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Abstract: Early diagnosis of Parkinson’s diseases (PD) is challenging; applying machine learning
(ML) models to gait characteristics may support the classification process. Comparing performance
of ML models used in various studies can be problematic due to different walking protocols and gait
assessment systems. The objective of this study was to compare the impact of walking protocols and
gait assessment systems on the performance of a support vector machine (SVM) and random forest
(RF) for classification of PD. 93 PD and 103 controls performed two walking protocols at their normal
pace: (i) four times along a 10 m walkway (intermittent walk-IW), (ii) walking for 2 minutes on a 25 m
oval circuit (continuous walk-CW). 14 gait characteristics were extracted from two different systems
(an instrumented walkway—GAITRite; and an accelerometer attached at the lower back—Axivity).
SVM and RF were trained on normalized data (accounting for step velocity, gender, age and BMI)
and evaluated using 10-fold cross validation with area under the curve (AUC). Overall performance
was higher for both systems during CW compared to IW. SVM performed better than RF. With SVM,
during CW Axivity significantly outperformed GAITRite (AUC: 87.83 ± 7.81% vs. 80.49 ± 9.85%);
during IW systems performed similarly. These findings suggest that choice of testing protocol and
sensing system may have a direct impact on ML PD classification results and highlight the need for
standardization for wide scale implementation.

Keywords: Parkinson’s disease; machine learning; classification; wearables; accelerometer; GAITRite;
multi-regression normalization; SVM; random forest classifier

1. Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder which progresses over time [1]
and comprises both motor and non-motor symptoms [2], leading to poor disease management, poorer
quality of life [3], and increased health care costs [4]. Early diagnosis of PD is critical for optimal
management but remains challenging. Current diagnosis of PD is commonly based on subjective
clinical examination (clinical scales) [5] often in conjunction with expensive and time consuming brain
imaging techniques. Gait has been shown to act as a marker of global health and has been used to
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predict morbidity, mortality, falls risk and neurological disorders [6]. Recent work has shown that
objective gait quantification of motor impairments can support PD diagnosis, also at an early stage [7,8].

Gait can be objectively quantified via a number of spatial-temporal characteristics and
features [9–12]. In order to maximize information for disease classification, analysis of multiple
characteristics can be enhanced using machine learning (ML) [6]. The most widely used ML models for
PD classification are the support vector machine (SVM) and random forest (RF) [13–19]. Classification
accuracy however is inconsistent across studies which may be largely due to methodological differences
(e.g., testing protocols, gait assessment systems and normalization of participants’ data) [13,14,17]. This
leads to difficulty comparing across studies and in turn to select the optimal gait protocol and outcomes
for classification purposes. For example, protocols used to measure gait have different durations,
distance and speed [10,20,21]. Moreover, gait assessment systems range from gold standards in the field
of gait analysis using camera based motion capture and instrumented walkways [11,12] to wearable
devices [22]. Practically, wearable sensors such as accelerometers, gyroscopes and magnetometers [23]
have advantages as they are not context specific and can be used in the clinic and home [10,24]. This is
relevant if gait proves useful for disease classification and clinical use.

For accurate disease classification the differences between participants should also be as low as
possible and this requires normalization of the selected features as an important and critical step [16].
Between-participants gait differences are related to demographic characteristics such as the age [25],
gender, and BMI [26,27]. Gait characteristics are also speed dependent [28–30] and normalization of
gait features with respect to speed is usually performed [16]. Robust normalization processes thus
optimize ML models and classification of PD [31].

The effects of walking protocol and gait assessment systems on the performance of ML models
and the impacts on disease classification remain unanswered questions. The objective of this study
was therefore to investigate the impact of different walking protocols and gait assessment systems on
the performance of SVM and RF models for PD classification. We also highlight the strengths and
limitations of protocols and devices to guide decision making in future studies. We compared the effect
from two different walking protocols at normal pace (four times along a 10 m walkway (intermittent
walk-IW); walking for 2 min on a 25 m oval circuit (continuous walk-CW)); and two different gait
assessment systems: GAITRite vs. Axivity.

2. Methods

2.1. Participants

Data from the “Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation -
GAIT” (ICICLE-GAIT) study [11,32] encompassing 93 people with early PD and without dementia
at study entry, and 103 healthy controls (HC) were included in this cross-sectional analysis. PD was
diagnosed according to the UK Parkinson’s Disease Brain Bank criteria [21] by a movement disorder
specialist [32]. The study was approved by the “Newcastle and North Tyneside Research Ethics
Committee” (REC No. 09/H0906/82). All the participants gave their written informed consent before
participating in the study. Experiments were conducted according to the declaration of Helsinki.

2.2. Demographic and Clinical Measures

Demographic characteristics such as age, height, weight, and BMI were recorded for all the
participants. Cognition was assessed with the Mini-Mental State Examination (MMSE) [33] and
balance confidence was evaluated with the balance self-confidence scale (Activities specific balance
confidence scale; ABC) [34]. To assess PD motor severity, Hoehn & Yahr scale score [5] and the
modified version of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS)—section III [35] were used. Phenotypes in PD, namely postural instability and
gait difficulty (PIGD), indeterminate (ID) and tremor dominant (TD) subtypes, were also calculated
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from MDS-UPDRS [36]. Levodopa equivalent daily dose (LEDD mg/day) was calculated according to
defined criteria [37,38].

2.3. Walking Protocols and Data Collection

Two different protocols were used to assess gait. All PD participants were assessed one hour after
medication intake:

(1) Ten meter (m) intermittent walking test (IW). Participants were instructed to walk in a straight
line over a 10 m walkway (Figure 1a). They repeated this four times at their preferred speed.
The GAITRite mat was placed in the center of the walkway [21].

(2) Two minute continuous walking test (CW). Participants were asked to walk continuously around
at 25 m oval circuit at their preferred speed (Figure 1b).
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(b) 2 min continuous walking test (CW).

2.4. Gait Assessment Systems

Each participant was asked to wear a tri-axial accelerometer (Axivity AX3, dimensions:
23.0 × 32.5 × 7.6 mm) on the lower back (L5), held in place with double sided tape (BSN Medical
Limited, Hull, UK) [10]. The monitor measures the vertical, mediolateral and anteroposterior
accelerations during walking at 100 Hz sampling frequency (±8 g range, resolution up to 13-bit).
Data collected using Axivity were synchronized with real-time clock, and start and stop times of the
trials were noted by the experimenter to automatically segment and analyze the accelerometer data
via MATLAB®. Gait assessment was also conducted using an instrumented mat (Platinum model
GAITRite: 7.0 × 0.6 m) [12]. GAITRite has a spatial accuracy of 1.27 cm and temporal accuracy of one
sample (240 Hz, ~4.17 ms).
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2.5. Data Processing and Gait Characteristics Extraction

From each testing protocol and gait assessment system, 14 gait characteristics were extracted [10,11].
Methods described in our previous work were used for extracting gait characteristics from the 10 m test
and the 2 min test with GAITRite and Axivity [10]. For easy interpretation, these 14 gait characteristics
were grouped into five domains (pace, rhythm, variability, asymmetry, and postural control) as
described in our previous work [11].

2.6. Statistical Analysis, Gait Normalization and Classification Modeling

Multivariate analysis of variance (MANOVA) was performed on normalized gait characteristics
to examine the main effect and interactions of group (PD vs. HC), walking protocols (IW vs. CW)
and gait assessment systems (GAITRite vs. Axivity) on the gait characteristics. Independent t-tests
were performed to understand the between-group (PD vs. HC) differences of demographic and
gait characteristics to include as input to the ML model. Receiver operating characteristics (ROC)
analysis was used to measure the discriminative power of each gait characteristic. Pearson’s correlation
coefficients (r) were used to check the dependency among gait characteristics within each group.
Distribution of each gait characteristic was plotted using rain cloud plots [39] for each group, walking
protocol and gait assessment system. Gait characteristics were normalized for ML using multiple
regression normalization [16] performed with respect to preferred gait speed (step velocity in each
walking protocol from each gait assessment system), age, BMI and gender. This gave the ratio of the
original and predicted gait characteristics based on the following equations:

yi = β0 + β1 ∗Genderi + β2 ∗Agei + β3 ∗ BMIi + β4 ∗ StepVelocity(speed)i + εi (1)

where yi is the gait characteristics from the 5 domains of the conceptual gait model, ith participant. β0

is the intercept and β is the coefficient of the linear regression. εi ∼ N
(
0, σ2

)
is the residual for each

participant i. For each testing task and sensing system, the model coefficients were estimated using the
healthy control participants’ data based on Equation (1):

yi = ŷi + ε̂i (2)

where ŷi and ε̂i are the predicted value and residual error for the ith participant. Finally the normalized
gait features were obtained by dividing the original independent gait feature with the predicted
dependent gait feature by using following equation:

yn
i =

yi

ŷi
(3)

where yn
i is the final normalized gait characteristic for the ith participant and n is normalized. Based

on the Taylor’s series the expected value of the control group normalized gait characteristics should be
1. The resulting gait characteristics will be unit less due to the division of yi and ŷi as these have the
same measuring units.

The support vector machine with radial basis function (SVM-RBF) and random forest were used
because these are the most widely used ML models for PD classification [13–19,40]. The models were
trained on the same conceptual features from both sensing systems to compare the impact of walking
protocols and gait assessment systems. 10-fold cross validation repeated 100 times was used for the
evaluation of the models. Single measure, area under the curve was used for the model evaluation [41].
Importance of the gait characteristics was identified by extracting the square of the weight of the gait
characteristics in the SVM-linear classifier [42,43]. Gait characteristic importance is a unitless number
which was used to rank the variables based on their contribution in the classification by SVM model.



Sensors 2019, 19, 5363 5 of 14

This was calculated as the square of the weight calculated in the SVM model for each variable with the
following Equation (4):

Imporatnce = w2 =

k=N∑
k=1

αkxklk


2

(4)

where w2 gives the importance score and it is the entry wise square of the weight for each gait variable
in the model. αk represents the model parameter trained on data {xk, lk}, where k is 1 to N. N represents
the sample size, xk is each subject data with corresponding label lk. For ML, standard commands for
SVM with different kernels (RBF and linear) and default parameters (slack variable-C:1) were used
from SciKit-learn library in Python [44] for comparison among walking protocols and gait assessment
systems. Similarly in RF, 100 trees were used for final performance estimation.

3. Results

Demographic characteristics are shown in Table 1. Compared to HCs, PDs had comparable height,
weight, and BMI, included proportionally more males; were significantly younger; presented with
significantly lower balance confidence (ABC) and poorer cognition (MMSE). Mostly PDs were at mild
to moderate stage of the diseases based on the Hoehn & Yahr scale. PD gait was assessed within
23.8 months of clinical diagnosis while taking average 398 mg/day LEDD.

Table 1. Demographic and clinical characteristics of the participants.

Demographics HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD p

M/F 49/54 59/34 0.026
Age (years) 72.3 ± 6.7 69.2 ± 10.1 0.012
Height (m) 1.7 ± 0.09 1.7 ± 0.09 0.623
Mass (kg) 78.6 ± 14.3 78.6 ± 15.9 0.999

BMI (kg/m2) 1 27.2 ± 5.6 27.5 ± 4.7 0.750
MMSE (0–30) 2 28.9 ± 1.9 28.4 ± 1.6 0.102

ABCs (0–100)% 3 91.2 ± 13.8 80.6 ± 20.7 <0.001
LEDD, mg/day 4 397.7 ± 217.2

Disease Duration (months) 23.8 ± 4.2
Hoehn & Yahr (n) HY I: 8

HY II: 71
HY III: 14

MDS-UPDRS III 5 32.4 ± 10.3
(HY I: 17.4 ± 4.5)
(HY II: 32.9 ± 9.7)
(HY III: 38.1 ± 7.5)

Motor Phenotype (n) 6 PIGD: 34
7 ID: 16
8 TD: 43

1 BMI: Body Mass Index; 2 MMSE: Mini–Mental State Examination; 3 ABC: Activities specific balance confidence
scale; 4 LEDD: Levodopa equivalent daily dose; 5 MDS-UPDRS III: Movement Disorders Unified Parkinson’s Disease
Rating Scale part III; 6 PIGD: Postural instability and gait disorder phenotype; 7 ID: Indeterminate phenotype; 8 TD:
Tremor dominant phenotype. In bold significant p-values (p < 0.05).

Table 2 shows the main effects and interaction effect for the group (PD vs. HC), walking protocols
and gait assessment systems on gait characteristics. Table 3 shows the mean and standard deviation of
raw gait characteristics and the statistical difference for each normalized gait characteristic between
PD and HC for the two walking tasks (IW and CW) and two gait assessment systems (GAITRite vs.
Axivity). The results for the multi regression normalization are given in the supplementary Tables S1
and S2. Plots of the whole data set to check the distribution, outliers, confidence intervals, and AUC are
shown in Figure S1 in the Supplementary Material. Correlations among the gait characteristics are given
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in Supplementary Figure S2. Gait characteristics were categorized into five domains (pace, rhythm,
variability, asymmetry, and postural control) [11] based on a model of gait to help summarize findings.

Table 2. MANOVA to check the effect of walking protocols and gait assessment systems on gait
(* indicates interaction).

Effect Assessment on Gait
MANOVA

Wilk’s Lambda F p-Value

Group (HC & PD) 0.803 14.198 <0.001
Walking Protocols 0.463 67.337 <0.001

Gait Assessment Systems 0.067 805.792 <0.001
Group * Protocol 0.949 3.092 <0.001
Group * Systems 0.853 9.991 <0.001

Protocols * Systems 0.513 55.168 <0.001

Table 3. Mean comparison among PD and HC for gait characteristics obtained from walking protocols
and assessment systems (significant normalized gait characteristics are highlighted in grey color, in bold
significant p-values (p < 0.05) for normalized gait characteristics except step velocity).

Gait
Domains

Gait Characteristics
Intermittent Walk (IW) Continuous Walk (CW)

HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD

p
Value

HC (n = 103)
Mean ± SD

PD (n = 93)
Mean ± SD

p
Value

Gait Characteristics from Axivity

Pace
Step Velocity (m/s) 1.324 ± 0.153 1.252 ± 0.226 0.002 1.283 ± 0.155 1.186 ± 0.262 0.009

Step Length (m) 0.718 ± 0.094 0.717 ± 0.074 0.010 0.694 ± 0.121 0.690 ± 0.077 0.022
Swing Time Variability (s) 0.064 ± 0.084 0.123 ± 0.144 <0.001 0.037 ± 0.031 0.108 ± 0.082 0.058

Rhythm
Step Time (s) 0.554 ± 0.052 0.614 ± 0.129 0.001 0.538 ± 0.046 0.609 ± 0.133 <0.001

Swing Time (s) 0.394 ± 0.047 0.448 ± 0.116 0.001 0.386 ± 0.044 0.454 ± 0.125 <0.001
Stance Time (s) 0.705 ± 0.059 0.767 ± 0.141 0.003 0.689 ± 0.054 0.763 ± 0.144 <0.001

Variability

Step Velocity Variability (m/s) 0.174 ± 0.097 0.196 ± 0.078 0.273 0.137 ± 0.060 0.190 ± 0.076 <0.001
Step Length Variability (m) 0.101 ± 0.060 0.126 ± 0.059 0.022 0.072 ± 0.034 0.109 ± 0.044 <0.001

Step Time Variability (s) 0.093 ± 0.103 0.162 ± 0.157 <0.001 0.037 ± 0.033 0.114 ± 0.087 <0.001
Stance Time Variability (s) 0.094 ± 0.103 0.166 ± 0.158 0.001 0.039 ± 0.033 0.116 ± 0.088 <0.001

Asymmetry
Step Time Asymmetry (s) 0.031 ± 0.018 0.051 ± 0.034 0.610 0.021 ± 0.016 0.026 ± 0.025 0.268

Swing Time Asymmetry (s) 0.023 ± 0.017 0.039 ± 0.028 0.437 0.020 ± 0.018 0.023 ± 0.024 0.592
Stance Time Asymmetry (s) 0.030 ± 0.019 0.044 ± 0.027 0.771 0.020 ± 0.018 0.024 ± 0.02 0.419

Postural
Control Step length Asymmetry (m) 0.078 ± 0.053 0.119 ± 0.112 0.606 0.066 ± 0.052 0.126 ± 0.128 0.060

Gait Characteristics from GAITRite

Pace
Step Velocity (m/s) 1.338 ± 0.198 1.194 ± 0.223 <0.001 1.301 ± 0.192 1.135 ± 0.218 <0.001

Step Length (m) 0.697 ± 0.084 0.636 ± 0.098 <0.001 0.683 ± 0.083 0.616 ± 0.097 <0.001
Swing Time Variability (s) 0.013 ± 0.003 0.016 ± 0.008 0.327 0.013 ± 0.004 0.017 ± 0.009 0.010

Rhythm
Step Time (s) 0.525 ± 0.045 0.538 ± 0.047 <0.001 0.528 ± 0.044 0.548 ± 0.047 <0.001

Swing Time (s) 0.385 ± 0.030 0.382 ± 0.033 <0.001 0.385 ± 0.029 0.384 ± 0.031 0.001
Stance Time (s) 0.665 ± 0.068 0.695 ± 0.072 <0.001 0.674 ± 0.066 0.714 ± 0.074 <0.001

Variability

Step Velocity Variability (m/s) 0.051 ± 0.015 0.047 ± 0.014 0.946 0.050 ± 0.012 0.054 ± 0.014 0.005
Step Length Variability (m) 0.019 ± 0.006 0.020 ± 0.007 0.008 0.020 ± 0.006 0.023 ± 0.007 0.338

Step Time Variability (s) 0.014 ± 0.004 0.016 ± 0.007 0.173 0.014 ± 0.004 0.018 ± 0.006 0.018
Stance Time Variability (s) 0.016 ± 0.005 0.019 ± 0.011 0.260 0.017 ± 0.006 0.023 ± 0.012 0.011

Asymmetry
Step Time Asymmetry (s) 0.011 ± 0.008 0.018 ± 0.018 0.003 0.012 ± 0.009 0.019 ± 0.022 0.007

Swing Time Asymmetry (s) 0.007 ± 0.006 0.014 ± 0.014 <0.001 0.007 ± 0.006 0.014 ± 0.014 0.003
Stance Time Asymmetry (s) 0.007 ± 0.006 0.014 ± 0.014 0.476 0.007 ± 0.006 0.015 ± 0.015 <0.001

Postural
Control Step length Asymmetry (m) 0.020 ± 0.016 0.022 ± 0.018 0.048 0.019 ± 0.015 0.022 ± 0.020 0.036

Firstly, we established the effect of protocol and sensor system on gait characteristics as a first
step to evaluate ML performance. There were significant main and interaction effects of pathology,
walking protocols, and gait assessment systems on gait as shown in Table 2 and the individual gait
characteristics are displayed in Table 3.

For group (PD vs. HC) people with PD had worse gait performance compared to controls
irrespective of the protocol or gait assessment system. Grouping variables by domain [11], in general
PD pace and rhythm were significantly slower while variability and asymmetry were higher, in both
IW and CW protocols for both gait assessment systems.
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There was a main effect of walking protocol (IW & CW) on gait characteristics. Performance was
typically greater (higher pace, rhythm, variability, and asymmetry) in the IW protocol compared to
the CW protocol for both PD and HC. Similarly, there were significant main and interaction effects of
assessment systems on gait characteristics. In general, the values from Axivity tended to be higher
compared to GAITRite although only asymmetry was significantly different between the systems.

Table 4 shows the contribution of gait characteristics in the classification modelling. A higher
importance score indicates a greater contribution of each gait characteristic in the overall classification
model. The top 5 Axivity characteristics were from variability, rhythm, and pace domains for both CW
and IW. For GAITRite, CW contained gait characteristics from pace, rhythm and asymmetry domains,
while for IW pace, rhythm and variability were important. Results without gait normalization are
presented in the supplementary Table S3 and Figure S3.

Table 4. Importance of normalized gait characteristics in the classification of PD.

Sensing System Intermittent Walk Continuous Walk

Characteristic Importance Characteristic Importance

Axivity

Mean Step Length 0.22 Step Velocity
Variability 1.10

Mean Stance Time 0.20 Mean Swing Time 0.72
Mean Swing Time 0.15 Mean Step Length 0.49

Swing Time
Variability 0.14 Stance Time

Variability 0.20

Mean Step Time 0.07 Step Length
Variability 0.12

GAITRite

Mean Step Time 0.23 Mean Step Length 3.80
Step Velocity

Variability 0.22 Mean Step Time 2.72

Step Length
Variability 0.15 Stance Time

Asymmetry 1.21

Swing Time
Variability 0.14 Mean Stance Time 1.10

Mean Step Length 0.09 Swing Time
Asymmetry 0.72

Both models (SVM-RBF & RF) behaved in the similar manner for both walking protocols and gait
assessment systems, with better performance of Axivity compared to GAITRite in both walking tasks
with RF. Overall, SVM-RBF performed better than RF. Therefore for comparison of walking protocols
and gait assessment, we only reported the results from SVM-RBF. The results of RF are given in the
supplementary Table S4.

Overall, the classification of PD was significantly more accurate with Axivity (<0.001) during the
CW test (AUC 87.83 ± 7.81% for Axivity and 80.49 ± 9.85% for GAITRite), while there was no difference
(p = 0.073) between the systems during the IW test (AUC resulted being 79.09 ± 10.11% for Axivity and
79.90 ± 10.06% for GAITRite) (Figure 2 shows the distribution of the model classification performance,
where the x-axis represents the classification performance (AUC), the top x-axis represents walking
protocols, and the y-axis represents the gait assessment system). For reference, SVM performance
results without gait normalization are presented in the Supplementary Figure S4.
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4. Discussion

To the best of our knowledge this is the first study to investigate the impact of different walking
protocols and gait assessment systems on the performance of ML models for classification of PD.
Robust normalization techniques were carried out to reduce the effect of demographics and speed on
between participant differences within each group (PD and HC). A comprehensive group of 14 gait
characteristics were selected based on a validated gait model. Finally, widely used SVM-RBF and RF
models were trained for classification of PD and HC. The results show that different walking protocols
and gait assessment systems significantly affect gait characteristics and in turn the performance of ML
models. Harmonizing methods across multiple levels for comparative purposes is strongly advised to
optimize and implement ML in disease classification.

4.1. ML Performance: An Overview

In this study, we found that the combination of CW protocol and Axivity gave the highest PD
classification performance. In terms of protocols, ML performance was higher during CW with respect
to IW. In terms of systems, Axivity showed a significantly higher AUC (87.83 ± 7.81%) compared to
GAITRite (80.49 ± 9.85%) during CW. Similar pattern in results was achieved with RF, where Axivity
showed better results compared to GAITRite during both CW & IW. Therefore, walking protocols
and gait assessment systems materially impact on ML performance, which makes the comparison of
previous ML studies inconclusive. In fact, previous literature has shown that, when using wearables to
quantify gait, studies using 2 min CW protocols [18,19] achieved better results compared to those using
10m IW protocols [13,45]. In addition, studies showed that ML models derived from wearable inertial
and force feet sensors [14,19,45,46] performed relatively better when compared to studies based on
GAITRite data [17].

It’s important to underline that many factors can influence ML results: not only walking protocols
and gait assessment systems, but also cohort size, disease severity stage of PD, and validation method.
However, in the context of this study, we showed that walking protocol and gait assessment have a
significant impact on ML performance.

4.2. Effect of Walking Protocols on ML Model and Performance

In general, ML performance was higher during CW with respect to IW. There are a number of
possible explanations for this. The gait characteristics included in each ML model were different for
CW and IW, which may explain the differences in classification performances (i.e., CW higher AUC
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than IW). Indeed performance of ML models are influenced by the characteristics included in the
model and those characteristics are in turn influenced by the protocol used to assess gait. During IW
we observed higher gait performance (e.g., higher pace, etc.) for all characteristics and for both groups
(HC and PD). Acceleration and deceleration phases at the beginning and end of each IW increase the
dispersion of gait characteristics, especially variability and asymmetry compared to CW where gait
was sampled under more steady state conditions (lower variability and asymmetry values for both
walking systems).

Another aspect is that even though participants were instructed to walk at their normal preferred
pace for both protocols, it is clear that gait performance was faster during the IW compared to CW,
and this has been reported previously [21]. The reasons for this are most likely because attention to
performance is higher during short intermittent walking tests than a continuous steady state—where
walking is performed with less attention and conscious effort. However this will also influence the
dispersion of gait characteristics for PD and HC as seen by the standard deviations from Table 3.
For accurate classification between groups, this dispersion within each group for each characteristic
should be minimized to increase the distance between groups. This explains the need to overcome
between subject variability within each group to enhance ML performance.

Collectively, this suggests that the walking protocol should be selected carefully and protocols
that capture more steady state gait (in our case CW) may be optimal for classification and therefore
early identification of PD.

4.3. Effect of Gait Assessment Systems on ML Model and Performance

In general, Axivity showed significantly higher classification performance compared to GAITRite
during CW and comparable performance during IW. Gait characteristics quantified by the two systems
showed significant differences. Even if these two systems (GAITRite and Axivity) measured the
same spatial-temporal characteristics from the same walking tasks, the mechanism by which gait
characteristics are derived is different. GAITRite determines footfalls based on pressure sensors that
identify each step from which additional gait characteristics are derived [47]. Axivity, instead, uses
accelerometers which detect movement continuously: individual characteristics are then derived
from the raw signal. In previous work comparing gait characteristics from Axivity and GAITRite,
mean spatiotemporal gait characteristics (such as walking speed, step length and step time) showed
high agreement, while variability and asymmetry showed low agreement between the systems [10].
Gait characteristics extracted from GAITRite are more variable (wider dispersion) at slow speed [48].
Conversely, an accelerometer positioned at lower back may mis-detect gait events like initial and
final contacts which may impact on gait characteristic quantification [49]. An accelerometer close to
the center of mass of the body can capture small variations in body movement (variability) during
walking [50] with higher sensitivity compared to GAITRite. Analysis of the current study indicated
that Axivity is more sensitive to detect variability and asymmetry, particularly in PD. Collectively all
these factors most likely influence: (i) the observed differences in the gait characteristics quantified by
each system and (ii) ultimately the performance of the ML models.

The highest classification performance obtained with Axivity during the CW could also simply
be due to the higher amount of data available for Axivity vs. GAITRite during the walking protocol:
Axivity continuously sampled the entire 2 min while GAITRite sampled only each pass over the mat
(e.g., four passes) during the same time frame. This is in part corroborated by the fact that we found
comparable performances during the IW, when the amount of data was similar for both the systems.
A further explanation for the difference in performance could be related to the inclusion of gradual
turns with Axivity during the CW protocol which could have influenced the ML model. Axivity is
not able to quantify turning due to the lack of a gyroscope; to try and address this, we measured
turning from a sensor with an embedded gyroscope (Opal Mobility lab system APDM Inc., Portland,
OR, USA) collected concurrently in a subsample of the same cohort (PD: 31, HC: 49) during CW
and IW (Figure 3 shows the probability distribution of turning gait characteristics, where the x-axis
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represents the corresponding units and the y-axis represents the walking protocols). Turning time
and angular velocity were significantly different during IW and so the turning segment of the signal
was removed from Axivity analysis to delineate the gait characteristics. There were no significant
between-group differences in turning characteristics during CW, and so step data from the turning
component was retained for the analysis. However, we can’t rule out the possibility that steps from the
turning component during CW may have contributed to better classification between groups when
using Axivity.
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4.4. Effect of Gait Normalization on ML Performance

From our results, it is clear that participants walked faster during the IW as compared to CW
with both gait assessment systems (Table 3). This higher step velocity acts as a function of other gait
characteristics [28–30], which can be influenced by its high variability. To find the appropriate walking
protocol, multiple regression (MR) normalization using demographics and gait speed was important
to reveal important influencing variables and overcome between participant differences among groups.
Our findings support this approach, in fact we found that by controlling the effect of speed and
demographics, SVM was able to differentiate between PD and HC more accurately. SVM performance
increased by 5–7% in CW and 5–9% in the IW in both gait assessment systems (Supplementary Figure
S4). The results are in line with previous work where similar gait normalization approaches have
been used for better classification [16,31]. Thus, in short walks (IW), normalization may act as a
standardized technique to overcome the effect of gait assessment systems. During CW, the effect of gait
assessment systems was still significant. Normalization was also important to improve performance of
ML—irrespective of protocol or system. This means that, normalization may be important to ensure
standardization of walking protocol and gait assessment systems for optimal ML performance.

4.5. Limitations

This study had some limitations. Only two widely used ML models (SVM & RF) [13–19] were
used in this study to compare the effect of walking protocols and gait assessment systems. However,
future work should explore other classification models such as logistic regression and neural networks.
Turning features were not included in this work due to the use of an accelerometer. In order to
harmonize gait characteristics, step width and step width variability and a range of time series and
frequency based characteristics were not included in the analysis because they could not be calculated
from both systems. The inclusion of these additional variables may improve classification for respective
systems and should be explored in future studies to investigate their impact on ML models. PD
were assessed within 23.8 ± 4.2 months from clinical diagnosis, which is considered relatively early
disease. The cohort assessed in this study was relatively young and results may not be applicable or
generalizable to older, frailer people with PD with multi-morbidity.
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5. Clinical Implications

Based on this study, walking protocols (IW & CW) and gait assessment systems had significant
impact on the ML model performance. The extracted characteristics in CW with Axivity gave the
highest performance in the classification ML model. Our work emphasizes the importance of the use
of standardized walking protocols and wearable devices for ML PD classification purposes, to support
clinical decision making. With the recent advancements in this field, this study will help clinicians to
understand and select the appropriate walking protocols and gait assessment systems for optimal PD
diagnosis. In future studies, such as those looking at prodromal disease, CW assessed with Axivity
may give a more accurate reflection of gait changes. For better results, it is recommended to control for
demographics and walking speed for gait characteristics normalization in the PD ML classification
modeling. Intervention studies seeking to determine changes in particular gait characteristic(s) may be
advised to use this methodology.

6. Conclusions

In this study, the impact of different walking protocols (CW & IW) and gait assessment systems
(GAITRite & Axivity) on the performance of widely used ML models SVM and RF was investigated.
Gait characteristics were normalized with respect to demographic properties and walking speed to
overcome the between participants’ differences within each group (HC and PD) for each walking
protocol (CW vs. IW). Both ML models behaved in similar fashion for both walking protocols and
gait assessment systems. Higher performances were achieved with CW compared to IW. Axivity gave
higher classification performance compared to GAITRite. The highest PD classification performance
was obtained during CW with Axivity (87.83 ± 7.81%). This work supports the idea that direct
comparison of various ML studies using different walking protocols and gait assessment systems may
not be appropriate. The findings from this study suggest that the choice of the testing protocol and gait
assessment systems is important to achieve best classification results, which may have a direct impact on
future end points in intervention studies. In conclusion, there is a need for standardization of walking
protocols and gait assessment systems for wide scale implementation in clinical gait assessment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5363/s1,
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characteristics from 5 domains of conceptual gait model with statistical analysis, Figure S2: Correlations among gait
characteristics before and after normalization, Figure S3: Contribution of the gait characteristics in the classification
modelling in Support Vector Machine, Figure S4: SVM performance before gait characteristics normalization.
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