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Purpose: Deep learning is emerging in radiology due to the increased computational capabilities
available to reading rooms. These computational developments have the ability to mimic the radiolo-
gist and may allow for more accurate tissue characterization of normal and pathological lesion tissue
to assist radiologists in defining different diseases. We introduce a novel tissue signature model based
on tissue characteristics in breast tissue from multiparametric magnetic resonance imaging (mpMRI).
The breast tissue signatures are used as inputs in a stacked sparse autoencoder (SSAE) multiparamet-
ric deep learning (MPDL) network for segmentation of breast mpMRI.
Methods: We constructed the MPDL network from SSAE with 5 layers with 10 nodes at each layer.
A total cohort of 195 breast cancer subjects were used for training and testing of the MPDL network.
The cohort consisted of a training dataset of 145 subjects and an independent validation set of 50 sub-
jects. After segmentation, we used a combined SAE-support vector machine (SAE-SVM) learning
method for classification. Dice similarity (DS) metrics were calculated between the segmented
MPDL and dynamic contrast enhancement (DCE) MRI-defined lesions. Sensitivity, specificity, and
area under the curve (AUC) metrics were used to classify benign from malignant lesions.
Results: The MPDL segmentation resulted in a high DS of 0.87 � 0.05 for malignant lesions and
0.84 � 0.07 for benign lesions. The MPDL had excellent sensitivity and specificity of 86% and 86%
with positive predictive and negative predictive values of 92% and 73%, respectively, and an AUC of
0.90.
Conclusions: Using a new tissue signature model as inputs into the MPDL algorithm, we have
successfully validated MPDL in a large cohort of subjects and achieved results similar to radiologists.
© 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13849]
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1. INTRODUCTION

A new paradigm is emerging in radiology with the increased
computational capabilities and deep learning algorithms.
Deep learning networks (DLN) allow for the learning of radi-
ological relationships between different tissue types and pro-
vide new methods to segment and/or classify high-
dimensional data sets.1–9 These DLN algorithms allow for
accurate and reliable prediction of tissue types from the input
images with the aim to improve the radiologist’s clinical deci-
sion support in different diseases10–19 and have been recently
reviewed.20,21

In the multiparametric MRI setting, using conventional
T1- and T2-weighted images and advanced MRI parameters
of diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced imaging (DCE) provide qualitative and quantitative
information of different tissue types. These sequences pro-
vide a distinct contrast of various tissues to construct unique
signatures that provide specific information about the compo-
sition of the tissue.22–29 Experienced radiologists use the vari-
able contrast from MRI to identify and recognize tissue
signatures of normal from abnormal features. Advanced deep
learning algorithms by attempting to mimic the radiolo-
gist may allow for more accurate tissue characterization.

Prior work in using deep learning methods for segmenta-
tion of breast tissue from breast MRI has been focused on
glandular tissue, breast boundaries, and lesions.30–36 These
methods have been limited to using only one or two breast
MRI sequences and with complete annotated datasets of the
tissue of interest. These reports used a variety of current state
of the art methods for segmenting the breast lesions includ-
ing, modified convolutional neural network (CNN)-based (U-
Net), long short-term memory (LSTM), and deep reinforce-
ment learning.33,36–40 Using a deep reinforcement learning,
breast lesion segmentations were obtained using bounding
boxes trained to detect breast lesions.37 Hybrid deep learning
approaches have increased the accuracy (>0.75) of breast
lesion segmentations using combinations of CNN with other
methods such as saliency mapping38 with Q learning6 or
LSTM.33,39 Amit et al.38 developed a hybrid mass-detection
algorithm that combines unsupervised candidate detection
with deep learning-based classification and saliency maps.
They used a fully convolutional network (U-Net for segmen-
tation) and training the network using a bounding box with
and with lesions for each slice in 117 patients (75 malignant
and 42 benign). The accuracy metric was sensitivity of 0.80.
Chen et al. developed an end-to-end spatio-temporal network
based on modified CNN (U-Net) coupled with recurrent neu-
ral networks (RNN), that is, a ConvLSTM41 to segment
breast DCE MRI.39 They applied the method to a fully anno-
tated breast MRI dataset of 73 patients (28 malignant, 45
benign) with 3 convLSTM networks and a fusion operator
for the DCE images. For quantitative comparison, they calcu-
lated the dice coefficient and positive predictive value, which
was, 0.76 and 0.74, respectively. Similarly, Zheng et al.33

extended the convLSTM by adding a dense layer (DC-
LSTM) to the network to extract more features from the DCE

images and a ResNet for classification. They utilized two
MRI sequences, a diffusion weighted imaging and DCE
sequence acquired from 72 patients (27 malignant and 45
benign). The resulting segmentation and classification using
the DC-LSTM increased the accuracy from 0.62 to 0.84,
when only using convLSTM alone. However, all of these
methods required a full annotated dataset from the breast
MRI.

Tissue characterization using conventional machine or
deep learning algorithms requires accurate labels for all tissue
types present in the dataset. This labeling requirement
requires radiologist or trained personnel to draw segmenta-
tion masks or labels on the various tissues present in each
image. This task of creating complete labeled datasets is time
consuming, expensive, and impractical. Therefore, advanced
machine learning algorithms are needed to learn tissue signa-
tures from a minimally labeled dataset.

Sparse autoencoders (SAE) are unsupervised neural net-
works that learn an intrinsic representation of the input fea-
tures by attempting to reconstruct it.42–45 The activation of
each node in the hidden layer of the SAE is specialized to
activate in response to a very specific subset of input data by
introducing a sparsity constraint. The unsupervised nature of
SAE allows training on the complete set of tissue signatures
(labeled and unlabeled). By stacking several SAEs, you can
construct a deep neural network termed as a Stacked SAE
(SSAE).46 This permits the pretraining of a multiparametric
deep learning (MPDL) model using multiparametric breast
tissue signatures across images from multiple MRI
sequences, without prior knowledge of the variable underly-
ing tissue types. The MPDL model can be fine-tuned by add-
ing a supervised classification layer (e.g., Softmax, support
vector machine) at the end of SSAE for tissue segmentation
and classification of breast tissue and lesions.

This work developed and implemented novel tissue signa-
tures for input into the MPDL model to segment different
breast tissue types, that is, normal fatty and glandular tissue
and breast lesions.47 Subsequently, we classified the identi-
fied breast lesions into benign or malignant using machine
learning and demonstrated that the MPDL outcomes are simi-
lar to radiologists. Finally, we validated the MPDL tissue sig-
nature model with an independent MRI dataset obtained
from different magnets and imaging planes of breast cancer
patients.

2. MATERIALS AND METHODS

2.A. Clinical subjects

All studies were performed under the institutional guideli-
nes for clinical research under a protocol approved by the
Johns Hopkins University School of Medicine Institutional
Review Board (IRB) and all HIPAA agreements. The IRB
waived the requirement for informed consent for this retro-
spective study. We obtained an independent deidentified
breast dataset of 50 subjects from the University of Califor-
nia, San Francisco (UCSF) not requiring informed consent of
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the subjects. There were 195 women in this study, broken into
two groups of subjects.

The first group comprised 145 women imaged at our insti-
tution and the second group included 50 women imaged at a
different institution. The mean age of the first group of 145
female patients who met our inclusion criteria was
52 � 11 yr (range = 22–80). Of the 145 patients, there were
97 with malignant lesions, 44 with benign lesions, and 4 nor-
mal (no-lesion) patients. Table I summarizes the distribution
of the benign and malignant lesions. The 50 cases comprising
the independent validation dataset were obtained from a
Phase 3 clinical trial for women receiving neoadjuvant
chemotherapy for locally advanced breast cancer, commonly
referred to as the I-SPY trial.48–50 We used only the baseline
study (i.e., pretreatment) before initiation of the therapeutic
regimen to test the MPDL model.

2.B. Multiparametric MRI imaging protocol

We performed MRI scans from our institution on a 3-Tesla
magnet (Philips North America Corporation), using a dedi-
cated phased array breast coil with the lying patient prone
with gentle compression applied to the breast to reduce
motion. MRI sequences comprised of bilateral axial fat sup-
pressed (FS) T2WI spin echo (TR/TE = 5700/102 ms) and
fast spoiled gradient echo (FSPGR) T1WI (TR/TE = 200/4.4,
Field of View (FOV) = 256 9 256, slice thickness (ST),
4, 1 mm gap); axial diffusion-weighted images (DWI)
(TR/TE = 5000/90 ms,b = 0–800, FOV = 192 9 192,
ST = 6 mm). The Apparent Diffusion Coefficient (ADC) of
water maps was constructed from the DWI; and finally, axial
pre- and postdynamic contrast-enhanced (DCE) images
FSPGR T1WI (TR/TE = 20/4, FOV = 512 9 512,
ST = 3 mm) were obtained after intravenous administration
of a Gadolinium (Gd-DTPA) contrast agent [0.2 mL/kg
(0.1 mmol/kg)]. The contrast agent was injected at a rate of
2 mL/s using a power injector, with MRI imaging beginning
after a 10-s delay with the acquisition of 14 phases. A 20 cc

saline flush followed the contrast bolus. The DCE protocol
included 2 min of high temporal resolution (15 s per acquisi-
tion) imaging to capture the wash-in phase of contrast
enhancement. A high spatial resolution scan for 2 min then
followed, with additional high temporal resolution images
(15 s per acquisition) for an additional 2 min to characterize
the wash-out slope of the kinetic curve for pharmacokinetics
(PK) of the DCE (PK-DCE).51 The total scan time for the
entire protocol was <45 min.

2.C. Pharmacokinetic (PK) contrast enhancement
parameters

Pharmacokinetic-dynamic contrast enhancement can pro-
vide metrics of the vascularity of breast tissue. The PK-DCE
quantitative metrics derived were volume transfer constant
(Ktrans (min�1)) and the fractional volume of the extracellular
extravascular space (EVF (Ve)).

51

The independent validation breast MRI scans were
acquired on different 1.5-T magnets using a dedicated breast
phased array coils from a multicenter ACRIN I-SPY clinical
trial.48–50 The validation MRIs were scanned unilaterally in
the sagittal plane consisting of a T1-weighted FS DCE
sequence with three postcontrast time points (TR ≤ 20 ms,
TE = 4.5 ms, flip angle ≤ 45°, FOV: 160–180, matrix
size > 256 9 192, ST ≤ 2.5 mm).

2.D. Multiparametric image registration

The mpMRI was registered using a hybrid registration
algorithm that combines three-dimensional (3D) wavelet
transformation for 3D reslicing and rescaling of the MRI vol-
umes with a nonlinear affine transformation to minimize the
loss of information in image transformations.52,53 The pre-
contrast image of the DCE dataset was used as the reference
image for all the other images. The hybrid registration
scheme consists of several steps to reslice and match each
modality using a combination of both affine and wavelet

TABLE I. Summary of demographic and clinical data.

Malignant characteristics
IDC DCIS + IDC IDC + ILC ILC Sarcomatoid

N = 36 (37%) N = 31 (32%) N = 19 (20%) N = 10 (10%) N = 1 (1%)

Age, yra 51 � 11 53 � 9 57 � 9 61 � 11 68

Phenotype

Luminal Ab 17 11 10 9 0

Luminal Bb 6 8 5 1 0

HER2+b 4 3 1 0 0

Triple negativeb 9 9 3 0 1

Benign characteristics Benign breast tissue Stable imaging Fibroadenoma ADH ADH with lobular features Papilloma LCIS

aAge, yr 49 � 10 51 � 12 42 � 13 59 � 9 53 � 6 52 � 1 51

DCIS, ductal carcinoma in situ; ILC, invasive lobular carcinoma; LCIS, lobular carcinoma in situ; IDC, invasive ductal carcinoma, ADH, atypical ductal hyperplasia,
HER2+, human epidermal growth factor receptor 2.
aData are presented as mean � (SD).
bData are presented as number of cases.
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registration steps. First, orthogonal reslicing is performed to
equalize FOV, matrix sizes, and the number of slices using
wavelet transformation. Second, angular resampling of the
target data was performed to match the reference data.
Finally, similarity transformation (scaling and translation)
between the reference and resliced target volume was per-
formed. After registration, the mean-square-error (MSE) and
Dice Similarity (DS) between the reference and registered tar-
get volumes were calculated.

2.E. Multiparametric MRI tissue signature
generation

The Eigenimage filter (EI) segmentation algorithm was
used to segment the breast lesions from the postcontrast DCE
image.54 The EI is a linear filter that maximizes the projec-
tion of a desired tissue (lesion tissue) while it minimizes the
projection of undesired tissues (glandular tissue) onto a com-
posite image called an Eigenimage.55 We defined the tissue
signatures of normal glandular and fatty tissue and lesions
using the EI filter described below. The EI corrects for partial
volume effects, which allows for improved demarcation of all
underlying features.56

2.F. Multiparametric deep learning tissue
signatures

We trained the MPDL network on the breast tissue signa-
tures defined by the EI filter from the MR images and these
are shown in Fig. 1. The MPDL network builds a composite
feature representation using the breast tissue signatures defined
by the unique MRI tissue characteristics of the breast tissue.

We define tissue signature vector as gray level intensity values
corresponding to each voxel position within the images. Math-
ematically, the MPDL tissue signature vectors are defined as:

MPDLTissueSignature¼ TSðsÞ

¼ T ðtÞ
1 ;TðtÞ

2 ;DWIðtÞn ; � � � ;DCEðtÞ
n

h iT
(1)

where, (s) is the breast tissue type, T is the transpose, and n,
the number of the images in the sequence. We defined tissue
signatures for background, glandular, fatty, and lesion tissue.
We create each set of MPDL tissue signature vectors automati-
cally using a multiparametric region growing algorithm. We
set the region growing tolerance at 5% standard deviation of
the signal intensity of the surrounding pixels within the image.
The final tissue signature’s region of interest (ROI) is then
automatically created by computing a logical AND operation
between the ROIs generated from selected region growing on
each of the images. The user selects pixels based on the signal
intensity within each image representing the desired tissue
type, which forms a voxel that produces an ROI used for the
tissue signature. For example, defining the glandular tissue sig-
nature voxel, the user selects representative pixels in a region
of glandular tissue on the image. We show examples of glan-
dular and lesion tissue signatures in Fig. 1. By using several
images concurrently, the probability of a pixel from another
tissue being included in the final ROI (due to noise, partial vol-
ume, and nonuniformities) is reduced.56 The computer time
required for producing the final tissue signature ROI was less
than a second for each tissue type within the breast.

2.G. Multiparametric segmentation deep learning
network

2.G.1. Stacked sparse autoencoder network
architecture

We developed the mpMRI segmentation deep network
using SSAE for segmenting a mpMRI breast dataset into dif-
ferent tissue types. Figure 2 shows the SSAE network archi-
tecture for mpMRI breast segmentation. Each SAE of the
SSAE was pretrained by the tissue signature vectors to create
a low-dimensional representation of the input via the hidden
layers. The input to each autoencoder except the first autoen-
coder was the hidden layer representation discovered by the
previous layer and these encoding and decoding steps are
fully detailed in the Appendix.42–45 Briefly, the first layer of
the autoencoder learns the low dimensional representation,
Y ¼ y 1ð Þ; y 2ð Þ. . .; y Nð Þf g � Rd from the training input tissue
signatures, X ¼ x 1ð Þ; x 2ð Þ; . . .; x Nð Þf g � RD, where D is the
dimensionality of the input tissue signatures, N is the total
number of tissue signatures, and d is the number of nodes in
the hidden layer of the autoencoder. The output of the first
layer provides input for the subsequent layers. The output of
the final sparse autoencoder was used for input to train a soft-
max classifier to identify tissue signatures as background, fat,
glandular, or lesion.

FIG. 1. Demonstration of the tissue signatures (TS) defined on multiparamet-
ric breast MRI. Representative tissue signatures are shown for normal (glan-
dular-blue) and lesion tissue (red) from each input MRI. We define the tissue
signature as a vector, TS(ι), where (ι) (s) defines the tissue type over each
MRI image and n is the number of images each of respective sequence. There
were T1-weighted, T2-weighted, high-resolution (Hi-Res) and pharmacoki-
netic (PK) dynamic contrast-enhanced (DCE) images along with Diffusion
Weighted Images (DWI) in the data set. [Color figure can be viewed at wile
yonlinelibrary.com]
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2.G.2. Multiparametric MRI segmentation deep
network training and evaluation

For the MpMRI segmentation, the training parameters
used from optimization were set as: the number of layers = 5,
the number of nodes in each hidden layer = 10, L2 regular-
ization penalty = 0.001, sparsity proportion = 0.25, sparsity
regularization = 4.44,45,57 The transfer function for the
autoencoder nodes was selected as the saturating linear func-
tion given as

f xð Þ ¼
0; if x� 0
x; if 0\x\1
1; if x� 1

8<: (2)

We tested the MPDL for segmentation of breast tissue
into different tissue classes using a twofold cross valida-
tion. The balance between the number of unique signatures
used to train various tissue types was maintained by sam-
pling uniformly at a random equal number of specific tis-
sue signatures corresponding to each tissue type on the
images. Through empirical data analysis, a maximum of
1000 pixels for each tissue signature across all patients was
selected. In the twofold cross validation setting, we ran-
domly divided the total patients into two groups. The
MPDL was model was trained on each group separately
and tested on the other patient group. The efficacy of the
MPDL on each patient was evaluated by the performance
of the MPDL model trained when that patient belonged to
the test group. Through empirical data analysis, a maxi-
mum of 1000 pixels for each tissue signature across all
patients was selected. To perform a quantitative comparison
between the MPDL segmented regions and the radiological
ground truth, we defined the radiological ground truth for
breast imaging by the EI segmented regions from the DCE
images. Clinically, the postcontrast DCE is used for

diagnostic evaluation of breast lesions. The DS was used
as the overlap evaluation metric.58 The DS index was de-
signed to find the similarity between overlapping regions
from two objects. Mathematically, DS is defined by the fol-
lowing equation:

DS ¼ 2 A \ Bð Þ
Að Þ þ Bð Þ (3)

where, A and B are the lesion areas obtained by ground truth
(EI segmented postcontrast image) and the multiparametric
deep learned image, respectively. The EI segmentation was
obtained by thresholding the EI contrast image. The threshold
was obtained by evaluating the EI contrast MR image his-
togram, using the mean and a 95% confidence interval. If the
images have full overlap, then the DS = 1.0 and if there is no
overlap, then the DS = 0.

2.G.3. Comparative methods— multilayer
perceptron (MLP) and convolutional neural
networks (CNN)

We compared the performance of the SSAE architecture
with two other deep learning architectures that do not require
full labeling of the input data, multilayer perceptron (MLP),
and CNN.2,59,60 The deep MLP was implemented with the
same architecture as SSAE (five layers with ten nodes each)
but trained in a completely supervised fashion to assess the
advantage of unsupervised pretraining in SSAE.

Patch-based two-dimensional CNN (2D-CNN) was
trained on image patches of size 5 9 5 9 N corresponding
to each N dimensional tissue signature. The 5 9 5 image
patch of a tissue signature corresponds to the immediate
5 9 5 neighborhood of that voxel position. The 2D-CNN
consisted of four layers with 128, 64, 32, and 16 filters,
respectively, followed by a fully connected layer and a

FIG. 2. The framework for the multiparametric magnetic resonance imaging (mpMRI) segmentation deep learning network used to segment breast MRI. The
stacked sparse encoder (SSAE) deep network architecture was constructed of five SAE hidden layers with ten nodes at each layer and a softmax classification
layer that outputs the probability of different tissue types for the input tissue signature. The inputs into the SSAE are the tissue signatures defined from the
mpMRI. The output is the segmented images for classification of the breast lesions. [Color figure can be viewed at wileyonlinelibrary.com]
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softmax layer.61 Each layer of the 2D-CNN had the following
components:

• Convolutional layer with trainable filters of size 3 9 3
• ReLU activation function given by the following equa-

tion

f xð Þ ¼ 0; if x\0
x; if x� 0

�
(4)

• Max pooling layer with a 2 9 2 window.

2.G.4. Multiparametric classification deep learning
framework

SAE-SVM architecture: We developed the mpMRI feature
extraction and classification framework termed SAE-SVM by
combining sparse autoencoder (SAE) with support vector
machine (SVM) algorithm.62 Figure 3 demonstrates the
mpMRI classification framework. The first component of the
SAE-SVM is the unsupervised SAE component, which auto-
matically extracts the mpMRI intrinsic tissue signature of
each lesion segmented using the segmentation MPDL.

The input to the SAE is represented as L ¼
l 1ð Þ; l 2ð Þ; . . .; l Nð Þ� � 2 RD, where D is the dimensionality of

the input tissue signatures, N is the total number of voxels in
the lesion. The SAE layer transforms input, L, into an
encoded intrinsic representation of the lesion,
M ¼ m 1ð Þ;m 2ð Þ; . . .;m Nð Þ� � 2 Rd where d is the number of

nodes in the hidden layer of the SAE. The SAE encoding then
transforms the mpMRI of the lesion into an SAE feature map.

The second layer of the SAE component is the statistics
layer which characterizes the activation of each node in the
SAE feature map with its mean, standard deviation, maxi-
mum, and minimum values. The output of statistics layer
from each MRI parameter forms a feature vector, Z. The fea-
ture vectors from each MRI parameter are then concatenated
to form an mpMRI classification feature vector, W.

The final component of the SAE-SVM framework is the
linear SVM trained on W to classify the benign and malig-
nant tumors.

Multiparametric MRI classification deep network training
and evaluation: For the mpMRI classification, through
empirical testing, the training parameters of the SAE were set
as: number of nodes in the hidden layer = 10, L2 regulariza-
tion penalty = 0.001, sparsity proportion = 0.25, sparsity
regularization = 4, encoder transfer function: sigmoid, deco-
der transfer function: linear.

The SAE-SVM feature extraction and classification
method was tested using leave-one-out and ten-fold cross val-
idation with sensitivity, specificity, and area under the recei-
ver operating characteristic curve (AUC) as the evaluation
metrics. The imbalance in the number of benign and malig-
nant lesions was resolved by setting a higher misclassification
cost for benign than malignant lesions. We determined the
optimal value of the misclassification penalty using a grid
search on misclassification penalty ratios from the set:

FIG. 3. Framework for multiparametric magnetic resonance imaging (mpMRI) classification learning framework trained to classify the segmented tumors from
breast mpMRI as benign or malignant. The mpMRI classification deep learning framework is composed of three parts: segmentation from a multiparametric deep
learning network to create tumor masks, unsupervised stacked autoencoder to learn a representative feature map for each patient and a hybrid isomap-support
vector machine to produce final classification and diagnosis. [Color figure can be viewed at wileyonlinelibrary.com]
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Benign : Malignant
¼ 1 : 1; 1:5 : 1; 2 : 1; 2:5 : 1; 3 : 1; 3:5 : 1; 4 : 1f g

(5)

In grid search, each of the different misclassification pen-
alty ratios in the above set are tested in a leave-one-out cross
validation setting and the misclassification penalty that
achieves the maximum AUC was chosen as the optimal mis-
classification penalty.63

2.G.5. Validation of the multiparametric deep
learning network

Magnetic resonance imaging data: The validation group
included 50 patients from UCSF’s I-Spy ACRIN trial to test
our MPDL network.48–50 To compare with our dataset, we
used the baseline DCE contrast imaging sequence from the
study. The UCSF data were registered to the precontrast DCE
images, and the lesion volumes were calculated. After appli-
cation of the MPDL to the UCSF data, the MPDL lesion vol-
umes were calculated. The segmented MPDL and UCSF
volumes were compared and analyzed for the percent differ-
ence between each volume set.

2.H. Statistical methods

We calculated the sample size of the training dataset based
on the ROC curve.64 A sample size of 112 subjects can give
85% power to detect a specificity of at least 80% (under sig-
nificance level alpha = 5%). The same sample size also gives
us greater than 85% power to differentiate sensitivities
between 80% and 95% at alpha = 5% significance level. For
the validation dataset, a sample size of 44 subjects was esti-
mated using a paired t-test to give us 90% power with a 5%
significance level to test the MPDL model.65

We computed summary statistics (mean and standard devi-
ations) from the quantitative imaging parameters from the
mpMRI. All lesion area values are presented as mean � stan-
dard deviation. A Student’s two-tailed t-test was used to
determine any statistical significance of the difference
between the areas of malignant and benign lesion and the per-
cent difference between boundaries of the malignant and
benign lesion. Bland–Altman tests were run to evaluate the
agreement between the measurements between the test and
validation datasets.66,67 Sensitivity and specificity with area
under curve (AUC) metrics were computed. Statistical signif-
icance was set for P < 0.05.

3. RESULTS

3.A. Quantitative mpMRI

In the training dataset, the DWI and DCE sequences pro-
vided quantitative radiological metrics. There were significant
differences (P < 0.001) between the ADC map values for
malignant and benign breast lesions. ADC values for

malignant cases were (mean and standard deviation)
1.26 � 0.13 (mm2 9 10�3/s) and benign lesions were
1.74 � 0.17 (mm2 9 10�3/s). Glandular tissue ADC values for
malignant and benign lesions were not significantly different,
2.16 � 0.46 and 2.34 � 0.33 (mm2 9 10�3/s), respectively.

The PK-DCE values were significantly different
(P < 0.05) between malignant and benign lesions. The Ktrans

values were 0.55 � 0.32 (1/min) and EVF was 0.30 � 0.16
for malignant cases and 0.25 � 0.19 (1/min) and
0.22 � 0.13 for benign cases, respectively.

3.B. Training dataset

The MPDL tissue signatures were defined for different
breast tissue types (Fig. 1) and applied to the 145 mpMRI
breast cases. Figure 2 shows the mpMRI deep network for
segmentation of the tissue signatures. Figure 4 illustrates the
results on five representative patients with malignant lesions.
Similarly, Fig. 5 illustrates the mpMRI deep network segmen-
tation results on five patients with benign lesions. Figures 4
and 5, demonstrate the successful segmented breast lesions
using the mpMRI deep in patients with either benign or
malignant lesions using the tissue signature model. The DS
index evaluated in the twofold cross validation setting for the
MPDL lesion segmentations demonstrated excellent overlap
with a mean and standard deviation (SD) of 0.87 � 0.05 for
malignant and 0.84 � 0.07 for benign lesions. We show rep-
resentative cases for each type of lesion in Fig. 6. Finally, the
sensitivity and specificity for differentiation of malignant
from benign lesions, evaluated in the leave-one-out cross val-
idation setting, were 86% and 86%, respectively, with an
AUC of 0.90 and shown in Fig. 7. The positive predictive and
negative predictive values were 0.93 and 0.73, respectively.
The optimal value of misclassification ratio was 2.5:1, where
benign lesions had the misclassification penalty set 2.5 times
that of malignant lesions.

3.C. Validation testing

The validation results from the application of the MPDL
tissue signature model to the UCSF independent data set
were excellent. The UCSF and MPDL lesion volumes were
significantly (P < 0.05) correlated with R = 0.998. The per-
cent difference between the datasets was 4.4% � 3.9%. Fig-
ure 8 illustrates segmented lesions from the MPDL and
UCSF data showing the accuracy of the MPDL model. The
Bland–Altman plot was used to test each volume measure-
ment and shown in Fig. 9, showing excellent agreement
between the volume measurements from both the USCF and
our dataset.

3.D. Comparison to other deep network
architectures

Figure 10 shows the performance of the three deep learn-
ing architectures on example patients. As shown in Fig. 10,
the segmentations from all the three architectures were very
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similar, however, the MLP and 2D-CNN architectures appear
to be more prone to potential spurious results. All the deep
learning architectures segmented breast tumors with a high
DS (MLP: 0.84 � 0.08, 2D-CNN: 0.85 � 0.05, SSAE:
0.89 � 0.04) on a randomly selected subset of 20 patients
(10 benign and 10 malignant lesions) with SSAE outperform-
ing MLP and 2D-CNN by 5% and 4% respectively.

4. DISCUSSION

Using the multiparametric deep learning network, we
have developed, validated, and tested a new computing
platform that organizes, integrates, and interprets imaging
information using an MPDL tissue signature model. The
application of the MPDL tissue signature model resulted

FIG. 4. Illustration of the results of multiparametric deep learning (MPDL) network on axial breast magnetic resonance imaging. The MPDL results are shown in
five representative malignant lesions. The white arrows show where the lesions are located within the breast. The color coding for different tissue types is shown
to the right of the images. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Illustration of the results of multiparametric deep learning (MPDL) network on axial breast magnetic resonance imaging. The MPDL results are shown in
five representative benign lesions. The white arrows show where the lesions are located within the breast. The color coding for different tissue types is shown to
the right of the images. [Color figure can be viewed at wileyonlinelibrary.com]
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in excellent segmentation and classification of different
breast tissue types. This study used an integrated mpMRI
breast deep learning model in a retrospective study and
showed that MPDL tissue signatures accurately define
benign and malignant lesions. This work demonstrates
that deep learning-assisted unsupervised segmentation
using mpMRI signatures can detect heterogeneous zones
within breast tissues and lesions. We can use these
heterogeneous regions for further classification of breast
tissue and lesions by quantitative ADC maps and/or PK-
DCE parameters. Finally, the MPDL model with a

machine learning classification distinguished between
benign and malignant lesions with excellent sensitivity
and specificity.

The results from the application of the MPDL tissue
signature model to an independent breast MRI dataset
showed the robust nature of the MPDL model. Importantly,
the MPDL model could accurately segment breast tissue
regardless of the magnetic field strength (3 T for our data
and 1.5 T for the validation set). The MPDL model was
invariant to the MR imaging orientation, as our dataset was
in the axial plane, while they scanned the validation dataset
in the sagittal plane. Finally, the MRI parameters and the
temporal resolution of the DCE images used to train the
MPDL model were different between our dataset and the
validation dataset, again reasserting the robust nature of the
MPDL model. These data suggest that this may eliminate
or reduce the need to retrain the MPDL model in different
settings. This invariance is because of the underlying
depiction of the tissue using tissue signature vectors, which
capture the underlying tissue characteristics and allow for
this to change for different MRI inputs. We based the
mpMRI parameters used in this study on our and others’
previous results in patients.24–26,68–,70 These studies showed
that the combined MRI sequences consisting of DWI,
ADC, and PK-DCE were highly correlated with the histo-
logical phenotype of the tissue. The sensitivity and speci-
ficity of classification between malignant and benign
tumors by MPDL were similar to those of radiolo-
gists.22,23,71 This is very encouraging when future reading
rooms will have advanced computing power to assist radi-
ologists in the triage and interpretation of images. We

(a) (b)

(c) (d)

FIG. 6. Demonstration of dice Similarity overlap between the Eigenimage and multiparametric deep learning (MPDL) segmentation masks of two benign (A and
B) and two malignant (C and D) lesions. The resulting masks are overlaid on the subtracted dynamic contrast-enhanced image. The Eigenfilter segmentation
boundary is shown in yellow, and the MPDL segmentation boundary is displayed in red. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. The receiver operating characteristic curve from the SAE-SVM clas-
sification of the multiparametric deep learning segmentation. The SAE-SVM
classification of the lesions demonstrated excellent metrics with a sensitivity
of 86% and specificity of 86% and an AUC = 0.90 (95% CI = 0.84 to 0.94
is shown by the dotted lines).
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believe, it is very unlikely that machine or deep learning
will replace radiologists as has been suggested by some,
yet we propose there will be a role for augmenting radiolo-
gists’ skills with these tools for improved efficiency and
accuracy of interpretation.

Our results demonstrate that we can use the MPDL
method on distinct datasets. The I-Spy ACRIN trial is one of
the largest MRI trials and incorporates several MRI field
strengths of Ref. [48,50]. However, the ability of the MPDL to
learn different tissue signatures allows it to adapt to diverse
datasets with highly accurate results. We demonstrated this
with the high segmentation accuracy of the validation dataset
using different input MRI data. The MPDL algorithm outper-
formed the multilayer perceptron (MLP) with exactly the
same architecture demonstrating the effectiveness of unsuper-
vised pretraining in datasets with sparse input. Furthermore,
the MPDL algorithm also compared favorably to the patch-
based 2D-CNN algorithm. The number of trainable parame-
ters in a 2D-CNN architecture was significantly higher than
the number of trainable parameters for MPDL. As a result,
the size of the training dataset was not sufficient to optimally
train the CNN, producing suboptimal results with the CNN
resulting in potentially spurious segmentations. Using the
MPDL allows the use of sparse datasets with tissue signature
vectors to accurately define different tissue types without the
need of a large training set, which is encountered in most
clinical settings.

Our results are consistent with previous reports segment-
ing the breast lesion using deep learning methods and breast
MRI.33,36–40 However, most of those studies used at most one
MRI sequence, specifically, the DCE and some used two
sequences, either adding a T1-weighted or DWI sequence.
All the previous reports utilized a fully annotated dataset,
whereas our dataset was defined by the intrinsic tissue signa-
ture from all the sequences, similar to how a radiologist views

FIG. 8. Demonstration of multiparametric deep learning (MPDL) segmentation from the validation cohort using the trained MPDL signatures from the testing
dataset. The resulting MPDL segmentations are shown in representative sagittal breast MRI cases. Note, the imaging plane was different in the validation dataset
than in the training dataset. The white arrows show the lesion location within the breast. The color coding for different tissue types is shown to the right of the
images. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 9. Bland–Altman plots showing the limits of agreement of the two
highly correlated (R = 0.99) measurements of the segmented volumes
between the validation set from the University of California, San Francisco
(USCF) and multiparametric deep learning (MPDL). The mean is shown by
the solid horizontal black center line (�0.2) and the red dotted lines show the
limits of agreement (LOA). The solid blue lines around the LoA represent
the 95% confidence interval of the LoA. [Color figure can be viewed at wile
yonlinelibrary.com]
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MRI, and our method outperformed the quantitative metrics
presented in the previous reports. Moreover, we used an inde-
pendent dataset to confirm the MPDL method and demon-
strated the potential generalizability to other breast cancer
centers.

There are, however, technical limitations to the use the
MPDL network in practice. First, increased computational
power on the graphical processor units [(GPU) > 2500 cores,
>12 GB)] used here may not be widely available. But, the use
of advanced DLN with GPU computing is rapidly finding
applications in many radiological datasets.14,15,17–19,72 More
specific to the present study, any assessment of the clinical
value of a MPDL network will require additional studies in a
larger patient population with a prospective trial with subse-
quent follow-up and pathological correlation. This would
provide us with new data to explore the exact application of
the MPDL model to larger studies.

In conclusion, we have demonstrated that an integrated
MPDL method accurately segmented and classified different
breast tissues types from multiparametric breast MRI. The
MPDL images allow for improved visualization of different
tissue characteristics based on multiple radiological parame-
ters.
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and stacked sparse autoencoders (SSAE) in three example patients with the curved white arrows showing the location of the lesions. The segmentations were sim-
ilar across each of the DL algorithms. However, the time complexity and training were different for each, where the MLP and CNN were costly for both complex-
ity and training. The 2D-CNN and MLP architectures produced potentially spurious positive regions, as shown by the straight white arrows for the breast
segmentations more than SSAE. [Color figure can be viewed at wileyonlinelibrary.com]
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APPENDIX

The MPDL framework is based stacked autoencoders and
shown in Fig. 2. An autoencoder has two parts: an encoder
and a decoder. The encoder maps the vector X to the vector
h(1) representing the hidden layer as follows:

hð1Þ ¼ f WX þ bð Þ (A1)

where f is the transfer function for the encoder, is the matrix
of weights, and b is the bias vector. Where the decoder maps
h(1) back to X using the following equation:

bX ¼ g W
0
hð1Þ þ b

0
� �

(A2)

The values of W’ and b’ are equal to the transpose of W
and b in case the weights are tied between the encoder and
decoder. Figure A.1(a) demonstrates an autoencoder for
reconstructing mpMRI input tissue signatures. The encoder–
decoder architecture is used to pretrain the hidden layer. Once
the hidden layer weights are optimized, the next hidden layer
is pretrained by attempting to reconstruct the output of the
previous encoder (hidden layer) as shown in Fig. A.1(b). The

complete stacked sparse autoencoder was constructed by pre-
training and stacking each encoder in the network followed
by a softmax layer for classification as shown in Figs. A.1(c)
and A.1(d).

The nodes within the hidden layer were further specialized
for activation in response to a subset of the total number of
MPDL tissue signatures using sparsity regularization. For
example, after training the sparse autoencoder on an mpMRI
dataset, node one may have “specialized” in activating only
in response to a fatty tissue signature. While node two may
be “specialized” in activating only in response to the glandu-
lar tissue signature. Mathematically, the average activation,bqj of a neuron, j is given by the following equation

cqJ ¼ 1
N

XN

i¼1
h
ð1Þ
j xið Þ (A3)

where N is the total number of training samples. If q denotes
the desired average activation or the sparsity proportion of
the neuron, j across all the training samples, the goal is to
impose the constraint cqJ ¼ q. The sparsity regularization
term added to the cost function is given as

FIG. A1. (a) An example autoencoder architecture of learning intrinsic representation of the input mpMRI. (b) The autoencoders used to pre-train each subse-
quent layer in the stacked sparse autoencoder (SSAE) architecture (c) The softmax classifier is used to classify the final layer into four classes–C1, C2, C3, and
C4. (d) The complete two-layer SSAE architecture is shown for this example. [Color figure can be viewed at wileyonlinelibrary.com]
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RS ¼ b
Xd

j¼1
qlog bqj þ 1� qð Þlog 1� q

1� bqj
 !

(A4)

where b is the sparsity regularization penalty. Because we
have four tissue classes, the sparsity proportion, q was set at
0.25 and the penalty, b was set at 4 to train each sparse
autoencoder.44,45,57

The output of the final sparse autoencoder is used as input
for training a softmax classifier to classify the tissue signa-
tures as background, fat, glandular, or lesion. The cost func-
tion for training the softmax layer of the mpMRI
segmentation deep network is based on cross entropy, given
by

J ¼ 1
N

XN

i¼1

X4

j¼1
tij ln yij þ 1� tij

� �
ln 1� yij
� �

(A5)

where tij is the target class and yij is the output of the deep
network at the softmax classification layer. Figure A.1
demonstrates an example two-layer stacked sparse autoen-
coder.

The weights of the pretrained network were further fine-
tuned using a scaled conjugate gradient backpropagation
method to improve the classification accuracy of the pre-
trained network. The pretrained weights are especially useful
when the application is limited by the number of training
examples. After training, the first layer of the SSAE learns
the most representative tissue signatures from the input data-
set, while the stack of subsequent autoencoders forms a com-
posite representation of the tissue signatures, such that each
node of the final layer specializes in recognizing tissue signa-
tures from a single tissue type.
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Author to whom correspondence should be addressed. Electronic mail:
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