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Abstract: Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca),
a species of high interest for the sustainable European aquaculture sector. Although previous work,
including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism
genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene
expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep
RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated
trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network
modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway
enrichment and protein–protein interaction network analyses were performed to characterize the
unique biological functions of tissue-specific genes and co-expression modules. We detected strong
functional correlations and similarities of tissues with respect to their expression patterns—but
also significant differences in the complexity and composition of their transcriptomes. Moreover,
functional analyses revealed that tissue-specific genes essentially play key roles in the specific
physiological functions of the respective tissues. Identified network modules were also functionally
coherent with tissues’ main physiological functions. Although tissue specificity was not associated
with positive selection, several genes under selection were found to be involved in hypoxia, immunity,
and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new
resources and insights will not only enhance the understanding of mechanisms of organ biology in
pikeperch, but also complement the amount of genomic resources for this commercial species.

Keywords: RNA-Seq; tissue-specificity; positive selection; fish transcriptomics; co-expression

1. Introduction

Pikeperch (Sander lucioperca), a member of the Percidae family, is a fresh and brackish
water fish widely distributed in Eurasia. The European project DIVERSIFY [1,2] has identi-
fied pikeperch as one of the six species with the highest potential for inland aquaculture
diversification in Europe [3,4]. This perch-like species emerged as an attractive candidate
for aquaculture development, especially due to its flesh quality, which displays low fat con-
tent, highly assimilable proteins, and delicate flavour without small intramuscular bones.
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This makes pikeperch a highly demanded and expensive product in the international
markets. Moreover, its relatively rapid growth and resilience to disease and handling stress
in captive environments, compared to other percids [2,5], make pikeperch an interesting
species for intensive aquaculture systems. However, a number of production issues remain
unresolved. These include juvenile cannibalism, low larval survival, high incidence of
deformities, impaired and nonuniform growth [6–9].

Due to the rapid development of next-generation sequencing (NGS) technology, signif-
icant efforts have been made in recent years to provide genomics resources for pikeperch,
resulting in a significant amount of multi-omics studies and data. In fact, more than
90% of multi-omics studies in pikeperch, as recorded by PubMed Central, 30 June 2021,
have been published in the last five years (2016–2021). Notable genomics efforts include
the transcriptome profiling of eggs from wild and domesticated populations along with
the generation of the first transcriptomic resource for pikeperch [10], the development
of transcriptome-based simple sequence repeats (SSR) markers [11], and the construc-
tion of high-density linkage maps using specific locus amplified fragment sequencing
(SLAF-Seq) [12], and single-nucleotide polymorphism (SNPs) markers [13]. The recent pub-
lication of the chromosome-level reference genome (SLUC_FBN_1.2) for S. lucioperca [14]
has dramatically improved the ability to investigate its complex traits with commercial
relevance. Much more, it has paved the way for further genomic studies such as genotyp-
ing by sequencing and genetic markers identification, essential to improve the biological
efficiency of aquaculture production traits through selective breeding.

Tissue-specific genes are those with significantly enhanced expression levels in a given
tissue, relative to the baseline expression in all other tissues. Tissue-specific expression
profiling is crucial in elucidating the development, the complexity, and evolutionary
history of an organism at the systemic level. Furthermore, the classification of genes with
regard to their expression patterns across organs or tissue types is important for a deeper
understanding of the molecular mechanisms of tissue activity and function, to discover key
regulatory features, and to shed light on the correlated phenotypic and functional evolution
of tissues [15–17]. Tissue-specific expression profiles have been characterized in different
aquaculture species, including crucian carp (Carassius carassius) [18], Atlantic salmon (Salmo
salar) [19], and rainbow trout (Oncorhynchus mykiss) [20]. In Atlantic salmon for example,
analysing genes uniquely expressed in brain-pituitary-gonad tissues has provided a basic
understanding of key production and life history traits in salmonids [19]. So far, no
comprehensive tissue-specific gene expression atlas of pikeperch has been characterized,
and similar analyses have not been performed for any other Percid species. This work
aims to fill that gap with a comprehensive catalog of tissue-specific protein-coding genes
expressed in pikeperch using deep multitissue RNA sequencing (RNA-Seq).

Spatial transcriptomics (e.g., multitissue) can enable to explore the adaptive evolution
of genes, i.e., genes under positive selection (GUPS), and provide a foundation for co-
expression network analyses across tissues. Actually, GUPS can point out lineage-specific
evolutionary and adaptation features among species, while analysing co-expression net-
works can reveal the functional property of genes under different biological and cellular
processes, because genes sharing similar functions will tend to be co-expressed across
cell types or tissues [21]. Another interesting question is whether the expression of genes
evolving under positive selection in pikeperch is correlated with tissue specificity, or if
in addition, GUPS act as hubs (key players) in co-expression network modules. To our
knowledge, no study has yet characterized the co-expression modules and networks from
multiple tissues in pikeperch.

To address the questions above, we report in this study, a new functionally annotated
high-quality multitissues transcriptome assembly, genome-wide tissue-specific expression
atlas and functional co-expression networks in pikeperch. As an initial application of this
new genomic resource, we investigated the evolutionary signatures in six representative
percids species and clarified that protein evolution in pikeperch is not correlated with
tissue-specificity. To capture the variety of tissue-specific processes and better characterize
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the tissue function, we identified candidate pathways and biological processes associated
with tissue-specific genes and co-expression modules in this aquaculture species.

2. Materials and Methods

All procedures involving the handling and treatment of fish used in this study were
approved by the Committee on the Ethics of Animal Experiments of Mecklenburg-Western
Pomerania (Landesamt für Gesundheit und Soziales LAGuS, Approval ID: 7221.3-1-
009/19).

2.1. Tissue Sampling, Library Preparation, RNA-Sequencing

Tissue samples were collected from eight adult pikeperch individuals (3 males, 5 fe-
males) in the Experimental Aquaculture Facility of the Research Institute for Farm Animal
Biology (FBN). Prior to tissue collection, fish were euthanized by immersion for 15 min
in an overdose of 2-phenoxyethanol (50 mg/L) followed by a bleed cut in the head as
well as cutting of the spinal cord posterior to the head. For each individual, different
tissues including gonads (testis or ovary), liver, spleen, muscle, gills, brain, head kidney,
skin, and heart were sampled and snap-frozen in liquid nitrogen. They were ultimately
transferred to a −80 °C freezer until required for RNA extraction.

In total, eight individuals were euthanized and 72 tissue samples were obtained
(Supplementary file S1). These tissue samples were separately homogenized in 1 mL TRI-
zol reagent (Invitrogen, Darmstadt, Germany). Following phenol-chloroform extraction,
the obtained RNA was purified using the RNeasy Mini Kit (Quiagen, Hilden, Germany) ac-
cording to the manufacturer’s protocol. Extracted RNA was quantified using the NanoDrop
(Thermo Scientific™ NanoDrop 2000) and its integrity was assessed by electrophoretic
profiling with Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). We subsequently
pooled the purified mRNA from the same tissue type. With exception of the gonads sample
which are (clearly) sex homogeneous, the other pools are sex heterogeneous in the ratio of
3 males vs. 5 females (Supplementary file S1).

Finally, we prepared two equimolar aliquots of 25 µL for each pool, to obtain du-
plicates of each tissue sample for library preparation, where we used polyA selection
protocol coupled with TruSeq Stranded mRNA LT Sample Prep Kit v2 (Illumina, San Diego,
CA, USA), following the manufacturer’s standard protocol. Stranded-specific (forward)
paired-end 150 bp reads (PE150) were generated with the NovaSeq 6000 System. In total,
18 PE150 libraries were sequenced (2 × 8 non-gonadal tissues + 2 × gonads) (Table 1). We
ultimately performed quality control (QC) including adapters removal and screening for
contamination using the fastp pipeline (version 0.20.1) [22], whereby low quality reads
(<Q25) were discarded.

2.2. De Novo Transcriptome Assembly, Functional Annotation

To achieve the most biologically meaningful and representative set of S. lucioperca
transcripts, we used a combination of different assembly strategies. De novo assembly algo-
rithms included Trinity (version 2.8.1) [23], and rnaSPAdes (version 3.14.1) [24]. The Trinity
assembly was performed by pooling reads of all tissues and setting strand-specific parame-
ters. The rnaSPAdes assembly was iteratively built with k-mer sizes of 27, 33, 55, 77, and 99.
Additionally, we generated a genome-guided assembly with StringTie2 (version 2.1.2) [25].
Briefly, the combined RNA-Seq reads of all tissues were aligned to the latest pikeperch
reference genome (SLUC_FBN_1.2, GenBank accession: GCA_008315115.2) [13] using
HISAT2 (version 2.2.0) [26]. Reads alignments were then assembled with StringTie2 [25]
using the ‘−merge’ option to obtain a non-redundant set of transcripts across all tissue sam-
ples. Subsequently, raw assemblies were piled into a meta-assembly and large redundant
transcripts were clustered using cd-hit-est (version 4.6.1) [27] with an identity threshold of
98%. Note that our clustering threshold of 98% is slightly lower than the 100% suggested
by Nakasugi et al. [28]. This approach was chosen because the pooled libraries of our
tissue samples represent individuals with different genotypes. A too stringent identity
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threshold (e.g., 100%), would result in too many transcript variants remaining unclustered,
and thus make the redundancy removal suboptimal. Finally, we used EvidentialGene
tr2aacds pipeline [29] to collate the overassemblies into a less redundant and high confident
transcript set, thereby maximizing the diversity and completeness of the final transcrip-
tome assembly. In brief, EvidentialGene pipeline takes a pile of transcripts from different
assemblies, predicts amino acid and transcript coding potential (1), removes redundant
fragments and clusters highly similar fragments into transcript loci (2), picks the “best”
non-redundant mRNA for each loci, and ultimately classifies its transcripts as “primary” or
“alternative” (3). Unless stated otherwise, only primary transcripts were used for quality
assessment, functional annotation, and further downstream analyses.

The resulted multitissue transcriptome was functionally annotated using the eggNOG
mapper (version 5.0) [30] as well as through homology search against protein sequence
databases, including SwissProt and nonredundant RefSeq (NCBI) proteins. Moreover, we
performed protein domain identification and functional sites mapping with InterProScan
(version 5) [31].

2.3. Quality Assessment of the Multitissues Transcriptome Assembly

The quality of our newly built transcriptome assembly was gauged using multi-
ple strategies and quality metrics. Assembled transcripts were aligned with minimap2-
splice option (version 2.21) [32] to the reference genome (GCF_008315115.2) to produce
a GTF annotation file which was then compared to the pikeperch reference annotation
(GCF_008315115.2) with gffcompare (version 0.10.4) [33]. We also used BUSCO (version
4.1.4) [34] to explore the assembly completeness regarding the conserved actinopterygians
(Actinopterygii dataset) single-copy orthologs. To assess the RNA-Seq reads representation
of the assemblies, combined RNA-Seq reads were mapped to the assembly using Hisat2,
and the mapping statistics was estimated. Finally, we searched (BLAST) the assembled
transcripts against protein databases including UniProt and NCBI RefSeq nonredundant
proteins, and performed full length transcript analysis using an utility Perl script provided
in Trinity.

2.4. Quantification of Tissues Expression Profiles

The trimmed and filtered RNA-Seq reads from each sample were individually mapped
to the pikeperch reference genome (SLUC_FBN_1.2) [13] using STAR (version 2.7.5a) [35],
in two-pass mode. Abundance levels of transcripts were estimated using TPMCalcu-
lator [36], a one-step software to quantify mRNA expression abundance directly from
RNA-Seq alignments. TPMCalculator reported the expression matrix including transcripts
per million (TPM) values and raw read counts for each gene across all samples. We re-
moved genes with mean expression over all tissues ≤ 1 TPM, as well as those tagged as
noncoding RNA (ncRNA).

2.5. Tissue Specificity Index, Differential Expression Analysis

The per sample average (arithmetic mean) expression values (TPM) were used to
calculate the index of tissue specificity (τ) for all pikeperch protein-coding genes. Following
the approach described in Yanai et al. [37] and Mank et al. [38], we calculated tissue
specificity (τ) for protein-coding genes with the formula:

τ =
∑N

i=1(1 −
TPMg,i

TPMg,max
)

N − 1

where N is the total number of tissues examined, TPMg,i is the expression of a gene g in
tissue i, and TPMg,max is the maximal expression level detected for a given gene g over the
examined N tissues. Tau (τ) index has been demonstrated to be the most suitable metric to
measure gene tissue specificity [39]. It varies between 0 and 1, where highly tissue-specific
transcripts have values approaching 1 (τ > 0.85), and broadly expressed transcripts (e.g.,
housekeeping genes) have a tissue-specificity index approaching 0 (τ < 0.3) [17,39,40].
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In addition, we analysed differential expression (DE) between tissue samples in a “one
vs. all” design, utilizing the likelihood ratio testing (LRT) under the generalized linear
model (GLM) framework in the package edgeR [41]. We have iteratively detected genes
whose expression levels change by a significant amount between the two groups—namely
X and non-X, where X is one of our 10 tissue samples. Instead of considering only
statistical significance like in standard DE tests, we applied a combination of fold-change
(log2 FC > 3) and p-value (p < 0.05) cut-offs to deem genes as differentially expressed
(DEGs) between the respective comparison groups (X vs. non-X).

Lastly, we performed tissue enrichment analysis using the teGeneRetrieval function
in the Bioconductor package TissueEnrich [42]. This package applies the algorithm from
the Human Protein Atlas (HPA) [43] on expression data (normalized counts) and classifies
genes into different categories based on their expression levels across the tissues. More
details about the tissueEnrich algorithm can be found in Jain et. al [42].

2.6. Tissue-Specific Co-Expression and Network Modules Analysis

To assess the tissue-specificity of genes in the context of functional modules, we
examined whether tissue-specific expression patterns are also reflected in tissue-specific
co-expression and network modules. To that end, we used CEMiTool [44], a Bioconduc-
tor package to identify differential co-expression modules. Tissue-specific co-expression
modules were defined as a subset of tissue-specific genes which show relatively high co-
expression in one tissue, while having consistently lower co-expression in all other tissues.
Tissue-specific protein–protein interaction (PPI) networks were predicted as follows: we
first constructed global (i.e., based on all genes) interactions by exhaustively mapping
pikeperch proteins to PPI networks supported by experimental evidences using STRING
(version 11). Only proteins with a minimum interaction score of more than 0.7 were kept
in the PPI network. Given a pikeperch tissue, a subnetwork in the global network is
labeled specific to that tissue if the interacting proteins in that subnetwork are differentially
co-expressed and tissue-specific. Hence, a PPI network is specific to a given tissue, if it is
induced by tissue-specific proteins, whose coding genes are additionally co-expressed in
that tissue.

2.7. Positive Selection Analysis

We identified GUPS in pikeperch to examine how recent natural selection might
be associated with tissue specificity, and to interrogate how it might have shaped the
phenotypic and physiological diversification in the Percidae branch. To that end, we
performed genome-wide analysis of positive selection in six representative species in
the Percidae family. Briefly, we obtained coding sequences of six percids species, includ-
ing pikeperch, walleye (Sander vitreus; GenBank-Accession: GCA_009193085.1), yellow
perch (Perca flavescens; GenBank-Accession: GCA_004354835.1) [45], European perch (Perca
fluviatilis; GenBank-Accession: GCA_010015445.1), Arkansas darter (Etheostoma cragini;
GenBank-Accession: GCA_013103735.1), and orangethroat darter (Etheostoma spectabile;
GenBank-Acession: GCA_008692095.1) [46]. One-to-one single-copy orthologs between
these species were predicted using OrthoFinder [47]. Based on these single-copy orthologs,
positive selection was scanned using PosiGene pipeline [48], which makes use of CODEML
program in the PAML package to conduct branch-site tests of positive selection. Yellow
perch was used as anchor species, while the Asian sea bass (Lates calcarifer), channel bull
blenny (Cottoperca gobio), and giant grouper (Epinephelus lanceolatus) were used as outgroup
species in the analysis. Candidate genes under positive selection were those with a false
discovery rate (FDR) < 0.1. Finally, we explored the relationship between positive selection,
tissue specificity, and gene expression levels.

2.8. Functional Enrichment Analyses

To gain insights into the functions, biological processes and pathways associated with
GUPS, tissue-specific genes and tissues specific network modules, we performed GO and
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pathway enrichment analyses using g:Profiler [49]. Furthermore, we assessed biological
processes, molecular functions and KEGG pathways involving GUPS and non-GUPS (i.e.,
all pikeperch genes that are likely not under positive selection). GO categories and KEGG
pathways with a FDR ≤ 0.05 were considered significant. Though only significant terms
and pathways associated with at least 3 genes were ultimately retained.

3. Results
3.1. RNA-Seq, Assembly and Functional Annotation

The transcriptome profiles of ten different pikeperch tissues were analysed using RNA-
Seq methods. Messenger RNA Sequencing yielded between 32.5 and 49 million PE-reads
per library, with an average of nearly 38 million PE-reads (Table 1). About 92% of the raw
reads were ultimately retained after QC. Different sets of transcriptome assemblies, including
Trinity, rnaSPAdes, and Stringtie2 were then built. A summary of the assemblies statistics and
their characteristics including functional annotation, are reported in Table 2 and Figure 1. The
number of transcripts greatly varies among assemblies. De novo assembly with Trinity and
rnaSPAdes substantially yielded a larger number of contigs, with 438,462 and 295,387 contigs,
respectively. The reference-guided assembly with StringTie2 yielded 79,936 contigs in total.
As expected, merging all assemblies with EvidentialGene substantially reduced the contig
count to a number of 56,302 contigs, which is quite consistent with the total number of proteins
(N = 56,557) annotated in the pikeperch reference genome [13], indicating that our multitissue-
assembly nearly spans the whole pikeperch proteome. Overall, the meta-transcriptome
outperformed the separate assemblies (Trinity, rnaSPAdes and Hisat2+StringTie2) in terms
of BUSCO completeness and protein functional database records. Interestingly, mapping
our transcriptome assembly to the pikeperch reference genome showed that all reference
loci were recovered (100%), and approx. 94% of reference introns were accurately captured,
while only 4% of reference exons were missed by our assembly, validating the high accu-
racy of our transcriptome assembly. Regarding assembly metrics and transcript coverage,
Hisat2+StringTie2 yielded the best results (Table 2, Figure 1A). In particular, nearly 89% of
transcripts were assembled in full length (Table 2). This result is in line with previous stud-
ies [50], where reference-guided assemblies tended to produce longer and more full-length
transcripts compared to reference-free approaches.

Table 1. Summary statistics of paired-end RNA-Seq reads yielded from 18 libraries of ten different
pikeperch tissues using Illumina NovaSeq 6000 System.

Libraries No. of Raw
Reads

Q30 Raw
Reads (%)

No. of Clean
Reads

Q30 Clean
Reads (%)

Heart-1 33,908,652 93.98 30,984,679 97.42
Heart-2 35,031,697 94.16 33,180,437 97.49
Head kidney-1 33,002,587 93.95 30,015,644 97.51
Head kidney-2 39,938,681 94.16 36,623,609 97.50
Muscle-1 35,047,416 94.74 32,410,797 97.52
Muscle-2 39,426,896 94.32 36,506,458 97.53
Liver-1 32,566,471 94.20 30,209,964 97.42
Liver-2 35,071,990 94.11 32,007,540 97.65
Brain-1 40,422,234 93.58 37,106,005 97.40
Brain-2 35,567,608 93.46 36,458,085 97.41
Skin-1 37,989,173 94.21 35,172,646 97.42
Skin-2 40,633,032 94.34 37,687,356 97.47
Gills-1 38,586,131 93.97 35,630,505 97.42
Gills-2 39,427,046 94.51 36,458,085 97.41
Spleen-1 45,127,155 94.00 41,790,579 97.36
Spleen-2 33,329,198 94.27 30,504,153 97.44
Ovary 37,553,020 94.38 34,742,133 97.51
Testis 48,694,199 93.90 44,903,971 97.37
Average 37,851,288 94.12 35,132,924 97.45
Total 681,323,186 — 632,392,646 —
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Figure 1. Contigs length distribution and assessment of transcriptomes completeness as determined by Benchmarking
Universal Single-Copy Orthologous (BUSCO). (A), Contigs length (scaled to log10) of the different transcriptome assemblies.
(B), BUSCO completeness for each assembly, showing the proportion (%) of complete (C) and single-copy orthologs (S),
complete and duplicated (D) orthologs, missing (M) and fragmented (F) orthologs. Transcripts were queried against the
Actinopterygii gene set (N = 4584).

Table 2. Summary of pikeperch transcriptome assembly and assessment.

Trinity rnaSPAdes Hisat2 + StringTie2 EvidentialGene

Number of contigs 438,462 295,387 79,936 56,302
Cumulative contigs length (Mb) 399.28 502.46 299.28 85.73
Mean contigs length (bp) 910.65 1701.05 3744.49 1522.81
N50 contigs length (bp) 1340 3436 4934 1977
Largest contig (bp) 70,079 80,089 78,909 79,815
∑ contigs > 1 Kb (%) 57.11 83.16 98.31 80.51
% of FL transcripts 60.57 72.84 89.52 86.73
% of transcripts with ORFs 76.73 80.53 88.84 85.07
% of BUSCO complete 80.27 96.58 96.62 96.87
% of transcripts with NCBI NR hits 72.83 78.04 86.27 88.35
% of transcripts with Swiss-Prot hits 55.76 60.23 75.86 78.57
Mapping rate RNA-Seq reads (%) 83.92 84.75 90.86 88.15

3.2. Expression Atlas of Pikeperch Protein-Coding Genes

Most of the expressed putative protein-coding genes were detected in the testis
(N = 22,097), brain (N = 19,481) and gills (N = 17,417), while muscle expressed the least
genes (N = 10,529). A mean number of 15,820 genes were detected per tissue. Since cDNA
libraries were constructed with equal amounts of cDNA from each tissue, the differences
in the number of detected protein-coding genes suggest genuine biological variations. We
classified all protein-coding with detected expression signals (N = 19,542) into 4 main
categories, according to their expression levels and tissue-specificity index (τ) (Table 3,
Supplementary file S2).

Table 3. Classification of protein-coding genes based on transcript expression levels and their index
of tissue specificity (τ) across 10 pikeperch tissues.

Category No. of Genes Fraction of Detected Genes (%)

Tissue-Specific 2930 15.00
Group-Enriched 3809 19.50
Expressed-in-All 5810 29.80
Mixed 6970 35.70
Total detected 19,541 100
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3.2.1. Mixed-Expressed Genes

The largest class of genes (35.7%) consisted of 6970 genes in the category termed
“Mixed”, which includes detected genes that could not be assigned to any of “Tissue-
Specific”, “Group-Enriched” or “Expressed-In-All” categories (Figure 2). This class showed
the lowest expression variance (σ = 102.3) and least average expression (x = 20.2),
suggesting a lower within-group expression variability. Moreover, the τ index in this
category is more dispersed (σ = 0.13) compared to the three other categories (σ < 0.06).
This is coherent with our definition of Mixed-Expressed genes, which are highly enriched in
a subset of tissues while being broadly expressed at moderate or lower levels in the others.
Thus, this explains the stretched distribution of the tissue specificity index (Figure 2B). GO
enrichment analysis revealed that 3,586 genes (51.44% of “Mixed-Expressed”) contained
significant (FDR < 0.05) enrichment for 78 GO-terms (20 GO:MF, 44 GO:BP, 14 GO:CC),
five KEGG and two Reactome (REAC) pathways. However, most of these genes (>80%)
were associated with only two significant GO terms, namely GO:0005515 (MF:Protein
binding, FDR < 10−9) and GO:0003824 (MF:Catalytic activity, FDR < 10−4). Transcription
factor genes (TF) of which 2733 have been identified in fish species and reported in the
Animal Transcription Factor Database (AnimalTFDB3.0) [51], were mostly (12% of all TF
genes in fish) found in this category. The fraction and number of TF genes classified in
each category are depicted in Figure 2C.

A B

C

BA

D Kruskal-Wallis, p < 2.2 x 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏

Figure 2. Classification of protein-coding genes detected in pikeperch (Sander lucioperca). (A), Upset plot depicting different
gene sets and the number of shared Group-Enriched genes in each set. (B), Sinaplot showing the distribution of the
tissue specificity index τ in each genes class. (C), Number of transcription factors (TF), hypoxya-related genes (HRG),
immune-related genes (IRG), and genes under positive selection (GUPS) in S. lucioperca, found in each category. (D), Violin
plot showing the distribution of genes expression levels withing each class. Statistical significance ns: Not significant; ****:
Extremely significant (p < 0.0001)

3.2.2. Expressed-in-All Genes

The second largest class (29.8%) consists of 5810 genes ubiquitously expressed in all
tissues, termed “Expressed-In-All”. These gene products are needed in all cells and tissues
for the maintenance of essential cellular functions. Evidences of functional enrichment
(GO, KEGG, REAC) of these genes include primarily ribosomal and spliceosomal proteins
involved in protein biosynthesis and metabolism, RNA processing and transport, as well



Cells 2021, 10, 2289 9 of 20

as proteins responsible for the structural integrity and stability of the cell (Figure 3). The av-
erage expression level (x = 65.8) in this group is significantly higher (p-value < 10−16) than
in “Mixed-Expressed” and “Group-Enriched genes”, but still lower than in “Tissue-Specific”
genes (x = 102.9), suggesting that these genes are relatively upregulated throughout all
analysed pikeperch tissues (Figure 2D). The top 5 most abundant “Expressed-In-All” genes
include known housekeeping genes, such as EEF1A1 (Elongation factor 1-alpha 1), ACTB2
(Beta-actin), RPS2 (40S ribosomal protein S2), RPL7A (60S ribosomal protein L7a) and RPL4
(60S ribosomal protein L4).

3.2.3. Group-Enriched Genes

The third category contains 3809 genes (19.5%), termed “Group-Enriched”. Group-
Enriched genes are non-housekeeping genes with enhanced expression in a limited num-
ber of 2–7 tissues and with an index of tissue specificity τ > 0.5. They are often in-
volved in coordinated biological processes in different tissues/organs, and thus highly
enriched in those tissues. We obtained 36 sets of Group-Enriched genes, comprising two
(12 sets) to five (one set) different tissues. The groups {brain; testis} (N = 1760) and {ovary;
testis} (N = 1458) are the pairs sharing most of the Group-Enriched genes (Figure 2A).
GO overrepresentation analysis indicated that genes enriched in the group {brain; testis}
are predominantly involved in plasma membrane bounded cell projection organization
(GO:0120036; FDR < 10−16), and small conductance calcium-activated potassium channel
activity (GO:0016286; FDR < 10−3). Genes in the group {ovary; testis} (gonads) are primarily
involved in cellular nitrogen compound metabolism (GO:0034641; FDR = 0) and in nu-
cleotide and nucleic acid metabolic process (GO:0006139; FDR = 0). Genes enriched in the
triplet {brain; testis; ovary} did not have any overrepresented GO terms. Global functional
analyses indicated that ncRNA processing (GO:0034660) was the most significant biological
process of all Group-Enriched genes (Figure 3).

3.2.4. Tissue-Specific Genes

The last category termed “Tissue-Specific” (N = 2930) constitutes about 15% of all
detected protein-coding genes in pikeperch (Table 3). These are genes with an index
of tissue-specificity τ > 0.85 and at least five-fold higher expression in one tissue com-
pared to all other tissues. Ovary (N = 563) and testis (N = 379) had the largest numbers
of tissue-specific genes detected in our analysis, while the head kidney (N = 109) had
the least (Figure 4D). GO enrichment analyses indicated that the most significant bi-
ological process in the ovary is cell cycle process (GO:0022402), reproductive process
(GO:0022414) in the testis, homeostasis (GO:0007599) in liver, nervous system development
(GO:0007399) in brain, developmental process (GO:0032502) in gills, humoral immune
response (GO:0006959) in spleen, muscle structure development (GO:0061061) in muscle,
circulatory system development (GO:0072359) in heart, and hematopoietic stem cell mi-
gration (GO:0035701) in head kidney. Tissue-specific genes in the skin did not show any
significantly overrepresented terms. Moreover, KEGG pathway analysis was performed
to identify which pathways were significantly enriched with tissue-specific genes. A total
of nine significantly enriched pathways were identified, whereas cell cycle, biosynthesis
of antibiotics, glycolysis/gluconeogenesis and biosynthesis of amino acids showed the
strongest KEGG enrichment signal across multiple tissues. For example, seven tissue types
were involved in the biosynthesis of amino acids with at least two genes (Supplementary
Figure S1). As expected by construction, the logarithmized expression fold-change for a
gene in a given tissue compared to all others tissues is positively correlated with the index
of tissue specificity (τ), confirming that tissue-specific genes are significantly upregulated
only in a particular tissue (Figure 4C).
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Figure 3. Enrichment of Gene Ontology (GO) terms, KEGG and Reactome (REAC) pathways for each genes class. The top 4
significant (FDR < 0.05) GO terms/functional pathways are depicted here, including REAC (Reactome Pathways), KEGG
(KEGG Pathways), GO:BP (Biological Process), GO:CC (Cellular Component), and GO:MF (Molecular Function).

We investigated the correlation and similarities between tissues by Uniform Manifold
Approximation and Projection (UMAP) clustering of tissues-specific genes based on their
expression profiles (TPM) across tissues. We additionally computed the pairwise correlation
matrix between all tissues based on the transcript expression levels of tissue-specific
genes (N = 2930). UMAP clustering did not only reveal the relationship and similarity
between different tissues, but also confirmed the uniqueness of these tissue-specific genes.
For example, head kidney and spleen, which are the major lymphoid organs in teleosts,
formed a single heterogeneous cluster, suggesting high gene relationships between these
tissues. Another similarity of transcriptional profiles was observed for gills and skin tissues,
which play an important role in the fish’s physiological exchange between the internal and
external environment, and in the regulation of its osmotic pressure. Although genes specific
to other tissues, including heart, muscle, liver, brain, testis, and ovary formed distinct
and nearly homogeneous clusters, the global inter-cluster relationship was minimized for
tissue types involved in coordinated biological processes and sharing common features.
For instance, striated muscle tissues including muscle and heart tissues are projected in the
same manifold—the liver, which is known to be part of coordinated metabolic activity with
skeletal muscle, is clustered in the same manifold with muscle and heart. This discrete
grouping of tissue-specific genes is verified by the correlation heatmap highlighting strong
correlation between tissues with similar or coordinated biological functions (Figure 4B).
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Figure 4. Statistics on tissue-specific genes of Sander lucioperca. (A), Uniform Manifold Approximation and Projection
(UMAP) clustering of 2930 tissue-specific genes in pikeperch based on their expression levels (TPM), where clusters represent
genes with similar or correlated expression. (B), Correlation heatmap between tissues, based on their specific transcriptome
profile. (C), Spearman correlation between expression fold-change for each tissue vs. all, and the index of tissue specificity
(τ). R is the spearman correlation coefficient and p the corresponding p-value. (D), Number of detected and tissue-specific
genes in each tissues. (E), Percentage distribution of tissue-specific genes across tissues.

3.3. Co-Expression Modules, Hubs and Tissue-Specific Networks

To gain insights into the pikeperch interactome with the aim to detect hubs and
co-expression networks containing tissue-specific genes, we conducted genome-wide co-
expression network analysis. Overall, we identified seven differentially co-expressed
modules (M) displaying significantly correlated expression, ranging from 55 to 14 genes in
size, and involving 211 genes in total. The largest modules consisted of 55 (M1) and 53 (M2)
genes. They were specifically upregulated in liver and muscle tissues, respectively (Table 4).
By integrating interactome information with co-expression modules, we identified potential
hub genes (i.e., genes that have a high degree of intramodule connectivity) specific to each
module (Figure 5A). Gene set enrichment analysis (GSEA) highlighted which modules
were induced or repressed in the different tissues (Figure 5B). Finally, we performed
overrepresentation analysis (ORA) to determine which biological functions are associated
with the identified modules. For instance, the glycolysis/gluconeogenesis pathway is
overrepresented in module M4, which is enriched by muscle-specific genes (Supplementary
file S4).

Table 4. Tissue-specific (differential) co-expression modules with their hub genes.

Module No. Genes Tisssue-Specific Upregulation Hubs (Gene Symbol)

M1 55 Liver C3, AFP4, C1QTNF3

M2 53 Muscle PYGM, TNNT3A, TRIM21,
MYLPFA

M3 27 Ovary, Testis SERPINA12, ALOX12B,
LOC116046623

M4 21 Skin RPS7, RPS3A, RPL5, RPL13A,
RPL7A

M5 19 Head kidney, Spleen HBZ, NPRL3, AQP8A, HBB2
M6 15 Gills, Skin LOC116046623, ZG16B, MPO

M7 14 Heart TNNT2A, MYBPC3,
TNNC1A, TNNI1, TPM4A
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Figure 5. Gene co-expression network analysis. (A), Gene co-expression networks of modules M2 (upregulated in muscle
tissues) and M7 (upregulated in heart tissues). The top hubs (i.e., genes with highest connectivity) are labelled and coloured
based on their source: if only present in the co-expression module predicted by CEMiTool, they are coloured blue; if
additionally present in PPI networks, they are coloured green; if exclusively present in PPI network and not in co-expression
a network, they are coloured red. The size of the node is proportional to its degree. (B), Gene Set Enrichment Analyses
(GSA) showing the modules activity on each tissues type. NES is the normalized enrichment score. Exhaustive figures for
co-expression modules are available in Supplementary file S4.

To identify network-based protein functional modules that are significantly associated
with different tissues, we combined tissue specific co-expression modules with genome-
wide PPI networks in pikeperch. Overall, we found four tissue-specific PPI networks
(TSN) associated with 4 different tissues, including skin, liver, muscle and heart (Figure 6).
These TSN involve between tree genes (skin, heart) and 13 genes (muscle). GO enrichment
analysis identified no significantly enriched biological process and cellular component
in these functional modules. However, GO terms associated with these genes mostly
described biological processes specific to these tissues.
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Figure 6. Tissue specific protein–protein interaction networks predicted in four pikeperch tissues including skin, liver,
muscle and heart.
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3.4. Positive Selection Analysis

Six representative percid species were analysed for candidate GUPS (see Methods).
Overall, we detected 43, 63, 137, 154, 152, and 124 putative candidate genes under selection
pressure in S. lucioperca, S. vitreus, P. flavescens, P. fluviatilis, E. spectabile, and E. cragini,
respectively (Table 5). Only two tissue-specific genes, SLC13A2 and VWA1 were found to
be under positive selection. Although the expression levels of GUPS in Sander lucioperca
did not significantly vary across tissues (One-way ANOVA, F < 1), they were markedly
expressed in higher levels in some tissues, such as head kidney, spleen, and gills (Figure 7B).
Relative to tissue-specific genes (TS), GUPS were less tissue-specific (Kruskal–Wallis-Test,
p-value < 0.0001). Although GUPS showed a higher tissue specificity index than genes
not under positive selection (non-GUPS) (Kruskal–Wallis-Test, p-value < 0.01), and their
expression levels were not significantly different (Figure 7A).

GO enrichment analysis of GUPS in S.lucioperca, S. vitreus, and E. spectabile revealed
no significantly overrepresentated terms. Though, several GUPS in Sander lucioperca were
associated with metabolic process, regulation of cellular process and response to stimulus.
On the other hand, GUPS in P. fluviatilis, P. flavescens and E. cragini were significantly (FDR
< 0.05) enriched with immune-related biological processes, including regulation of immune
system process (GO:0002682), regulation of defense response (GO:0031347), myeloid leuko-
cyte activation (GO:0002274), neutrophil degranulation (GO:0043312), leukocyte mediated
immunity (GO:0002274) or neutrophil activation (GO:0042119) (Supplementary file S3).
A broader overview of the functional terms associated with GUPS is shown on the treeMap
in Figure 8, representing clusters of GO terms based on their context similarity. Each
rectangle in the treeMap represents a cluster of GO terms associated with genes under
positive selection. The size of rectangles reflects the significance of the of the cluster (i.e.,
the number of GO terms in the cluster). Closely related GO terms are clustered together in
a supercluster of the same colour (Figure 8).

  

A B

Figure 7. Expression levels of GUPS in pikeperch. (A), Violin plot comparing log transformed expression levels of GUPS, TS
(Tissue-specific) and non-GUPS (all genes not under positive selection). The expression levels between GUPS and non-GUPS
are not significantly different (Kruskal–Wallis-Test). (B), Log transformed mean expression of GUPS and non-GUPS in each
tissue type. Statistical significance ns : Not significant; ****: Extremely significant (p < 0.0001).
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Table 5. Statistics on lineage-specific positive selection in the six representative Percidae species.

Branch No of. CDS No. of GUPS Mean ω (dN /dS) Avg No. of Sites

Sander lucioperca 56,899 43 5.11 6.63
Sander vitreus 34,187 63 4.08 9.16
Perca flavescens 43,150 137 3.41 8.41
Perca fluviatilis 50,212 154 5.97 7.80
Etheostoma
spectabile 45,699 152 4.07 9.10

Etheostoma cragini 45,199 124 3.24 9.22

  

Clusters of GO terms – Biological Process 
 of GUPS in pikeperch (Sander lucioperca)

Clusters of GO terms – Biological Process 
        of all  GUPS predicted in Percidae

A B

Figure 8. TreeMaps depicting GO terms (Biological Process) clusters GUPS in pikeperch (A) and in Percidae (all analysed
species) (B), respectively. Each rectangle represents a cluster of related GO terms. The sizes of rectangle reflect the
significance of the cluster (# of GO terms included in the cluster). Closely related GO terms are grouped together in a
super-cluster of the same colour.

4. Discussion

Pikeperch is an emerging inland aquaculture species in Europe. For successful po-
sitioning this species in the European aquaculture industry, genomics insights can be
harnessed in all stages of its domestication to understand its adaption biology, optimise
breeding programs and improve commercial traits [52]. Hence, the comprehensive tran-
scriptomics data presented here provide a key molecular resource for in-depth informing
on developmental, evolutionary, and behavioural questions throughout the domestication
process of the pikeperch.

The quality assessment of this new pikeperch transcriptome using BUSCO and various
metrics suggest that a wide range of full length transcripts were resolved, since nearly
95% of single-copy orthologs in ray-finned fish (Actinopterygii) were covered by our
assembly. Moreover, the merged assembly (EvidentialGenes) displayed the best conti-
guity and mappability metrics compared to the other assemblies generated with Trinity
or rnaSPAdes assemblers (Figure 1). It has been demonstrated in similar studies that
combining transcriptome assemblies from multiple assemblers or assembly approaches
yields significantly better and optimised results compared to assemblies built with a single
assembler [28,53,54].

Tissue-specific gene expression is a well-known biological phenomenon by which the
genome expresses differentiated transcriptomes among tissues and cell types. Therefore,
tissue-specific protein-coding transcripts can explain the difference in the composition and
complexity of the transcriptomes of different tissues, as well as provide clues to detecting
key pathways and physiological and regulatory processes unique in a tissue [17]. Our
analysis using the tissue specificity index (τ) with RNA-Seq expression profiles of tissues
from 10 vital pikeperch organs allowed us to establish the first catalog of tissue-specific
genes and to capture their specific metabolic process. In our dataset, testis and brain
tissues had the most complex transcriptomes, while ovary and testis tissues featured the
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highest number of tissue-specific protein-coding genes, accounting for 19% and 13% of
all tissue-specific genes, respectively (Figure 4E). This trend is comparable with previ-
ous studies across different taxa including domesticated animals. We denote studies in
pigs [55], salmons [19,20], and crucian carp [18], or well studied models such as rats [56]
and mice [57]—birds [17] and even on higher-order mammals such as humans [43,58–60],
where brain and gonads tissues consistently expressed the most tissue-specific transcripts.
These suggest a conserved tissues-specific expression pattern across main vertebrate taxa
and lineages.

Among tissue-specific genes, we identified 151 transcription factors (TFs) validated
in diverse fish species, 15 immune-related genes (IRG), 3 hypoxia-related genes (HRG),
and only 2 GUPS, suggesting that these important classes of genes are less likely to be
uniquely expressed in a specific tissue. In contrast, these genes were similarly expressed
in all tissues (Expressed-In-All), or moderately expressed in a subset of tissues (Mixed)
(Figure 2). More than one third (35%) of detected TFs, IRG, HRG, and GUPS were either
classified as “Expressed-In-All” or “Mixed”, while only 9% were “Tissue-Specific”. How-
ever, this is an expected observation, in that transcription factors, for example, are more
likely to be ubiquitously expressed, as they are regulatory proteins acting as housekeeping
genes in different tissue types. In addition, TFs identified as tissue-specific in our data
trigger the expression of genes involved in highly specialized organ-limited functions.
For instance, the GATA transcription factors family including GATA4, GAT5, and GATA6,
which are known to play a key role in cardiac development and cardiomyocyte gene
expression, were specifically expressed in the heart tissues of pikeperch. Similarly, SOX32
(SRY-box transcription factor 32) and HSF5 (Heat Shock Factor 5), which are known TF
playing an essential role in spermatogenesis in Zebrafish [61] and other fish species [62],
were testis-specific in pikeperch. Lastly, we want to highlight three hypoxia-related genes
including the hypoxia-inducible factor prolyl hydroxylase 2 (EGLN1), ceruloplasmin (CP),
and solute carrier family 2 (SLC2A2), which have been identified as tissue-specific (in heart
and liver, respectively). These transcription factors are known to regulate the expression of
hypoxia-responsive genes [63–65].

Functional analysis revealed that tissue-specific genes were largely associated with
important biological process and pathways involved with the corresponding tissue-specific
physiological functions (Figure 3). For example, ovary-specific genes were largely associ-
ated with oocyte meiosis and cell cycle process. Genes specifically expressed in the spleen
and head kidney were mostly involved in immune-related biological processes. Another
notable example is heart and skeletal muscle specific genes, which were largely associated
with muscle contraction and heart development, respectively (Figure 3). This functional
characterization is also expected and is in line with previous findings in comparative
transcriptome analysis between tissues [17,60]. More interestingly, we observed high simi-
larities and correlations of expression patterns between some tissues, reflecting biological
identity, coordinated processes, or functional convergence between these tissues. All tissues
clustered together share either functional, morphological, physiological, or developmental
features. For example, the nearly perfect overlap between gills and skin specific genes
as revealed by UMAP clustering is probably explained by the facts that gills as well as
skin are enriched with epithelial cells and both potentially act as respiratory organs of
teleosts. The high correlation (Pearson’s R > 0.8) between heart, muscle, and liver-specific
genes is probably due to coordinated metabolic activities in these tissues, such as lipoge-
nis in the liver and fatty acid oxidation in skeletal muscle cells [66]. Similarly, the testis
and ovary, which are reproductive system organs, showed strongly correlated expression
patterns. The observed correlation between tissues is corroborated by the genome-wide
tissue-specific co-expression analysis. Namely, the co-expression module M3 is specific to
the testis and ovary, while the module M5 is specific to the head kidney and spleen tissues
(Supplementary file S4). Collectively, these results do not only suggest a high reliability
and repeatability of our RNA-Seq analysis, but also endorse the correct classification of
genes expressed in a tissue-specific manner.
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Tissue-specific genes are a good starting point to quantify how tissues and organs
differ in their expression profiles and interrogate how gene expression shape the phe-
notype and function of various tissues in an organism. However, a strong limitation of
functional inference of tissue-specific genes is that each gene is analysed independently,
while in reality, no gene is able to perform biological function on its own. Most genes
tend to operate within functional modules and complex networks of interacting proteins.
Tissue-specific gene expression can help us to predict tissue-specific interaction networks
and infer their unique functions more precisely. Moreover, functional modules inferred
from tissue-specific networks are more specific than those inferred from global PPI net-
works. In order to discover co-expressed network modules that are significantly associated
with different pikeperch tissues, we constructed tissue-specific PPI networks based on
differentially co-expressed genes, that is, co-expression modules induced by tissue-specific
genes. As shown in the results section, only 4 tissues (heart, muscle, liver, and skin) sig-
nificantly displayed tissue-specific PPI networks. The functional pathways and biological
processes associated with tissue-specific functional networks module were similar to the
aforementioned functions of tissue-specific genes. In particular, hub genes obtained from
the tissue-specific PPI network analyses were closely involved in biological functions typi-
cal to the specific tissues. For example, the protein TNNT2A (cardiac muscle troponin T
type 2a), a top hub gene in the muscle-specific PPI network, is predicted to be a structural
constituent of the cytoskeleton. Moreover, TNNT2A is the tropomyosin-binding subunit
of the troponin complex located on the thin filament of striated muscle and regulates
muscle contraction [67,68]. Besides, the secreted protein FGA (fibrinogen alpha chain),
the main hub gene in the liver-specific PPI network, is known to play a key role in teleost
haemostasis [69,70]. Overall, Gene Ontology and pathways annotation of the functional
network modules revealed functionality coherent with tissue-specific processes.

In an attempt to associate tissue specificity with rapidly evolving genes in pikeperch,
we predicted 43 GUPS in the pikeperch-specific lineage, compared to 5 other percid species
(see Methods). While no significantly overrepresented biological process was found among
the putative positively selected genes in pikeperch, GO terms associated with these genes
mostly comprise metabolic processes and cellular response to stimuli (Figure 8). Subsequent
functional analyses would broadly characterize their adaption features in the life history
of pikeperch. Unexpectedly, only two GUPS were tissue-specific (liver-specific) and no
significant correlation between positive selection and tissue-specificity was established.
Moreover, most of the detected GUPS (27/32) were classified as “Mixed” (19) or “Expressed-
In-All” (8), and tended to be expressed at lower levels relative to tissue-specific genes
(Figure 7A). This result strengthens the hypothesis that genes under natural selection are
more likely to be expressed at moderate or lower levels [71,72]. On the other hand, highly
tissue-specific genes are significantly expressed at higher levels. Thus, we can hypothesise
that high tissue-specificity in Percidae might release some genes from selection pressure.

Transcriptomic resources in aquaculture provide a solid basis to develop tissue-specific
tools for, e.g., diagnosis and the recording of stress parameters. They also empower pro-
teomics analysis to validate the functions of genes underlying key production traits. For ex-
ample, subsequent analyses could leverage tissue-specific expression and co-expression
patterns to explore markers in any tissue that may play a central role in the timing of
breeding. Additionally, multitissue expression studies are useful for investigating feed
efficiency and growth-related genes. All in all, this transcriptomics study will be useful in
improving our understanding of the adaptation, development, growth and metabolism pa-
rameters of pikeperch, which can inform aquaculturists in making customized adjustments
to environmental conditions, such as hypoxia, temperature, nutrition, and salinity.

5. Conclusions

In the present study, we first reported a multitissue high-quality reference transcrip-
tome from 10 pikeperch vital tissues along with a comprehensive landscape of tissue
specific expression and co-expression networks for classifying protein-coding genes regard-
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ing to their unique expression pattern across tissues. We then characterized the specific
tissue function by identifying functional pathways and biological processes associated
with tissue-specific genes and network modules. Finally, we shed light into the genetic
evolutionary history of pikeperch by predicting putative genes under selection pressure,
including known hypoxia-related genes, immune-related genes, and transcription factors.
Collectively, the transcriptomics resources presented in this study can be useful for un-
derstanding the mechanisms of organ biology and the roles of specific metabolic cycles
in different tissues. This knowledge will then lay a framework for investigating impor-
tant production and domestication traits in the pikeperch. Ultimately, the transcriptome
dataset will complement the amount of information of this aquaculture species in public
data repositories.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10092289/s1, Figure S1: balloon plot of KEGG pathways associated with tissue-specific
genes in pikeperch. Supplementary file S1: RNA-Seq sample design. Supplementary file S2: Complete
classification of pikeperch protein-coding genes. Supplementary file S3: Functional annotation of all
GUPS in Percidae. Supplementary file S4: Differential co-expression analysis—PDF report.
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9. Policar, T.; Blecha, M.; Křišt’an, J.; Mráz, J.; Velíšek, J.; Stará, A.; Stejskal, V.; Malinovskyi, O.; Svačina, P.; Samarin, A.M.
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