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morphometric data. Part 1. Linear models and
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Abstract. Morphometric data usually have a hierarchical structure (i.e., cells are nested within patients), which should be taken
into consideration in the analysis. In the recent years, special methods of handling hierarchical data, called multilevel models
(MM), as well as corresponding software have received considerable development. However, there has been no application of
these methods to morphometric data yet. In this paper we report our first experience of analyzing karyometric data by means of
MLwiN – a dedicated program for multilevel modeling. Our data were obtained from 34 follicular adenomas and 44 follicular
carcinomas of the thyroid. We show examples of fitting and interpreting MM of different complexity, and draw a number of
interesting conclusions about the differences in nuclear morphology between follicular thyroid adenomas and carcinomas. We
also demonstrate substantial advantages of multilevel models over conventional, single-level statistics, which have been adopted
previously to analyze karyometric data. In addition, some theoretical issues related to MM as well as major statistical software
for MM are briefly reviewed.
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1. Introduction

Morphometric data usually derive from a so-called
multistage sampling, or sub-sampling [31]. In the sim-
plest example, one takes a random sample of patients
(tumors) and then randomly sub-samples cells (nu-
clei) within each patient.1 A hierarchical, multilevel
data structure ensues, with cells (level-1 units) being
“nested” within patients (level-2 units). The impor-
tance of this feature for the morphometric research was
recognized already in seventies [28] and further dis-
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1In consistency with our previous article [33], we will continue to
use the words “cell” and “nucleus” as well as “patient” and “tumor”
interchangeably throughout this paper, too, since their meanings in
the present context are identical.

cussed in early eighties [13–15]. This discussion was
however restricted to a simple decomposition of the to-
tal variance of one single morphometric feature into
different components attributed to each level of hi-
erarchy. A possibility was also shown to incorporate
some factors into the analysis by using nested analy-
sis of variance (ANOVA), for example, to explore dif-
ferences between nuclear features in benign and ma-
lignant lesions [2]. However, due to many limitations
of classical nested ANOVA and lack of other meth-
ods of analysis, two other approaches to data analysis
have commonly been used in the morphometry, as de-
scribed in our previous paper [33]. The first approach
(“pooling” method) treats cells as independent units
of analysis, that is to say cells from different patients
are pooled, e.g., into benign and malignant “cell pop-
ulations”. In the second approach (summary statistics
method), morphometric data are summarized within
each patient by calculating mean values, standard de-
viations, etc., which the subsequent statistical analy-
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sis is performed on. The aim of both approaches is to
eliminate the hierarchy of the data and make use of
traditional, “single level” statistical methods. However,
both approaches, and especially the “pooling” method,
have certain disadvantages and cannot be universally
recommended [33].

In recent years, considerable progress in managing
multilevel data has been achieved. In particular, an en-
tire class of regression models, most widely known as
multilevel models (MM), has been specially developed
to handle hierarchical data structures [4,12,18,25,29,
32]. A number of user-friendly and well-documented
statistical programs for MM are now also available,
and overwhelmingly increasing number of examples
of using MM can be found, mainly in epidemiological
and socio-medical research [3,7–9,21]. However, MM
have not yet been used in the morphometry.

In this paper we report our first experience with
MM in the analysis of morphometric data. The present
study is a logical continuation of our previous work
[33]. In Part 1, we focus on linear models, i.e., models
where morphometric nuclear features serve principally
as dependent variables. A comparison with traditional,
single-level statistics is made in order to demonstrate
the key advantages of MM. In addition, some theoret-
ical issues related to MM as well as major statistical
software for MM are briefly reviewed.

2. Materials and methods

Seventy-eight follicular neoplasms of the thyroid
(34 adenomas and 44 carcinomas, archival material)
were analyzed. The diagnoses were based on WHO cri-
teria [17]. All specimens were fixed in buffered 10%
formalin and conventionally embedded in paraplast.
For karyometry, monolayer preparations of cell nu-
clei were made according to the method of van Driel
Kulker et al. [34]. Briefly, 50µm thick sections were
cut in each neoplasm from a block with representative
tumor areas, deparaffinized in xylene, rehydrated and
incubated in 0.05% pronase solution for 30 minutes
at 37◦C with intermittent vortex mixing. After filtra-
tion through 50-µm nylon gauge, centrifugation and
re-suspension of the sediment in 2% carbowax solu-
tion (MW 1500, Merck), monolayer preparations were
obtained using a Shandon cytocentrifuge at 2000 rpm
for 15 min. The slides were air-dried and stored at
4◦C. Nuclei were stained after Feulgen in modification
thionine-SO2, using CAS (Becton Dickinson) stain-
ing kits and protocols. Prior to staining, carbowax was

Table 1

Nuclear features measured, with corresponding abbreviations

Class of features Feature Abbreviation

Geometric Nucleus area NA

Nucleus circularity [1] NC

Densitometric Mean gray value MGV

within a nucleus∗

Standard deviation of gray SDGV

values within a nucleus∗

Skewness of gray values SkewGV

within a nucleus∗

Kurtosis of gray values KurtGV

within a nucleus∗

Integrated optical density IOD

within a nucleus

Textural Surface area density SAD

(chromatin coarseness)
Features marked by asterisk∗ were computed based on the gray val-
ues, not on the optical density values, because they much better ap-
proximate to the normal distribution. SAD is equivalent to nuclear
surface area density as defined in [20] divided by the number of pix-
els within the nucleus.

dissolved in distilled water for 30 min. Measurements
were performed by means of a semiautomatic system
for image analysis, composed of Eclipse E600 micro-
scope (Nikon, Japan) with 100/1.4 Plan Apochromat
oil immersion objective used for measurements, 3CCD
video camera DXC-930P (SONY, Japan), IntriguePro
image frame grabber (Integral Tech., USA), and per-
sonal computer (PII, 266 MHz, 64 MB RAM). The
system was controlled by Optimas 6.5 image analy-
sis software, with customized macros written in ALI
(Analytical Language of Images) to automate karyo-
metric measurements. A total of 8 features (see Ta-
ble 1) were identified for 147 to 258 (200 on aver-
age) nuclei in each slide. Nuclear contours were deter-
mined automatically using a customized combination
of two autothresholding algorithms (“minimize vari-
ance” and “search for minimum”) implemented in Op-
timas [1]. The system was calibrated with a micromet-
rical scale in order to obtain NA values inµm2. Den-
sitometric and texture features were measured in arbi-
trary units based on gray levels, and performed accord-
ing to the recent consensus report [16]. Calibration of
illumination as well as background and glare correc-
tion was used to avoid any artificial changes in object
brightness. For the glare correction we used our own,
improved algorithm of pixel-basedpre-correction (not
published).
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3. Statistical analysis and results

3.1. Some theoretical considerations and multilevel
software

Discussion of the multilevel theory is beyond the
scope of this paper. For comprehensive review of the
topic we refer the reader to a number of books [12,
18,29] and journal articles [4,25,32]. Here, we just ad-
dress some main issues. We will consider 2-level mod-
els only.

First of all, it has to be stressed that we are speak-
ing aboutmodeling morphometric data. It means that
we want to explain the level and variation of a certain
nuclear feature (outcome) in dependence of some fac-
tors (effects, predictors, covariates). The background
behind such modeling is to get a biological understand-
ing of certain lesions. No classificatory models, i.e. dis-
criminating between benign and malignant conditions
are considered here. This is currently the topic of our
ongoing research, and the results will be published in
the near future.

Two kinds of effects exist in statistical modeling:
fixed and random. An effect is fixed, if it affects the
population mean, and random, if it affects the vari-
ance of the dependent variable. Fixed effects are rep-
resented in the model by coefficients (intercept and
slopes), and random effects by corresponding variance
components attributed to these effects. Note that a vari-
able can represent both fixed and random effects si-
multaneously. For example, a very common hypothe-
sis is that malignant tumors have, on average, larger
nuclei in comparison with benign. Tumor dignity is
considered a fixed effect here. However, one can also
hypothesize that malignant tumors demonstrate more
pronounced anisokaryosis than do benign tumors. That
is, tumor dignity might also affect the variance of the
outcome variable, which is a random effect. Corre-
sponding specification of the model is necessary to ac-
count for both effects.

There are also variables that represent purely ran-
dom effects. In particular, subject effects associated
with the sub-sampling in the morphometry contribute
only to the variance of nuclear features and thus are
random [30,37]. That means that prior to adding any
covariates in the model, the hierarchy of the data must
be accounted for by obligatory inclusion of a random
effect representing level-2 (e.g., patient’s ID). As a re-
sult, the between-patient variance is separated form the
remaining, within-patient variance.

This is essentially the way that MM work: the vari-
ance of the dependent variable is split into components
corresponding to the levels of hierarchy. Thus, even
the “empty” two-level model, i.e. a model, with just
a constant term and “no” additional covariates, actu-
ally does include a covariate identifying level-2 units.
Having this basic structure, one can add other covari-
ates to account for some effects that are either fixed or
random at different levels of hierarchy. Note that as-
sumptions, residuals, and interpretation of the results
are all level-related in multilevel modeling, which may
offer additional challenges. Some further issues (vari-
able interactions, correlated errors from different lev-
els) can cause MM to be extremely complex. While
presenting our results, we will step through the ma-
jor types of MM in the ascending complexity, in or-
der to show which information can be gained from
them and how the model parameters should be inter-
preted.

There are different methods of estimation model pa-
rameters, which can roughly be subdivided into simu-
lation and non-simulation techniques.

Non-simulation techniques:

• IGLS (iterated generalized least squares),
• RIGLS (restricted iterative generalized least

squares),
• ML (maximum likelihood),
• REML (restricted maximum likelihood),
• MINQUE (Minimum Norm Quadratic Unbiased

Estimator).

Simulation techniques:

• Parametric bootstrap,
• Non-parametric bootstrap,
• Monte Carlo–Markov chain (MCMC).

For normal responses, IGLS is equivalent to ML
and RIGLS is equivalent to REML. RIGLS and REML
produce slightly better variance estimates than IGLS
and ML [12,25,29]. Simulation methods are more pre-
cise, especially as far as random parameters are con-
cerned [12,25], but they are also much slower and com-
putationally intensive. In our study, we used RIGLS
estimation.

Like all linear models, linear MM have assumptions
of normality, linearity and homoscedasticity [4,12,18,
25,29,32]. All these assumptions apply to every level
of hierarchy and consequently must be checked for
each level separately. In addition, there are two as-
sumptions specific to multilevel designs: independence
of level-1 and level-2 residuals and no autocorrelation
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Table 2

List of software for multilevel modeling or with some “multilevel” features

Software (latest version Short description Internet address

available)

MLwiN, version 1.10.0007 Dedicated statistical program for multilevel http://multilevel.ioe.ac.uk/

(previously also MLn) modeling

HLM, version 5.04 Dedicated statistical program for multilevel http://www.ssicentral.com/hlm/hlm.htm

modeling

MIXOR, version 2.0, Suite of dedicated statistical programs for http://tigger.uic.edu/~hedeker/mix.html

MIXREG, version 1.2, multilevel modeling

MIXNO, version 1.0,

MIXPREG, version 1.1

WesVar, version 4; version Computes variance estimates in complex http://www.westat.com/wesvar/

2.12 downloadable sampling designs, including multistage,

stratified, and unequal probability samples

VARCL Variance component analysis for up to 9 levels http://www.assess.com/Software/VARCL.htm

of nesting

WinBUGS, version 1.3 Program forBayesian inferenceUsingGibbs http://www.mrc-bsu.cam.ac.uk/bugs/

Sampling, allowing some kinds of multilevel

modeling

SAS/STAT (GENMOD, General purpose statistical program with http://www.sas.com/rnd/app/da/stat.html

MIXED and NLMIXED powerful multilevel features

procedures), version 8.2

S-Plus, version 6 General statistical program with multilevel http://www.insightful.com/products/

features product.aps?PID=3

Oswald, version 3.4 Suite of S-plus functions for analyzing http://www.maths.lancs.ac.uk/Software/Oswald/

longitudinal data

STATA, version 7.0 General statistical program with some multilevel http://www.stata.com/

features

SPSS, version 11.0 General statistical program with some multilevel http://www.spssscience.com/spss11/

(Advanced Models) features

SYSTAT 10.2 General statistical program with some multilevel http://www.systat.com/

features

at level-1 [25,32]. Normality, homoscedasticity, inde-
pendence and autocorrelation of residuals can be in-
spected after a model is fitted using residual plots. MM
allow an easy estimation and plotting of residuals for
each level. Linearity assumption can be verified by in-
cluding quadratic, cubic, etc. terms of corresponding
covariates in the model.

There are both general statistical packages with
some multilevel procedures included and dedicated
software for multilevel modeling. In Table 2, we listed
all such programs that we are currently aware of. They
differ considerably in the number of modeling possibil-
ities, estimation methods and user-friendliness. Some

of these packages have been reviewed in the litera-
ture in rather detail [6,30,36,37,39]. There is, however,
no single program where all the estimation methods
listed above would be implemented. To develop MM
in our present work, we used MLwiN 1.10 [27], which
presently seems to be the most advanced and, at the
same time, very user-friendly program [6,36,39].

3.2. Modeling hierarchy in “empty” model

An “empty” two-level model includes a constant
term (as a fixed effect) and two variance components
corresponding to level-1 (within-tumor) and level-2
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Table 3

“Empty” model for NA and log NA

Notes:−2LL – negative doubled log likelihood. SE – standard error. Significance levels
lower than 1.0E-99 are presented as 0.

Table 4

Most important summary from “empty” models and models with DIAGNOSIS as random coefficient covariate

Feature “Empty” model Model with DIAGNOSIS as a random coefficient covariate

Significance ICC DIAGNOSIS Complex variance

of hierarchy overall coefficient

(level-2 variance) (significance)

Level-2: Level-1: difference

significance carcinomas – adenomas,

% (significance)

Log NA 4.3E-10 0.54 0.22 (0.0001) 0.57 36% (1.9E-36)

NC 7.7E-10 0.26 0.84 (0.0078) 0.89 48% (1.4E-62)

MGV 4.8E-10 0.58 23.5 (1.4E-11) 1 −5% (0.018)

SDGV 6.0E-10 0.50 −0.89 (0.34) 0.73 −12% (8.8E-09)

SkewGV 4.4E-10 0.52 −0.44 (9.5E-11) 0.13 −31% (4.1E-57)

KurtGV 4.7E-10 0.52 −0.44 (0.00056) 5.9E-07 −37% (1.8E-87)

Log IOD 5.1E-10 0.51 −0.056 (0.19) 0.36 56% (9.7E-79)

SAD 5.2E-10 0.62 0.35 (4.5E-05) 0.89 53% (1.9E-74)

(between-tumor). In MLwiN, the model is specified by
allowing the constant term to vary at both levels [27].
Note that level-2 variance represents the random effect
associated with nesting (subject effect). The “empty”
model is essentially equivalent to the variance compo-
nent model available in all major statistical packages
like SPSS or SAS [30,37]. It can be useful in three dif-
ferent ways (see Tables 3 and 4 for the results).

1. The most interesting feature for us is the possibil-
ity to explore the hierarchy itself – i.e., to judge how
strong the clustering effects within the level-2 units are
and whether we really do need to account for this. Ta-
ble 3 shows a complete example of an “empty” model
for the variable NA. As can be seen, the level-2 vari-

ance in this model is highly significant, which means
the hierarchical structure of the data cannot be ignored.
The between-patient variance was highly significant
also for all other karyometric features measured (Ta-
ble 4). This agrees with our results reported previously
[33] and stresses once more the great importance of
objects’ hierarchy for analysis of morphometric data.

We can further get an idea about the magnitude of
the clustering effects in our data – i.e., the degree of
similarity of cells within each tumor. For this, we com-
pute the intra-class correlation coefficient (ICC) using
the known formulaσ2

p/(σ2
p + σ2

c(p)) [10,12,29], where

σ2
p is the between-patient, andσ2

c(p) the within-patient
variance. As demonstrated in Table 4, the obtained
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Fig. 1. Plots of residuals for the “empty” model of NA. A, B – level-1 residuals, before and after log transform, respectively. C, D – level-2
residuals, before and after log transform, respectively. Straight lines represent ideally normal distribution.

ICC values were mostly between 0.5 and 0.6, which
is rather high – higher than our previous results for
oxyphilic thyroid tumors [33].

2. Constant term in the “empty” model is interpreted
as the mean NA value in the entire population of fol-
licular thyroid tumors. Table 3 shows that mean NA
computed in MM as well as in both single-level ap-
proaches was the same. However, the SE of mean in the
“pooling” method was greatly (about 10-fold) under-
estimated, whereas in the summary statistics method
it was correct. This fully agrees with our previous
data [33].

3. The assumption of normality can be checked al-
ready in the “empty” model by examining plots of
standardized residuals vs. normal scores. Figure 1A,C
shows an example of NA, for which normality assump-
tion was violated at both levels, especially at level-1.
After log transform, only minor deviance from the nor-
mal distribution was seen (Fig. 1B,D). Note, however,
that interpretation of the model coefficients after log
transform is different. Constant term of 3.78 (see Ta-
ble 3) means that the mean NA in the population is
e3.78 = 43.8 µm2. This is lower than the mean es-
timated on the raw data, because the distribution of
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Table 5

Model for NA and log NA with DIAGNOSIS as fixed coefficient covariate

Notes:−2LL – negative doubled log likelihood. SE – standard error. Significance levels lower
than 1.0E-99 are presented as 0.

NA is left-skewed. Note also that the relation between
level-2 and level-1 variance has changed, and ICC in-
creased from 0.47 on the raw data (184.7/(184.7 +
206.8) = 0.47) to 0.54 on the log scale (see Table 4).

Violation of normality assumption was also detected
for IOD, so the log transform was required here, too.
All other nuclear features showed nearly normal distri-
bution.

3.3. Exploring simple research hypothesis

Now we can extend the “empty model” to explore
some research hypotheses. In our particular exam-
ple, let us formulate the question of interest as that
about magnitude and significance of the differences
in nuclear features between follicular adenomas and
carcinomas. Thus, we add a new term, DIAGNOSIS
(coded as 0 for adenomas and 1 for carcinomas) as a
fixed effect to the “empty” model created at the pre-
vious step. The full example of the model for NA is
shown in Table 5, and the results are interpreted as fol-
lows.

1. −2 Log Likelihood (−2LL), in comparison with
the empty model, significantly decreased (by 13) – i.e.,
the model fits the data better now.

2. Constant term shows the value of NA at 0 value
of DIAGNOSIS. Since in our data set adenomas were

coded as 0 and carcinomas as 1, the value of 41.1
corresponds now to the mean NA foradenomas only.
For log transformed data, the estimated average NA is
e3.66 = 38.86µm2.

3. The coefficient for DIAGNOSIS indicates that nu-
clei in carcinomas are, on average, 10.9µm2 larger
than in adenomas, and thus, the mean NA in carci-
nomas is 41.1 µm2 + 10.9 µm2 = 52.0 µm2. As
for log transformed data, the coefficient for DIAG-
NOSIS means that NA in carcinomas is, on average,
e0.22 = 1.246 times as high as that in adenomas and is,
thus, 48.42µm2. Note that, again, both single-level ap-
proaches yield correct mean values, but the standard er-
ror in the “pooling” method is greatly underestimated,
leading to an extreme inflation of the significance value
for DIAGNOSIS.

4. Level-2 variance remained highly significant, but,
in comparison with the “empty” model, considerably
decreased. By contrast, level-1 variance remained ex-
actly the same. This is due to the fact that DIAGNOSIS
is uniform within each level-2 unit and is, therefore, a
level-2 covariate. In some other situations, e.g., while
studying gynecologic smears with a mixture of benign
and malignant cells on each slide, DIAGNOSIS can be
level-1 covariate, soboth level-1 and level-2 variances
would change.
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Table 6

Model for log NA with DIAGNOSIS as random coefficient covariate

Notes:−2LL – negative doubled log likelihood. SE – standard error. Parameters marked by
asterisk * were pre-constrained to 0, because they were redundant [27]. Significance levels
lower than 1.0E-99 are presented as 0.

3.4. Complex variance structure

Until now, the coefficient for DIAGNOSIS was
modeled as fixed. This implies that both between- and
within-tumor variance is the same for adenomas and
carcinomas. It is, however, logical to hypothesize that
due to usually higher cellular atypia in malignant tu-
mors

(a) variation of nuclear size (and also other nu-
clear features) might be higher within carcino-
mas than within adenomas, and

(b) carcinomas might differ more from each other
in their (average, predominant) nuclear size (and
other nuclear characteristics) than do adenomas.

To check it, we allow the coefficient for DIAGNO-
SIS to vary at both levels. In other words, we con-
sider now DIAGNOSIS to represent not only a fixed
effect, but also two random effects: one correspond-
ing to the question (a) above and affecting level-1 vari-
ance, and another one corresponding to the question (b)
and thus affecting level-2 variance. Using terminology
common to multilevel modeling, the coefficient for DI-
AGNOSIS is specified asrandom2 at both levels [12,

2The term “random coefficient” is often used in text books on
multilevel modeling [12,29] and designates, in fact, a variable repre-
senting an admixture of a fixed effect and at least one random effect
at any of the levels.

29,27]. Due to additional random effects, a complex
variance structure at each level results (see below). Ta-
ble 6 shows model parameters for log NA. The inter-
pretation is as follows:

1. −2LL decreased drastically (by 175, at 2 addi-
tional degrees of freedom), which means a great im-
provement of the model fit.

2. The fixed model coefficients (intercept and slope)
remained practically unchanged, and their meaning is
the same as in the previous step.

3. At each of the levels, we have 3 parameters now
instead of 1: intercept variance, slope variance (vari-
ance due to the random effects of DIAGNOSIS) and
covariance of intercept and slope. This allows us to
compute the variance of NA separately for adeno-
mas and carcinomas. Note that for this purpose, any
two out of the three parameters are sufficient. This is
why the variance of the slope (DIAGNOSIS) was pre-
constrained to 0 [27]. The variance for adenomas has
already been computed: it is the variance of the inter-
cept. The variance for carcinomas is the variance for
intercept plus twice the covariance between intercept
and slope and is, thus, 0.068 for level-2 and 0.072 for
level-1. Note, however, that the level-2 covariance is
non-significant; the level-1 covariance is, by contrast,
highly significant. We can thus state that the within-
tumor variation of NA (i.e., nuclear polymorphism) is
significantly higher in carcinomas than in adenomas.
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For the between-tumor variance of NA, this tendency
is also observed, but is not significant.

The summary of the models with complex variance
for all nuclear features measured is presented in Ta-
ble 4. Differences in mean values between adenomas
and carcinomas were not significant for SDGV and
IOD and highly significant for all other nuclear fea-
tures. Complex variance at level-2 was not significant
for all features, except KurtGV. At level-1, however,
the situation was completely different. As can be seen,
carcinomas showed much higher within-tumor varia-
tion of nuclear size and form factor, DNA amount and
chromatin coarseness, and lower variation in nuclear
staining intensity and its derivates.

Having separate variances for adenomas and carci-
nomas, we can further compute separate ICC for each
tumor group. We can even construct confidence in-
tervals for these ICC values, and thus compare them.
In our study, however, ICC were not significantly dif-
ferent between carcinomas and adenomas, mostly due
non-significant covariances at level-2, with an excep-
tion being, again, KurtGV (data not shown).

3.5. Exploring complex research hypothesis

In a similar way to the previous steps we can in-
corporate in the model some further covariates, which
may be relevant to our research question. Again, their
coefficients can be modeled either as fixed or random

at each of the levels, depending on the nature of the fea-
tures and the interpretability of the model parameters.
As an example, we present in Table 7 a model for NA
as dependent variable, and DIAGNOSIS and IOD as
covariates with random coefficients at both levels. The
reason for constructing such a model is the hypothesis
that changes of NA might be secondary to the changes
in nuclear DNA amount. Thus, we want to explore the
difference of NA between carcinomas and adenomas
while controlling for IOD. Both NA and IOD were
log transformed to meet the assumption of normality.
Furthermore, log IOD was then centered (by subtrac-
tion) around the value of 2.48, which corresponded to
the nearly-diploid peaks on the DNA histograms. This
greatly improved both convergence of the model and
interpretability of the results.

1. The dramatic change of−2LL (by 8630 at 7 de-
grees of freedom) indicates a crucial improvement of
model fit and confirms our surmise that NA is closely
related to the nuclear DNA amount.

2. Constant term corresponds to the NA at 0 value of
DIAGNOSIS (i.e., adenomas) and 0 value of log IOD
(i.e., nearly-diploid DNA amount, due to the centering)
and is equal to e3.60 = 36.6 µm2.

3. The coefficient for DIAGNOSIS shows that,for
the same DNA amount, malignant nuclei are e0.26 =
1.3 times as large as benign nuclei. Thus, nearly-
euploid nuclei in carcinomas are, on average,
36.6 µm2 × 1.3 = 47.6 µm2 in size. Note that, in

Table 7

Model for log NA with DIAGNOSIS and IOD as random coefficient covariates

Notes:−2LL – negative doubled log likelihood. SE – standard error. Parameters marked by
asterisk * were pre-constrained to 0, because they were redundant [29]. Significance levels
lower than 1.0E10-99 are presented as 0.
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Fig. 2. Dependence of the variance of NA on IOD estimated separately for adenomas and carcinomas. A – between-tumor variance, B –
within-tumor variance. Error bars represent 95% confidence intervals.

comparison with the previous model (Table 6), the co-
efficient for DIAGNOSIS increased, whereas its stan-
dard error remarkably decreased. This means that dif-
ferences in nuclear size between adenomas and carci-
nomas became even more apparent if we control for
nuclear DNA amount.

4. The coefficient for IOD indicates that NA is di-
rectly related to the nuclear DNA amount. The associ-
ation function is of the power type; however, the coef-
ficient is very close to 1, so the relationship is nearly
linear, at least within the observed range of IOD val-
ues. For example,within the same tumor type (i.e.,
either adenomas or carcinomas), triploid nuclei are
e0.95×ln(1.5) = 1.50.95 = 1.47, and tetraploid nuclei
e0.95×ln(2) = 20.95 = 1.93 times as large as diploid
nuclei.

5. The random parameters of the model allow us to
evaluate the between- and within-tumor variance sepa-
rately for adenomas and carcinomas in dependence on
log IOD. This variance function is comfortably com-
puted and plotted in MLwiN (see Fig. 2). As can be
seen, the lowest NA variance corresponds to nearly
diploid DNA amount, and the more is the deviance
from the euploidy, the higher is NA variance. This is
true for both levels, but is more pronounced at the
level-2. Another point to note is that at high ploidy
levels (beginning approximately from triploid), car-
cinomas show significantly higher nuclear pleomor-
phism (within-tumor variation of NA) than do adeno-

mas (in Fig. 2B, the confidence limits do not overlap).
Between-tumor variance seems to be equal for both tu-
mor types, irrespective of nuclear DNA amount.

4. Discussion

In the present study, we could demonstrate some
substantial advantages of MM over usual, single-level
statistics in application to morphometric data. On the
basis of the models fitted, we could draw a number of
interesting conclusions:

(a) Data hierarchy in the morphometry is a very im-
portant factor, with ICC values ranging mainly
between 0.5–0.6 (see Table 4), which is rather
high – higher than in our previous study [33] and
in other research fields with published ICC data
[10].

(b) There are significant differences between follic-
ular adenomas and carcinomas in nuclear size
and form factor, staining intensity, and certain
chromatin properties. In particular, malignant
nuclei, in comparison with benign, are larger,
more irregularly-shaped, stain paler, and have
coarser chromatin. The magnitude of these dif-
ferences is described by corresponding coeffi-
cients (see Table 4), and the example of their in-
terpretation was given above.
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(c) There seems to be no difference in nuclear DNA
amount between adenomas and carcinomas. This
finding is consistent with most other reports
[5,23,26,38]. Furthermore, SDGV (which de-
scribes the variation of staining intensity across
different points in a nucleus) appears also to be
the same for both tumor types.

(d) Within-tumor variation of nuclear features is
different for adenomas and carcinomas (see
Table 4). Malignant tumors show higher nu-
clear pleomorphism, higher variation of nuclear
DNA amount and higher variation of chromatin
coarseness. By contrast, variation of nuclear
staining intensity and its derivates is lower.3 The
latter finding is especially interesting with regard
to the lower average staining intensity typical for
malignant cells. It seems that malignant trans-
formation affectsmost cells within the tumor in
a uniform way in that they loose their tincture
properties.

(e) Between-tumor variation of nuclear features, ex-
cepting KurtGV, appears to be the same for ade-
nomas and carcinomas.

(f) NA is directly related to nuclear DNA content.
When controlled for tumor dignity, this relation-
ship is nearly linear – e.g., tetraploid tumors are
almost 2 times as large as diploid. Note, how-
ever, that this holds for monolayer preparations
used in our study, where nuclei are very much
flattened. In paraffin sections, this relationship
may be of other magnitude.

(g) Among cells with the same DNA content, malig-
nant nuclei are about 1.3 times as large as benign
nuclei.

(h) Diploid cells are the most uniform with regard
to their nuclear size; at higher ploidy levels, nu-
clear pleomorphism (both between- and within-
tumor) increases.

(i) Among cells with high DNA content (beginning
approximately from triploid), malignant nuclei
are more pleomorphic than benign.

Many of these conclusions would be impossible us-
ing single-level statistics, or we would end up with
wrong conclusions at all. The “pooling” method leads
to a large bias due to reasons considered in our pre-
vious work [33] and is, therefore, unacceptable. Sum-

3It is known that statistical moments about the mean usually corre-
late with the absolute magnitude of the mean. However, the relation-
ship observed was completely preserved even after SDGV, SkewGV
and KurtGV were normalized by MGV (data not shown).

mary statistics method is precise and effective enough
for simple hypotheses, as can be seen on many exam-
ples in the literature [22,24,35]. However, it is inef-
fective for complex research questions [4]. In particu-
lar, estimation and comparison of within- and between-
tumor variances is still possible (although very uncom-
fortable), if there is, at most, onecategorical covariate
(e.g., DIAGNOSIS). If we want to control for other,
and especially continuous, covariates and explore the
complex variance-covariance structure, like in our last
model, MM are necessary.

The advantage of MM becomes even more appar-
ent if there are more than 2 levels of nesting. For ex-
ample, in a multicenter study, the centers (institutions)
would represent the third level of the hierarchy. Or one
can account for measurement error by taking repeated
measurements from the same nuclei and treating them
as the lowest-level units. It is clear that the “pooling”
approach becomes even more imprecise, and summary
statistics approach even more ineffective in this setting.

There are some extensions of traditional statistical
methods, e.g., nested ANOVA and mixed-effect gen-
eral linear models (GLM) capable of handling random
effects. It is thus possible to manage certain kinds of
multilevel data using GLM procedure available, for in-
stance, in SPSS or SAS [30,37]. However, GLM pro-
duce estimates based on sums of squares and therefore
achieve their optimal performance only on completely
balanced designs. On unbalanced data, a bias occurs,
requiring a careful choice of weighting [25,30]. GLM
also treat all (even random!) effects as fixed and con-
structF statistics based on the ratio of the appropri-
ate sums of squares. On the contrary, variance com-
ponents, especially those attributed to random effects,
are not estimated directly, and no standard errors are
produced for them [30,37]. Consequently, it is in fact
impossible to correctly test the significance of random
effects using GLM. In contrast, MM use maximum
likelihood estimation, which is asymptotically efficient
even on unbalanced data [30]. Variance parameters are
estimated directly in MM, together with correspond-
ing standard errors [25,30]. Variance can also be mod-
eled as a function of other covariates, like in our last
model. This is impossible in GLM. In addition, MM
generate−2 Log Likelihood and other indices like AIC
(Akaike’s Information Criterion) and BIC (Schwarz’s
Bayesian Information Criterion), which describe the
model fit and can be used to search for “the best” model
[12,29,30,37]. Finally, MM provide a natural way to
handle multivariate outcomes [25], and we are going
to demonstrate one of possible uses of these models in
Part 2.
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On the other hand, MM are much more compli-
cated than conventional, single-level models. MM, due
to their nature, split all variance components into dif-
ferent levels. Correspondingly, one has to check as-
sumptions and interpret variance parameters separately
for each of the levels. The general interpretation rule
(on example of karyometric data) is that level-1 vari-
ance/covariance refers to cells, or “within-tumor” vari-
ation, and level-2 variance/covariance to tumors, or
“between-tumor” variation of the dependent variable.
If two or more covariates are present in the model, the
meaning of the parameters for each variable becomes
conditional on the presence of other variables in the
model, which increases even more interpretation chal-
lenges. In addition, all the problems common to bio-
statistical modeling (e.g., sufficient number of study
objects and adequate ratio “observations-to-variables”,
multiple comparisons problem, selection of the “best”
model, checking assumptions, etc.) are no less and of-
ten even more acute in multilevel designs.

A particular issue to be addressed is the robustness
of multilevel estimates against small samples and vi-
olation of assumptions, especially the one of normal-
ity. When using MM, one should consider sample size
at both levels, i.e. number of level-2 units and num-
ber of level-1 units per level-2 unit. In the morphom-
etry, a sufficient number of level-1 units per level-2
unit (e.g., several hundreds of cells per tumor) is usu-
ally easy to achieve. It is also desirable to have more
than 100 level-2 units in a sample, especially account-
ing for the great magnitude and importance of the
between-subject variation [13–15,28,33].Yet, quite of-
ten the number of level-2 units is rather small, for
example, due to the rarity of a particular tumor. As
a result, it is difficult or even impossible to rule out
non-normality using plots of level-2 residuals. It is,
however, reasonable to assume a normal distribution
of level-2 variables due to the central limit theorem
[11]. In addition, the most recent study by Maas and
Hox [19] based both on a comprehensive literature re-
view and own simulations shows that multilevel esti-
mates are generally robust to moderate non-normality
and small sample sizes. Samples with about 50 level-
2 units produce unbiased estimates and standard er-
rors, except for the standard errors of variance com-
ponents at level-2 [19]. To eliminate this bias, boot-
strap or simulation techniques can be effectively ap-
plied [12,25,27]. MLwiN offers very comfortable fa-
cilities for parametric and non-parametric bootstrap,
Gibbs sampling and MCMC.

There are also some purely technical, computational
problems related to MM and/or to the corresponding

computer program. Quite frequently, we experienced
numerical errors and even program crashes while run-
ning MLwiN, even if the model was specified cor-
rectly. This was particularly typical for models with
complex variance structure. Newer versions of the soft-
ware might remedy the problem. According to our ex-
perience, if severe numerical errors occur or coeffi-
cients do not converge, switching between different es-
timation options (IGLS/RIGLS, negative variances at
each level allowed/not allowed) may solve the prob-
lem. In all situations, centering the data around the
grand mean as well as transforming them in order to
improve normality are helpful. However, the interpre-
tation of the models fitted to transformed and/or cen-
tered data is different and somewhat more complicated,
as demonstrated in our study.

In conclusion, MM represent a very powerful and
flexible way for modeling and analyzing morphome-
tric data. They are superior over other statistical ap-
proaches that have been used in the morphometry un-
til now. However, MM are more complex than com-
mon single-level statistics, and require very careful
and thorough specification and interpretation. We hope
that our experience described in this paper will be
useful for those morphometrists who are going to
apply MM in their research. For systematic reading
on MM, a number of sources can be recommended
[4,12,18,25,29,32].
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