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Abstract

Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD
is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated
with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian
subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same
genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03)
that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb)
and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol
metabolism. FGD4 plays a role in clustering and trafficking GABAA receptor and subsequently influence alcohol drinking
through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant
genes may contribute to the genetic mechanism of alcohol dependence.
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Introduction

Alcohol is the most widely used addictive substance, affecting

billions of people worldwide. Alcohol dependence (AD) is

characterized by psychiatric and physiological dependence

(withdrawal and tolerance) as well as behavioral indices of

addiction on alcohol [1]. It is a common complex disease

determined by both genetic and environmental factors; the

estimated heritability through family and twin and adoption

studies [2,3,4] is as high as 40 to 60%. Therefore, the identification

of genes that contribute to AD variation will improve our

understanding of genetic mechanism that underlies this disorder.

Regular drinking is necessary for the development of AD. The

heaviness of alcohol consumption including the frequency and

amount of alcohol drinking is strongly associated with AD risk.

Alcohol consumption is largely determined by genetic factors.

Most recently, at least two genome-wide association studies

(GWASs) have identified TMEM108, ANKS1A and AUTS2 as

possible risk genes for alcohol consumption in European-origin

populations [5,6]. Recent studies have also demonstrated that

there is a high degree of genetic overlap between AD and

heaviness of consumption even among non-dependent individuals

in the general population [7]. Genes affecting alcohol intake also

affect AD risk [8]. Therefore, genetic study on alcohol drinking

will likely have a useful role in the identification of genes

contributing to AD.

Genome-wide linkage study (GWLS) have identified a number

of loci potentially linked to AD [9,10,11,12]. Association studies

have also implicated several associated genes, such as ALDH2,

GABRA2, DRD2 [13,14,15]. However, the identified genes could

only account for a small proportion of genetic variation, leaving

the vast majority of heritability unknown. The limitation of

traditional association studies is that they focus on single

nucleotide polymorphisms (SNPs) only, while the human genome

exhibits various types of genomic variation. The ‘‘missing’’

heritability may be hidden in these extensive types of variants.

Recent studies have shown that another type of genomic

variation, copy number variations (CNVs), plays a significant role

in influencing common diseases as well [16,17]. CNV is a DNA

segment that is one kilo bases or larger and presents at variable

copy numbers in comparison with reference genome [18]. It

covers approximately 12% (,360 Mb) of the human genome [19].

CNVs may influence gene expression, phenotypic variation and

adaptation by disrupting genes and altering gene dosage, and can
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cause diseases [20,21,22,23]. Furthermore, CNVs can influence

gene expression indirectly through position effects, predispose to

deleterious genetic changes, or provide substrates for chromosome

change in evolution [18,24,25,26]. Many diseases are found to be

associated with copy number changes, including schizophrenia

[27,28], Parkinson’s disease [29], autism [30] and HIV/AIDS

susceptibility [31]. Therefore, investigation of CNVs would

contribute to unravel the genetic basis of complex diseases and

phenotypes.

In this study, to uncover the genetic basis of alcohol drinking

caused by CNVs, we conducted a genome-wide association study

in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping

array. We further replicated our findings in 1,627 Chinese

subjects.

Materials and Methods

Ethics Statement
The study was approved by Institutional Review Boards of

Creighton University, University of Missouri-Kansas City, Hunan

Normal University of China and Xi’an Jiaotong University of

China. Signed informed-consent documents were obtained from

all study participants before they entered the study.

Subjects
1) Discovery sample. The discovery sample consisted of

2,286 unrelated Caucasian subjects that were recruited in

Midwestern US in Kansas City, Missouri and Omaha, Nebraska.

All identified subjects were of European origin. Subjects with certain

conditions were excluded, including chronic disorders involving vital

organs (heart, lung, liver, kidney, brain), serious metabolic diseases

(diabetes, hypo- and hyper-parathyroidism, hyperthyroidism, etc.),

skeletal diseases (Paget disease, osteogenesis imperfecta, rheumatoid

arthritis, etc.), chronic use of drugs affecting bone metabolism

(hormone replacement therapy, corticosteroid therapy, anti-

convulsant drugs), and malnutrition conditions (such as chronic

diarrhea, chronic ulcerative colitis, etc.).

2) Replication sample. To replicate the associations for

CNVs at significant level of p,0.05, we performed another

independent study in 1,627 unrelated subjects of Chinese Han

population. All subjects were recruited from the cities of Xi’an/

Changsha and their neighboring areas in China.

Phenotyping
In Diagnostic Interview for Genetic Studies (DIGS) [32], they

defined ‘‘Regular Drinking’’ as drinking at least once a week. With

6,006 Caucasian subjects from 1,131 pedigrees, we confirmed that

this kind of ‘‘Regular Drinking’’ was genetically determined and

the heritability estimation was ,40% (unpublished data). So we

adopted ‘‘Regular Drinking’’ as phenotype and considered

subjects with drinking at least once per week as cases and subjects

with drinking less than once per week as controls. For alcohol

drinkers, alcohol consumption information was also collected.

Alcohol consumption is graded as 1, 2, 3 and 4, representing

drinking alcohol 1–2, 3–6, 7–10 and .10 times per week,

respectively.

Genotyping
Genomic DNA was extracted from peripheral blood leukocytes

using standard protocols. Genotyping with Affymetrix Genome-

Wide Human SNP Array 6.0, which features 1.8 million genetic

markers, including more than 906,600 SNPs and more than

946,000 probes for detection of copy number variation, was

performed using the standard protocol recommended by the

manufacturer. Fluorescence intensities were quantified using an

Affymetrix array scanner 30007 G. Data management and

analyses were performed using the AffymetrixH GeneChipH
Command ConsoleH Software (AGCC). Contrast quality control

(QC) threshold was set at the default value of greater than 0.4 for

sample quality control. The final average contrast QC across the

entire sample reached the high level of 2.32. The Birdsuite

package [33] was used for genotype calling, genotyping quality

control, and CNV identification.

For the discovery sample, common CNVs were identified using

the CANARY algorithm implemented in the Birdsuite software

[33], which utilized a previously defined copy number variation

map based on HapMap samples. In total, 1,316 CNVs were

genotyped for all the subjects in the discovery sample.

In order to generate results with high confidence, we conducted

quality control (QC) filtering both at the sample level and the

CNV level. First, for the sample level QC, we used three quality

metrics reported by the Birdsuite method to evaluate the initial

2,286 subjects for quality in copy number genotyping. The

following procedures were adopted: 1) we removed any sample

that was greater or less than three standard deviations (SD) from

the average estimate of copy number, which was approximate two

copies at genome-wide level; 2) we calculated the variability in

copy number and SNP probe intensities with each standardized

per chromosome. We removed any sample with more than three

SDs than these estimates on the average genome-wide level; 3) we

removed any sample in which more than two chromosomes failed

any of these three metrics, i.e. more than three SD in estimated

copy number or excessive CNV or SNP variability for chromo-

some. According to above criteria, 71 subjects were discarded, the

copy number of the remaining 2,215 subjects including 938 cases

and 1,277 controls were successfully genotyped by the CANARY

software.

Second, we conducted QC filtering at the CNV level. Out of the

initial 1,316 CNVs, we discarded the CNVs with confidence score

greater than 10% or with less than 1% of allele frequency (AF) that

refers to the total proportion of the subjects with copy number less

or more than two in total sample. Of the initial full-set of 1,316

CNVs, there are 501 CNVs with AF,1%, 268 CNVs with

confidence score greater than 0.10 and 4 CNVs with both. As a

result, 551 CNVs were available for subsequent association

analyses.

Statistical analyses
Statistical analyses of CNV-based association were performed

by a logistic regression model in R package glm [34]. The copy

number was used as a predictor of alcohol drinking. Age and sex

were included as covariates in the model. To correct for the effect

of potential population stratification, we performed a principal

component analysis on genome-wide SNP data with EIGEN-

STRAT [35] and included the top ten principal components as

covariates. After correcting for the effects of all covariates, we also

exponentiated the coefficients for the CNVs and interpreted them

as odds ratios (ORs). Fisher’s method [36] was used to combine

the p-values from both the discovery and replication samples.

We further tested the association of alcohol drinking and SNPs

that locate in CNV regions. The association was tested by a logistic

regression model.

Results

The basic characteristics of the subjects used in both discovery

and replication samples, including sex, age, number of subjects

CNV-Based GWAS for Alcohol Drinking
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with regular alcohol drinking and drinking consumption are

summarized in Table 1.

In the discovery sample, 30 CNVs were associated with regular

alcohol drinking at the significance level 0.05 (Table S1). Two of

them, CNV207 and CNV1836, were further replicated in the

replication sample. The p-values of CNV207 in the discovery and

replication samples were 2.27E-02 and 8.87E-03; and those of

CNV1836 were 8.13E-03 and 4.17E-02, respectively (Table 2).

The odds ratios (ORs) of CNV207 in the discovery and replication

samples were 1.16 (95% CI: 1.02–1.32) and 0.40 (95% CI: 0.21–

0.82), respectively and those of CNV1836 in the discovery and

replication samples were 1.22 (95% CI: 1.05–1.42) and 1.62 (95%

CI: 1.02–2.72), respectively. The combined p-values of these two

CNVs were 1.91E-03 and 3.05E-03, respectively. Though neither

of the combined p-values achieved Bonferroni corrected signifi-

cance level (9.07E-5), they offered suggestive signals of potential

associations.

CNV207 is located in the chromosome region 2p22 with

physical position ranging from 34,552,819 bp to 34,590,561 bp. It

is in the 870 kb downstream of the gene transforming growth

factor beta-1 binding protein 1(LTBP1). The numbers of carriers

with 0, 1 and 2 copies were 287, 1087 and 810 in the discovery

sample and 0, 71 and 1220 in the replication sample, respectively.

Individuals with more CNs trended to have higher percentage of

alcohol drinkers in the discovery sample, but individuals with more

CNs trended to have lower percentage of alcohol drinkers in the

replication sample (Figure 1).

CNV1836 is located in the chromosome region 12p11 with

physical position ranging from 33,192,673 bp to 33,198,641 bp.

It is in the 400 kb downstream of the gene actin-filament

binding protein frabin (FGD4). The number of carriers of 0, 1

and 2 copy numbers was 102, 729 and 1353 in the discovery

sample and 17, 264 and 1011 in the replication sample,

respectively. Subjects with 1 copy number had the lowest

percentage of alcohol drinkers in both discovery and replication

samples (Figure 1).

There are two SNPs that are located in the region of CNV207

(rs7593687 and rs7583665) and four in the region of CNV1836

(rs10772040, rs983985, rs7972327 and rs2018498). None of these

six SNPs was significantly associated with alcohol drinking in both

samples (Table 3).

Discussion

In this study, we have performed a CNV-based genome-wide

association study of alcohol drinking in 2,286 Caucasian subjects,

and replicated in 1,627 Chinese subjects. We identified CNV207

and CNV1836 to be suggestively associated with alcohol drinking

in both discovery and replication samples. Although the

Bonferroni corrected p-values for CNV207 and CNV1836 are

not significant, they were replicated in distinct populations and

might be more generalizable to other populations, and would be

more likely to be causal in nature [37].

LTBP1 plays a critical role in controlling and directing the

activity of transforming growth factor beta 1 (TGFB1) [38], which

encodes a member of the transforming growth factor beta (TGFB)

family. TGFB modulates the expression of genes involved in a

variety of biological process, including alcohol metabolism and

oxidative stress. In previous studies, Saltzman et al. [39] reported

that alcohol drinking was associated with serum TGFB1 levels.

Ciuclan et al. [40] found that enzymes directly participating in

alcohol metabolism were down-regulated by TGFB. TGFB was

also found to strongly promote alcohol dependent oxidative stress

and anti-oxidant depression leading to enhanced cellular toxicity

[40]. This ‘‘alcohol damage promoting’’ effect of TGFB was

further supported by the finding that ethanol induced lipid

peroxidation was increased upon parallel activation of its signaling

pathway [40]. Therefore LTBP1 may influence alcohol drinking

through its regulation effect on TGFB family.

Another relevant gene is FGD4. It activates the gene CDC42,

which has a specific role in clustering and trafficking of GABAA

receptors [41,42]. There is a large body of evidence showing that

Table 1. Basic characteristics of the study subjects.

Discovery Sample Replication Sample

Total Male Female Total Male Female

No. of subjects 2286 558 1728 1627 802 825

Age 51.37(13.75) 50.71(16.05) 51.58(12.92) 34.49(13.24) 31.43(7.97) 37.46(13.77)

No. of alcohol drinkers 972 296 676 167 137 30

Drinking consumption 2.14(1.00) 2.51(1.15) 1.98(0.88) - - -

Note: age and drinking consumption are presented as mean (standard deviation).
doi:10.1371/journal.pone.0030860.t001

Table 2. Characteristics of the interesting CNVs for association analysis.

Name Chr Start End Discovery Sample Replication Sample
Combined
P-value

P-value AF CSa OR(95% CI) P-value AF CSa OR(95% CI)

CNV1836 12 33,192,673 33,198,641 8.13E-03 0.38 0.005 1.22(1.05–1.42) 4.17E-02 0.24 0.028 1.62(1.02–2.72) 3.05E-03

CNV207 2 34,552,819 34,590,561 2.27E-02 0.63 0.003 1.16(1.02–1.32) 8.87E-03 0.07 0.011 0.40(0.21–0.82) 1.91E-03

a. CS denotes confidence score.
doi:10.1371/journal.pone.0030860.t002

CNV-Based GWAS for Alcohol Drinking
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GABAA receptors play central roles in both short- and long-term

effects of ethanol in the central nervous system [43]. Therefore,

FGD4 gene may play a role in clustering and trafficking GABAA

receptor through activating CDC42 and subsequently influence

alcohol drinking.

It is not surprising that the two related genes are not located in

the respective CNV regions. A previous genome-wide association

study between CNVs and gene expression levels showed that more

than half of the associated genes were not located in any CNV

interval [44]. These observations suggest that rather than altering

gene dosage, CNV could also affect regulatory regions and other

functional regions that have an impact on gene expression [44].

Stranger et al. [45,46] showed that genes could be implied from

CNVs as long as 2 MB apart, as confirmed by extensive studies in

animal models [47,48].

Notice that for CNV207, the association directions in the

discovery and replication studies were not consistent. This

inconsistency may be explained by the following reasons: first,

genetic variants could have differences, such as different allele

frequencies among diverse populations because of different

evolution histories, resulting in different modes of genotype-

phenotype association [49]. According to a recent study,

replicable findings in distinct populations might be more

generalizable to other populations, and would be more likely

to be causal in nature [37]. Second, in the context of GWAS,

significant associations are usually declared at genetic markers

that are in linkage disequilibrium with causal site, rather than the

causal site itself. Therefore, the directional inconsistency could

be a result of opposite patterns of LD between the two

populations.

Figure 1. Percentage of alcohol drinkers in groups with different copy number (CN) of CNV207 and CNV1836 in the discovery and
replication samples.
doi:10.1371/journal.pone.0030860.g001

Table 3. Association between SNPs located in CNV207 and CNV1836 region and alcohol drinking.

CNV region CHR SNP Discovery sample Replication sample

Allelea MAF P-valueb Allelea MAF P-valueb

CNV207 2 rs7593687 A/G ,0.01 NA A/G ,0.01 NA

2 rs7583665 T/C 0.02 0.75 T/C ,0.01 NA

CNV1836 12 rs10772040 A/C 0.09 0.88 C/A 0.22 0.08

12 rs983985 C/T 0.37 0.19 T/C 0.04 0.16

12 rs7972327 C/G 0.09 0.99 G/C 0.12 0.97

12 rs2018498 A/G 0.37 0.19 G/A 0.04 0.16

a. The second allele is the minor allele in the sample;
b. NA: not available due to the low minor allele frequency.
doi:10.1371/journal.pone.0030860.t003

CNV-Based GWAS for Alcohol Drinking
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We did not identify any significant SNPs within the two CNV

regions, implying that CNV may take the effect alone.

In summary, we have indentified two CNVs, CNV207 and

CNV1836, that were suggestively associated with alcohol drinking.

The two relevant genes, LTBP1 and FGD4, may play important

roles in the metabolism of alcohol dependence. Our findings may

provide informative candidate genes for further functional studies

of alcohol dependent traits.

Supporting Information

Table S1 Information of 30 CNVs with p,0.05 in discovery

sample.

(DOC)
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