoforms through differential usage of
different poly(A) sites. This phenomenon is known as alternative
polyadenylation (APA) [2]. More than 50% of genes in animals
and plants contain �2 poly(A) sites [3–5]. Most APAs occur in 30
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untranslated regions (UTR-APA), resulting in an inclusion or exclu-
sion of specific sequences in 30 UTRs. The 30 UTRs tend to harbor
many cis-elements, including poly(A) signals, mRNA stability regu-
latory elements, RNA export and localization signals, as well as
miRNA targets [6,7]. Thus, the dynamic usages of UTR-APA could
influence mRNA stability, translational efficiency, nuclear export
and cytoplasmic localization [6,7]. In some cases, 30 UTRs are
involved in differentiation of protein functionalities through UTR-
APA-mediated protein–protein interactions [8–10]. Moreover,
some APAs are also found in 50 UTR, intron and protein coding
regions (CR-APA), resulting in truncated proteins or proteins with
altered functions [2,6,11]. Inhibition of non-canonical poly(A) sites
could protect mRNA integrity and globally regulate APA profiles
[12,13], and inactivation of tumor-suppressor-genes were widely
observed in tumors through intronic polyadenylation [14].

APA is regulated by the polyadenylation machinery and associ-
ated proteins [15–18], and is increasingly found to be tissue- and
cell type-specific [19–25]. Through single-molecule sequencing,
abundant tissue- and species-specific poly(A) sites were observed
in maize and sorghum [19]. While APA in 30 UTR of Pax3 was
proved to control the fate of muscle stem cell and muscle function
under homeostatic conditions [20], some differential APA events
were found having less impact on muscle-specific expression pro-
files comparing to noncoding RNAs [21]. Differential APA responses
to Cadmium toxicity were monitored across different root cell
types in Arabidopsis [22]. The mouse brain cells showed substan-
tial 30 UTR dynamics across diverse cell types, especially, neurons
globally preferred using distal, while microglia exhibited prefer-
ences of proximal, poly(A) sites [5,23,24]. Cell type specificities of
APA profiles discovered from multiple tumor types show promis-
ing prognostic potential in certain cancers and cardiac diseases
[26–28]. However, our understandings of APA regulation and func-
tion in different cell types is far from clear [2,7]. Interrogation of
APA profiles from different cells is the first step towards revealing
such a mechanism.

To profile the cell type-specific APA or differentially expressed
APA among diverse cell types, several kinds of wet lab approaches
have been developed, and could be classified into three categories:
(1) Sort and purify cells into different cell types before library con-
struction and followed by a normal 30 end sequencing [22,29]; (2)
Extract poly(A) profile of specific cell types from intact tissues
based on co-immunoprecipitation (co-IP) of mRNA 30 ends
[23,24]; (3) Integration of conventional bulk 30 end sequencing
and single cell RNA-seq protocols to interrogate the cell types
and poly(A) profile simultaneously [30]. Meanwhile, in order to
take full advantage of massive volume of existing single cell
RNA-seq (scRNA-seq) data, most of which adopted a 30 end-
enriched sequencing strategy and were mainly used to delineate
the cell heterogeneity based on gene expression, several computa-
tional tools (scDAPA [31], scAPA [32], and Sierra [33]) were
recently developed to decipher the cell heterogeneity at the APA
level and demonstrated promising efficacy.

In this review, we summarize these experimental methods
detecting APAs from individual cell types, and computational pro-
grams delineating APA sites and dynamics from 30 end-enriched
scRNA-seq data.
2. Experimental methods for cell type-specific APA
identification

To comprehensively and precisely obtain APA profiles of differ-
ent cell types, the best way is designing appropriately experimen-
tal approaches to differentiate cell populations and capture mRNA
fragments with poly(A) tails directly, followed by library construc-
tion and high-throughput sequencing. The currently available
experimental methods devoting in cell type APA identification
could be classified into the following three categories as shown
in Fig. 1.
2.1. Cell sorting methods

These methods first dissociate complex tissues into individual
cells which is then sorted into pure cell populations before per-
forming 30 end sequencing [22,29]. Tissues mincing could be fin-
ished by mechanical disaggregation (scalpels or tweezers) with
or without enzymatic dissociation by collagenase (Col II, Col IV,
Col V, or Col XI) plus DNase [34]. For plants, it requires chopping
of tissues into small pieces, followed by a cellulase cocktail diges-
tion [22]. After that, individual cells could be sorted into pure cell
populations using fluorescence-activated cell sorting (FACS)
[35,36], micromanipulation (single cells are individually aspirated
from a cell population under a microscope using glass micropip-
ettes) [37], optical tweezers (integration of imaging based cell
selection and laser beam to manipulate single cells) [38], or
microfluidics [39] etc. Total mRNAs of individual cell types are then
extracted for library construction and sequencing using a NGS plat-
form, e.g. Illumina or Ion Torrent.

Based on the adopted library construction strategies, 30 end
sequencing protocols could be classified into two categories:
oligo(dT) primer-based protocols and RNA manipulation-based
protocols. Oligo(dT) primer-based protocols mainly utilize oligo
(dT) primer to directly capture poly(A) fragments of mRNA mole-
cules, followed by reverse transcription to produce cDNA for
sequencing, such as 30-seq [29], A-seq [40], PAS-seq [41], and
PAT-seq [42] (Fig. 1A). These protocols are easy to implement
and time saving, but typically accompany with internal priming
(annealing to internal adenine-rich sequences), sequencing desyn-
chronization, and bias arising from enzymatic digestions. To over-
come the internal priming problem, several RNA manipulation-
based protocols were developed by incorporating multiple RNA
manipulation steps. For example, 3P-seq adopts a splint adaptor
to ligate complete mRNAs, and RNase T1/H digestions to obtain
target fragments for sequencing [43]; 30READS employs chimeric
U5 and T45 and a stringent primer washing in library construction
[44]. However, they are generally time consuming, involving mul-
tiple steps of RNA manipulation, and prone to bias of the cleavage
efficiency of the enzymes.

Limitations of cell sorting methods include: (1) potential intro-
duction of unexpected cellular stress during tissue dissociation,
cell type purification and laser illumination, thus potentially alter
the gene expression and polyadenylation profiles; (2) the need of
a high volume sample; (3) not applicable to tissues hard to be dis-
sociated or containing rare cells that are not efficiently collected
during sorting.
2.2. Crosslinking immunoprecipitation and GFP tagging methods

To address the impact of manipulation and/or cell sorting on
gene expression, Hwang et al., proposed cTag-PAPERCLIP based
on crosslinking immunoprecipitation (CLIP) and green fluorescent
protein (GFP) tagging to extract poly(A) profile of pure cell popula-
tions from intact tissues [23,24]. Taking advantage that poly(A)-
binding protein (PABP) has high affinity to poly(A) tails (not inter-
nal adenine-rich sequences) [45], PABP was used to pull down the
poly(A) tail contained mRNA fragments before performing reverse
transcription reactions with oligo(dT) [46] (Fig. 1B). This approach
also eliminated potential internal priming issues resulting from
oligo(dT) primers annealing to internal adenine-rich sequences in
mRNAs. In order to profile specific cell type in mixed tissues,
mouse models conditionally and selectively expressing GFP-



Fig. 1. Experimental protocols for profiling APA in cell type-specific manner. (A) A cell sorting method using PAT-seq; (B) The cTag-PAPERCLIP using crosslinking
immunoprecipitation and GFP tagging; (C) The BAT-seq using cellular and molecular barcodes. See more details in the text.

1014 C. Ye et al. / Computational and Structural Biotechnology Journal 18 (2020) 1012–1019
tagged poly(A)-binding proteins were generated using the Cre/Lox
technology [47] (Fig. 1B).

The technical advantages of cTag-PAPERCLIP include less extra-
cellular stress in tissue dissociation compared to manual manipu-
lation and FACS, and the elimination of potential internal priming
events without in silico filtering. Limitations include that cTag-
PAPERCLIP cannot handle with unknown or rare cell populations,
and the organism must express tagged-PABP in a cell-type specific
manner. Since PABP plays multiple key roles in regulating mRNA
localization, turnover and translation, it is unclear how GFP-tag
may negatively impact the folding structures and many essential
functions of PABP, thus altering cellular physiology and state
[48]. Additionally, some RNA-binding proteins are aggregation-
prone (like PABPN1), overexpression may result in aggregation
and depletion of themselves (hence bias for APA), and the aggrega-
tion is also cell-type specific [17]. Moreover, it is time consuming
for plants and/or those organisms without an efficient transforma-
tion protocol. Similar to cell sorting methods, it is also not applica-
ble to cases where sample amounts are limited.
2.3. Cellular and molecular barcoding methods

The rapid growth of single cell RNA-seq (scRNA-seq) technology
provides us unprecedented opportunity to delineate the cell state
and diversity, and changes our understanding of organisms and
organs by tracing the widespread cell heterogeneity [49,50]. It’s
conceivable to incorporate the scRNA-seq protocol into conven-
tional 30 end sequencing protocols. Velten et al. proposed a method
BAT-seq [30] by combining a bulk 30 end sequencing protocol TIF-
seq [51] and a cellular and molecular barcode-based scRNA-seq
protocol [52]. In these protocols, cellular barcodes were introduced
to differentiate cell identities of mRNA molecules, and unique
molecular identifiers (UMI) were added for absolute quantification
of gene expression [52,53]. Cellular and UMI barcoding could be
accomplished by reverse transcription through plate-based (STRT,
CEL-seq2) or droplet-based protocols (Drop-seq, MARS-seq)
[54,55]. Reverse transcription took place inside each droplet/well
with a single cell, after which cells were pooled in bulk for initial
amplification of cDNAs. Fragments of mRNA with poly(A) tails
were captured using a biotinylated tag, followed by 30 end library
construction and Illumina paired-end sequencing (Fig. 1C).

Undoubtedly, the marriage of scRNA-seq and 30 end sequencing
is the ideal way to delineate APA dynamics from diverse cell types.
Unknown and rare cells or sub-type cell populations could be
detected based on gene expression profiles and cell-type level gene
markers. Furthermore, RNA molecules and usages of distinct poly
(A) sites could be precisely quantified by the embedded cellular
and UMI barcodes, eliminating potential biases introduced by
unbalanced PCR amplification efficiencies and/or diverse mRNA
fragment lengths [52,53]. However, the single cell-based method
BAT-seq encompasses several limitations, including a low sensitiv-
ity (limited detection of ~5% of RNA molecules), complicated
manipulation and computation steps [6].
3. Computational methods for cell type-specific APA
identification

Although a serial of experimental methods were developed to
directly profile the APA of multiple species and tissues in the past
decade, the availability of 30 end sequencing data and their cover-
age of different cell types are still limited and incomparable to the
conventional bulk RNA-seq data [6,56]. To remedy the lag of APA



Table 1
Characteristics of currently available computational methods for detecting APA dynamics from scRNA-seq data.

Strategy Quantification
method

Statistical method scRNA-seq
data type

scAPA Peak calling-based log2
C1þ1
hCþ1i

� �
Chi-squared test 30 end

Sierra Peak calling-based log2
E� p11 ���pn1ð Þ

g1þ1ð Þ þ 1
� �

Wilcoxon rank-sum test 30 end

scDAPA Density distribution-based PN
n¼1

pAn�pBnj j
2

Wilcoxon rank-sum test 30 end,
full-length

Fig. 2. Illustration of the peak calling-based and density distribution-based methods in APA dynamics identification using 30 enriched scRNA-seq data. Low coverage peaks
are missed by peak calling-based methods, and overlapping peaks resulted from usage of adjacent poly(A) sites cannot be separated (top panel); usage of adjacent poly(A)
sites are divided into separate bins by density distribution-based methods, while concrete number of poly(A) sites cannot be determined (bottom panel).
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studies and take advantage of the massive volume of existing RNA-
seq data, a number of computational methods have been devel-
oped to identify and quantify APA from conventional bulk RNA-
seq data (reviewed in [56,57]). In terms of sequencing strategies,
reads from conventional bulk RNA-seq data would be distributed
evenly across individual transcripts, fluctuations of read coverages
resulted from diverse isoforms (including APA) could be detected
by specific computational approaches, such as DaPars [27], APA-
trap[58], ChangePoint [59], IntMAP [60], 3USS [61], and TECtool
[62].

Similar to the bulk RNA-seq, massive scRNA-seq data are con-
tinuously produced in an unprecedented speed and coverage. Since
efficacious single cell-based 30 end sequencing protocol is still lack-
ing, in order to explore the APA dynamics between different cell
types or biological conditions, several computational methods
were proposed using scRNA-seq data. According to their adopted
quantification strategies, these methods could be clustered into
two categories: peak calling-based methods and density
distribution-based methods (Table 1).

3.1. Peak calling-based methods

Unlike conventional bulk RNA-seq, most of scRNA-seq methods
introduces cellular and molecular barcodes into library construc-
tions, reads from a specific cell and molecule will be uniquely bar-
coded and be unbiasedly quantified [54,55]. Thus, typically only
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the 30 end or 50 end most fragments will be sequenced in scRNA-
seq protocols, yielding sequenced reads that are enriched in loca-
tions around the transcription start or polyadenylation sites of
individual isoforms in high probability. Taking it into account,
scAPA [32] and Sierra [33] were proposed recently to quantify
the cell type-specific APA regulation from 30 enriched scRNA-seq
data by a peak calling strategy (Table 1, Fig. 2).

These methods generally take the aligned-BAM file and the cell
cluster annotation file as inputs. Aligned BAM file and cell cluster
annotation are obtained through routine scRNA-seq analysis
pipelines and tools (e.g. 10� Cell Ranger [53], STAR [63], Seurat
[64], and SCran [65]). Key steps of these methods include:

(I) Divide the mixed BAM files into individual BAM files of reads
from a single cell type. Assignment and deduplication of
reads could be done according to their attached cellular
and UMI barcodes [66], and cell type classification results
obtained from analyzing the homogeneity of gene expres-
sion profiles of cells [64,65].

(II) Identify alignment peaks from aligned-BAM files. Since the
result of read alignments of scRNA-seq data is similar to that
of ChIP-seq data, the enriched and accumulated alignments
are shown as lots of individual peaks (Fig. 2). Generally, an
individual peak presents a preference of a specific poly(A)
site of the gene, multiple peaks of a gene indicates the occur-
rence of APA in the corresponding gene. To conduct the peak
identification, scAPA utilizes Homer fndPeaks [67], a popular
peak calling tool of ChIP-seq data analysis, to locate the
enriched regions. On the other hand, Sierra employs a
splice-aware peak caller to overcome the potential spliced-
peaks caused by introns [33].

After peak identification, scAPA utilizes the BEDToolsmerge [68]
to combine overlapping peaks, followed by a Gaussian finite mix-
ture modeling [69] to separate potential adjacent peaks caused
by the fuzzy distribution of aligned-reads. In contrast to scAPA,
Sierra takes a similarity score, considering both the distance and
lengths of two peaks, to determine whether the two peaks should
be merged or not.

(III) Annotate and quantify individual peaks. All peaks called by
scAPA are annotated with a predefined 30 UTR extracted
from human and mouse genomes. Numbers of unique reads
located in annotated peaks of each cell type are then counted
by featureCounts of the Rsubread package [70]. While Sierra
takes the GTF annotation file and genomic coordinates of
peaks as inputs to annotate the genomic features of identi-
fied peaks, and quantify the UMI number of each peak using
the GenomicAlignments package [71].

(IV) Detect APA dynamics from cell type-specific APA profiles.
Several distinct approaches were proposed in detecting the
differential usage of APA in genes between samples in cell
type-specific manner. In scAPA, the chi-squared test is used
to evaluate the significance of difference, and a proximal
poly(A) site usage index (proximal PUI, Table 1) was pro-
posed to quantify the relative usage of the most proximal
poly(A) site within a gene. Sierra employs the Wilcoxon
rank-sum test to detect the 30 UTR lengthening or shortening
events, and calculates a relative expression level (R, Table 1)
for each peak in each cell.

Peak calling method is not sensitive to overlapping peaks
resulting from reads of isoforms with adjacent poly(A) sites
(Fig. 2) [72,73], only ~5% of poly(A) sites adjacent to each other
within 200 bp could be differentiated by scAPA. For distance ranges
in 200–300 bp, the recognition rate is ~30% [32]. Reads spreading
in a wide range and consequently a low coverage will be missed
by peak calling methods in high probability. Moreover, the high
dropout rate and low sequencing throughput in single cells of cur-
rently available scRNA-seq technologies also hamper the discovery
precision and depth in identification of APA dynamics. Thus, not all
valid reads could be recovered or accurately split by the peak call-
ing methods, and not all APA events could be discovered from
these scRNA-seq data.

3.2. Density distribution-based methods

Through the reads generated by 30 enriched scRNA-seq enrich in
the upstream regions of poly(A) sites, their distributions generally
cover a rather wide region and in a fuzzy mode [33,74]. To over-
come the fuzzy distribution, scDAPA utilizes a non-parametric den-
sity distribution method to quantify the difference between two
compared groups, rather than calling the precise locations and
boundaries of peaks [31]. The scDAPA also takes aligned-BAM/
SAM file and cell cluster annotation file as inputs, and consists of
three core modules:

(I) Extract and divide reads by cell type classifications. The
mapped reads should be in BAM/SAM format, and reads
are well tagged with cell barcodes and UMIs. The scDAPA
employs an automatic shell script to deduplicate and extract
valid reads based on the 10� Cell Ranger BAM Tag system
(https://support.10xgenomics.com/single-cell-gene-expres-
sion/software/pipelines/latest/output/bam) and the default
alignment Tag system [75]. Valid reads will be separated
into individual SAM files according to the cell type classifica-
tion result including cell barcodes and their corresponding
cell types/groups.

(II) Extract and annotate 30 ends from aforementioned reads.
The coordinates of the 30 most ends of these retrieved reads
are extracted using BEDTools [68] and annotated by genes
with a provided GTF file. All the reads overlapping with a
genic region (including both exonic and intronic regions)
will be reserved, others located in intergenic regions will
be discarded.

(III) Identify APA dynamics between two different cell types or
the same cell type in different conditions. Instead of assign-
ing 30 enriched reads into separate peaks, scDAPA divides the
genic region into equal-size bins (histograms), calculate the
density distribution of each bins by gene and by cell type,
and directly quantify the difference using a site distribution
difference (SDD, Table 1) index (Fig. 2). The significance of
difference is measured by the Wilcoxon rank-sum test, and
adjusted by the Benjamini Hochberg method if multiple sta-
tistical tests were performed [76].

Since the performance of histogram quantification is sensitive
to the bin size [77], scDAPA chooses the 100 bp as default bin-
size through evaluating a sequential of bin-sizes and inspecting
the distances between 30 ends of scRNA-seq data and authentic
poly(A) site annotations [31,74]. Furthermore, the scDAPA is also
applicable to scRNA-seq data sequencing full-length of mRNA
molecules, in terms of only 30 most ends are used in density quan-
tification [54]. The limitation of density distribution-based method
is that it quantifies relative difference between groups, rather than
quantifies the usage of individual poly(A) sites. Besides, it also
faces the innate drawback of currently available scRNA-seq tech-
nologies, a low gene capturing ratio, and many APA events cannot
be detected. Thus, the identified APA events cannot fully represent
the APA landscape of the cell. Before better technologies become
available, other means to improve data processing (e.g. [79]) could
be implemented to reach this goal.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/bam
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/bam
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4. Summary and outlook

APA is increasingly recognized as an important regulator in
many processes, including mRNA translation, stability, nuclear
export and localization [2,7]. Tissue- and cell type- specific regula-
tion of APA were also widely observed and involved in cell activa-
tion, proliferation, development and oncogenesis [23,24,56,78],
implying a complex role of APA. To decipher and understand the
regulatory mechanism of APA, it’s necessary to investigate the
APA atlas at a cellular resolution.

Here, we summarize the recent development of experimental
methods in discovery of APA dynamics in cell type-specific man-
ner, as well as computation method utilizing the scRNA-seq data.
The available experimental protocols have largely advanced the
cell type-specific study of APA, however, these methods still con-
tain many inherent drawbacks as aforementioned. The cell sorting
method may introduce unexpected stress in sample preparation,
and affect the cellular states and APA profiles consequently; the
crosslinking immunoprecipitation and GFP tagging method
requires designing specify transgene model expressing GFP-
tagged PABP in specific cell types, that limits its wide application
in various cell populations; the cellular and molecular barcoding
method could quantify gene expression and APA profiles from sin-
gle cells by employing a scRNA-seq protocol, allowing discerning
rare and unknown cell populations possible. Collectively, the single
cell-based 30 end sequencing method is of the most promising
application prospect. However, technical ameliorations of this type
of combinatory protocol, such as consideration of a more powerful
and stable single cell platform 10� Chromium, to generate an easy-
to-implement protocol of high accuracy and robustness are press-
ing needs.

In the past decade, a massive volume of scRNA-seq data, cover-
ing a wide variety of cell types and biological conditions, were gen-
erated. Computational approaches mining 30 end enriched scRNA-
seq data expand their application scope, and largely fill the gap in
study of cell type-specific APA. Theses computational methods
have been successfully applied on several 30 enriched scRNA-seq
data sets, e.g., a global 30 UTR shortening were observed in acti-
vated T cells compared to naïve T cells using scAPA [32], and aber-
rant APA dynamics were observed in lung cancer and acute
myeloid leukemia by scAPA and scDAPA [32,74], respectively.
However, the low resolution of 30 enriched scRNA-seq in depicting
poly(A) sites hampers the peak calling-based methods in accurate
separation of peaks generated by close poly(A) sites; density
distribution-based method cannot quantify usages of individual
poly(A) site. The inherent low gene capturing ratio of scRNA-seq
protocols also limits the observation depth of these computational
methods. To improve the discovery accuracy and reduce the false
discovery rate, potential ways include integrating the reference
annotation of poly(A) sites, such as PolyA_DB 3 [3] and PlantAPAdb
[4], to guide the identification and quantification of poly(A) site
usages from scRNA-seq data, and improving the sequencing
throughput of single cells and/or the number of cell inputs. All in
all, more innovatively and efficaciously computational approaches
for estimating cell type-specific APA usage from scRNA-seq data
sets are still in high demand.
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