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Abstract 1 

The COVID-19 pandemic has resulted in extensive surveillance of the genomic diversity 2 
of SARS-CoV-2. Sequencing data generated as part of these efforts can also capture 3 
the diversity of the SARS-CoV-2 virus populations replicating within infected individuals. 4 
To assess this within-host diversity of SARS-CoV-2 we quantified low frequency (minor) 5 
variants from deep sequence data of thousands of clinical samples collected by a large 6 
urban hospital system over the course of a year. Using a robust analytical pipeline to 7 
control for technical artefacts, we observe that at comparable viral loads, specimens 8 
from patients hospitalized due to COVID-19 had a greater number of minor variants 9 
than samples from outpatients. Since individuals with highly diverse viral populations 10 
could be disproportionate drivers of new viral lineages in the patient population, these 11 
results suggest that transmission control should pay special attention to patients with 12 
severe or protracted disease to prevent the spread of novel variants. 13 
 14 

 15 

  16 
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Introduction 17 

 18 

During the COVID-19 pandemic, emerging variants of SARS-CoV-2 have been globally 19 

tracked due to the rapid acquisition and sharing of whole genome sequence data1. As of 20 

July 2022, close to 12 million SARS-CoV-2 consensus genome sequences have been 21 

deposited to the GISAID repository (https://www.gisaid.org). These sequences 22 

represent summaries of petabytes of raw sequencing data, which cover the 30Kb RNA 23 

genome of SARS-CoV-2 at high redundancy. These deep sequence data could 24 

potentially be a rich source of information about the emergence of mutations in the virus 25 

population within the infected host, prior to transmission. Because an infected host is a 26 

dynamic, heterogeneous environment in which viruses replicate and compete under 27 

immunological pressure, it is of great interest to understand how much heterogeneity in 28 

the within-host viral population lies beneath the consensus viral genome sequence.  29 

 30 

Studies of within-host viral diversity—variously referred to in terms of minor variants, 31 

quasispecies, low-frequency variants, or intrahost single nucleotide variants (iSNVs)—32 

infer the viral diversity within a specimen from the relative abundances of sequencing 33 

reads supporting polymorphic sites2. Such studies aim to capture de novo mutations 34 

acquired by the virus over the course of within-host replication, as well as mixed 35 

infections acquired through transmission of multiple lineages. In principle, this 36 

information could be used to help predict the emergence of novel variants, to identify 37 

sites under evolutionary selection, or to help track transmission3. It is also of interest to 38 

determine if patient characteristics, behavior, or differences in clinical care strategies 39 

influence the magnitude of viral diversity generated and maintained in individual patients 40 

or during transmission. For example, there is evidence that SARS-CoV-2 variants with 41 

multiple novel mutations have emerged in patients with protracted infections 4.  42 

 43 

However, the existing studies also acknowledge that such inferences must be made 44 

cautiously. Within-sample read diversity can also be due to sample contamination, 45 

especially with aerosolized PCR product; biases generated during reverse transcription, 46 
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PCR, enrichment, and library preparation steps; sequencing errors; and artefacts 47 

generated during bioinformatic processing and read mapping5. Well-established 48 

methods exist for accounting for these processes when it comes to assembling 49 

consensus sequences, but it is considerably more difficult to accurately quantify within-50 

sample variation without making special efforts to counteract these sources of error. 51 

Therefore, it is crucial to develop best practices for inferring minor variant diversity from 52 

viral deep sequencing data, especially from opportunistic datasets generated with 53 

consensus genome sequences as the primary goal and not minor variant analysis.  54 

 55 

We explored the feasibility of extracting actionable signals about within-host viral 56 

genetic diversity from the deep sequence data underlying consensus genomes by 57 

focusing on a cohort from the Houston Methodist Hospital System. A network of eight 58 

hospitals and an associated research institute serving a demographically diverse city of 59 

7 million people, HMH began using high-output Illumina instruments to sequence all 60 

SARS-CoV-2 specimens coming through the system in December 2020. End-to-end 61 

processing of samples, from collection through read generation, occurred within the 62 

same set of facilities and protocols with a high level of technical standardization and 63 

automation. The resulting consensus sequences were deposited in GISAID and used to 64 

track epidemiological trends in Houston6–8. The dataset is unique in that it densely 65 

samples a large population over an extended period of time with rich patient metadata 66 

linked to samples. However, these same advantages come with challenges from the 67 

perspective of minor variant tracking: samples are processed approximately 68 

sequentially, not in controlled or randomized batches, and there is limited opportunity in 69 

an active high-throughput sequencing facility of this scale to sequence technical 70 

replicates.  71 

 72 

Previous studies of minor variants that carefully addressed sources of error and 73 

uncertainty have emphasized different aspects of within-host viral diversification9–12. 74 

Despite methodological differences, several broad observations have been consistent 75 

across studies: within-host diversity is generally low, albeit with some outlier samples 76 
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containing high diversity; and within-host mutations apparently independently recur 77 

frequently between samples, impeding attempts to use minor variant information to infer 78 

transmission. We used our large dataset to delve more deeply into unanswered 79 

questions surrounding these observations. First, we used the patient metadata available 80 

to explore whether there are any patient characteristics associated with high minor 81 

variant richness, since such individuals might be disproportionate drivers of the 82 

emergence of new consensus mutations in an analogous way to a small number of 83 

patients driving superspreading events. Second, we examined a set of highly recurrent 84 

minor variants to investigate how many were systematic technical artefacts vs. 85 

hypermutable sites with potential phenotypic consequences. Theory and empirical data 86 

show that biases in de novo generation of mutations can skew evolutionary trajectories, 87 

with convergent traits often arising via pathways involving hypermutable sites.13,14 We 88 

find that while both phenotypically important mutations and probable artefacts regularly 89 

recur as minor variants, a robust association between high within-host virus diversity 90 

and patient hospitalization (admission into inpatient or ICU care) could be detected. The 91 

mechanism and direction of this association is unknown, but this observation supports 92 

the conclusion that transmission control in healthcare settings or from severely ill 93 

patients should be of particular focus in preventing the emergence of new variants. 94 

 95 

Results 96 

 97 

Sample inclusion criteria, minor variant detection and reproducibility 98 

Between the beginning of December 2020 and the end of November 2021, a total 99 

39,880 samples were collected at Houston Methodist, encompassing a wide range of 100 

symptomatic and asymptomatic patients and healthcare workers. These were 101 

sequenced across 70 NovaSeq sequencing runs. We narrowed down the dataset 102 

considerably according to various criteria such as the sequencing depth and the input 103 

quantity of viral RNA, approximated by the quantitative PCR cycle threshold value, Ct 104 

(see Methods). Since no-template negative controls were not sequenced, we used 105 

Ct>=40 samples as pseudo-negative controls to assess the level of background PCR 106 
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amplicon contamination in each run, reasoning that background contamination of deeply 107 

sequenced samples does not necessarily impact consensus sequence calling but can 108 

affect the appearance of within-host diversity. We excluded runs containing at least 109 

three Ct>=40 samples in which the coverage breadth and depth were not statistically 110 

different from the Ct<40 samples in the run (t-test>=0.01). This conservative criterion 111 

resulted in the exclusion of 22 sequencing runs. We also limited all our analyses to 112 

samples with at least 100x coverage over at least 98% of the genome, and excluded 113 

samples where the consensus sequence was flagged as poor quality by Nextclade15 or 114 

that did not have a lineage assigned by Pango16, and used the earliest available sample 115 

from patients from whom multiple samples were collected. These initial filtering criteria 116 

narrowed the dataset to 15,389 samples with a lower average Ct value (19.96) than the 117 

total population (23.47) (Fig.1a).  118 

 
Figure 1. Distribution of minor variant richness in Houston Methodist SARS-CoV-2 specimens. a. Change in 
distribution of sample Ct values after applying minimum sequencing depth and background contamination exclusion 
criteria (see Methods).  b. Number of minor variants per sample in 15,389 samples passing initial quality control 
criteria (minimum depth/breadth of coverage, run-level quality screening, consensus sequence assembly quality). 
c. Relationship between minor variant richness and sample input quantity (qPCR Ct value) in samples for which Ct 
values were available (n=7356). Vertical dotted line represents Ct<26, the threshold below which minor variants are 
generally reproducible. 
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 119 

Minor variants were identified using a variant calling pipeline (timo), which was 120 

previously demonstrated to have high precision and recall of minor variants, given a 121 

background rate of sequencing error5. The output of this pipeline also differs from many 122 

minor variant callers in that it identifies minor variants that are reversions to the 123 

ancestral reference allele at sites where the consensus allele differs from the reference. 124 

We considered minor variants at sites with a total depth of coverage of at least 100 125 

reads, where the minority variant made up at least 1% of reads at the site at a minimum 126 

depth of 50 reads (thus requiring a more stringent standard of minimum minor variant 127 

frequency at sites with lower coverage). We excluded any minor variants at PCR primer 128 

binding sites of either of the primer sets used over the course of the study, and 129 

excluded any sites called as gaps or Ns in the consensus or minority fraction. For 54 of 130 

the samples, technical replicates re-sequenced from the original RNA were available, 131 

which we used to assess how many of the minor variants were reproducible. We found 132 

that both the presence/absence and within-host frequency of minor variants were highly 133 

reproducible in samples with Ct values <26 (SuppFig.1 a,b). This was consistent with 134 

the range of input quantities at which minor variants were reproducible in several 135 

previous studies11,17. At higher Ct values, many more minor variants failed to be 136 

detected in the second replicate of sequencing or were detected but at substantially 137 

different frequencies. Sequencing depth either across the whole genome or at individual 138 

sites was not clearly associated with reproducibility (SuppFig.1 c,d). We thus 139 

concluded that minor variants were more likely to be spurious in lower-input samples 140 

but were reliably detected in a single replicate of sequencing in higher-input samples, 141 

and that sample input amount rather than sequencing depth was a more reliable 142 

indicator of sample quality for this purpose.   143 

 144 

Within-host minor variant diversity 145 

In the 15,389 samples passing the initial quality control criteria, 9,771 (63%) contained 146 

minor variants at fewer than 10 nucleotide positions, with a long tail of samples 147 

containing much higher diversity (Fig.1b). Consistently with previous studies9, there was 148 
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a strong correlation with Ct value, with the most diversity concentrated in moderately 149 

low-input samples (Ct~28-30) (Fig.1c). There could be technical or biological reasons 150 

for higher minor variant richness in lower viral load samples: they are inherently more 151 

variable due to stochastic sampling and thus are more sensitive to contamination and 152 

technical artefacts, but they also could have been collected early or late in the infection, 153 

reflecting different points in the mutation/selection trajectory of the viral population. 154 

Given the previous findings about reproducibility, we limited further analysis to samples 155 

with Ct<26, acknowledging that although minor variant data from these samples is likely 156 

more accurate, this stringent criterion likely affects the composition of the patient cohort 157 

studied, since it excludes patients with low viral loads. Because diagnostic PCR was 158 

carried out on different instruments across the healthcare system, Ct values were not 159 

available for all samples; thus the final dataset contained 6,140 samples. The median 160 

number of minor variants in samples in this dataset was 5, with a maximum of 379. A 161 

slight positive association with Ct value remained, which is likely due to genuine 162 

biological factors in this range of input values (Fig.1b, grey region).  163 

 164 

The final dataset of samples spanned 47 sequencing runs encompassing several 165 

distinct stages of the epidemic. In December 2020 and early January 2021, the 166 

dominant consensus sequences were from variant B.1.2 and an assortment of smaller 167 

lineages. Starting in late January, a period of declining cases was strongly dominated 168 

by the Alpha variant (B.1.1.7), which was replaced in July by the Delta variant 169 

(B.1.617.2) in a late summer/autumn surge (SuppFig.2). Sample collection dates were 170 

roughly, but not completely, chronologically associated with runs (SuppTable 1). Even 171 

after stringent filtering criteria, there remained a run-level effect on the detection of 172 

minor variants, which appeared to be related to the run-level average of sequencing 173 

depths rather than individual sample sequencing depths (SuppFig.3). Sequencing 174 

batch effects are therefore important to consider when assessing minor variant diversity. 175 

 176 

Clinical correlates of within-host diversity 177 
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Having controlled as much as possible for artefacts and systematic errors, we next 178 

determined if unusually high minor variant richness was associated with any clinical 179 

features. From available medical records, we obtained deidentified data on patient 180 

demographics (age group, sex, and ethnicity), comorbidities (chronic heart, lung, liver 181 

and kidney disease; hypertension; diabetes; obesity; HIV status; previous organ 182 

transplant status; cancer), and aspects of clinical treatment (whether the patient was 183 

hospitalized and/or was treated with plasma or monoclonal antibodies). Because many 184 

of these factors are highly correlated with each other, we used a random forest 185 

classification model to query the relative importance of these factors in grouping 186 

samples as “high diversity” or “low diversity.” We considered “high diversity” samples to 187 

be those with more than 5 minor variants, which was the median number. While the 188 

overall performance of the random forest model was poor (ROC AUC=0.58), suggesting 189 

that the clinical features included were insufficient to classify high vs. low diversity 190 

samples without additional information, the most important variable in the trained model 191 

was hospital admission. A chi-squared test confirmed that high-variant samples were 192 

overrepresented among hospitalized patients—treated as inpatients or admitted to 193 

intensive care—compared to outpatients (X2 = 131.58, df = 1, p< 2.2e-16). The odds 194 

ratio of the association of hospitalization with high minor variant diversity was 1.84 (95% 195 

CI 1.66-2.05). There was a higher proportion of hospitalized patients, as compared to 196 

non-hospitalized individuals, with at least 1 minor variant, more than 5, or more than 10 197 

minor variants in the sample (SuppFig.4).  198 

 199 

To take sample viral input amount and sequencing run batch into account, we 200 

constructed a linear mixed effects model with hospital admission and sample Ct value 201 

as fixed effects, sequencing run as a random effect, and the log-transformed number of 202 

minor variants in the sample as the response variable. Hospital admission and Ct value 203 

were both significantly associated with minor variant diversity (Table 1a, Fig.2a).  204 

One plausible reason samples from patients requiring hospitalization could have higher 205 

minor variant richness is if they were on average collected later in the infection than 206 

samples from non-hospitalized patients. We did not have information on the number of 207 
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days post infection for any of the samples. As another way to probe the relationship 208 

between disease severity and minor variant richness, that is less likely to be related to 209 

infection duration, we examined minor variant diversity in samples from July 2021 210 

onwards when an appreciable number of vaccine breakthrough cases occurred. 211 

Assuming that vaccination was associated with less severe disease even among the 212 

population not requiring hospitalization, we compared minor variant richness in the 213 

infections of fully vaccinated and unvaccinated or partially vaccinated non-hospitalized 214 

individuals. At comparable Ct values, minor variant diversity was significantly higher (p 215 

<0.05) in the unvaccinated than in the fully vaccinated cases (Table 1b, Fig.2b). Finally, 216 

we compared minor variant diversity in samples from healthcare workers undergoing 217 

voluntary surveillance testing with samples from non-hospitalized patients. In this case, 218 

 
Figure 2. Association between patient status and SARS-CoV-2 diversity. a. Minor variant richness across Ct 
values in patients requiring hospitalization (inpatient or ICU) vs. outpatients (n=6140).  b. Minor variant richness 
in fully vaccinated vs. unvaccinated or partially vaccinated patients, limiting samples to those collected in July 
2021 or later and only from patients not requiring hospitalization (n=1366). c. Minor variant richness in non-
hospitalized patients vs. healthcare workers undergoing voluntary surveillance (n=3874).  
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minor variant richness was not significantly different between these two groups (Table 219 

1c, Fig.2c).  220 

 221 

As a complementary approach to evaluating the association between patient factors, 222 

sample characteristics, and minor variant richness, we constructed a LASSO regression 223 

model containing the comorbidities, treatments, and demographic factors, as well as Ct 224 

values, median sequencing depth, collection month and run. In the best model 225 

(lambda=0.0013) the deviance ratio was 0.226, meaning that the combination of 226 

variables we included explained approximately 22.6% of the variation in the log-227 

transformed number of variants. We also constructed a version of this model which 228 

excluded all factors that had a strong temporal bias (vaccination status, consensus 229 

variant, and collection month), because temporal trends in this study design were 230 

impossible to separate from sequencing batch (run) effects. In this model (deviance 231 

ratio 0.17), hospital admission was clearly associated with the highest increase in minor 232 

variant richness (SuppFig.5). 233 

 234 

Taken together, these complementary modeling strategies suggest there is substantial 235 

unexplained variation in within-host minor variant richness. They also highlight that 236 

severity of disease—as exemplified here by hospitalization or lack of vaccination—237 

warrants further study as a correlate of within-host diversity independently of diversity 238 

associated with viral load or viral-load-related technical artefacts. 239 

 240 

Robustness of clinical associations to analytical thresholds 241 

To evaluate how sensitive the associations discussed above were to the criteria used to 242 

identify minor variants, we generated three additional datasets with different levels of 243 

stringency across criteria. In Alternate Dataset 1, we used samples with 200x coverage 244 

or more over at least 98% of the genome. We required minor variants to have a 245 

minimum of 2% allele frequency (MAF) at sites with at least 200x coverage and be 246 

supported by a minimum of 100 reads. In Alternate Dataset 2, we used samples with 247 

500x coverage or more over at least 98% of the genome, and required minor variants to 248 
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have at least 3% MAF supported by a minimum of 20 reads. In Alternate Dataset 3, we 249 

used samples with 1000x coverage or more over at least 98% of the genome and minor 250 

variants with at least 1% MAF.  Because the sample size was significantly reduced, we 251 

relaxed the Ct criterion from Ct<26 to Ct<35 for the regression analyses on vaccination 252 

status and healthcare worker surveillance, on the assumption that random errors in 253 

higher Ct samples would not differ between the groups. Despite the varying sample 254 

sizes and minor variant detection limits, all three datasets showed significantly higher 255 

minor variant richness in hospitalized patients (SuppFig.6). This factor was the most 256 

important in all three random forest models, it was in the top three highest coefficients in 257 

all three LASSO regression models in which all factors were included, and it had the 258 

highest coefficient in all three LASSO models in which temporally-biased factors were 259 

excluded. The other two factors of interest – vaccination status and healthcare worker 260 

status – differed significantly in the extent of the association depending on the dataset 261 

used. Minor variant richness was significantly lower in vaccinated patients and in 262 

healthcare workers in Alternate Dataset 1, but only the healthcare worker factor was 263 

significant in Alternate Dataset 2, and neither factor was significant in alternate dataset 264 

3. The ROC AUC values for the random forest classification model were similar for all 265 

three datasets (0.58-0.60), while the fraction of variation explained by the LASSO 266 

regression model was slightly higher for alternate dataset 3 (28% for the model 267 

including all factors, 16% for the model excluding temporally biased factors). Aside from 268 

the hospitalization variable, the coefficients of many factors changed substantially 269 

between alternate datasets, even changing sign (for example, plasma treatment and 270 

monoclonal antibody treatment were associated with increased or decreased minor 271 

variant richness depending on the dataset). We concluded that the thresholds and 272 

criteria used to identify minor variants could significantly affect the strength of observed 273 

associations, but that the higher richness of minor variants in samples from patients 274 

requiring hospitalization was robust.  275 

 276 

Mutational patterns of highly prevalent minor variants 277 
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Having determined that minor variant richness was robustly associated with 278 

hospitalization, we set out to analyze the mutational patterns in the genome. Across all 279 

samples, minor variants were found mostly concentrated in the Orf8 and N genes, an 280 

observation consistent with previous characterization of these genes as 281 

hypermutable18,19 (Fig.3a,b); this enrichment pattern was similar in samples from 282 

hospitalized and non-hospitalized patients (SuppFig. 7). The most common within-host 283 

mutation observed was C>T, consistent with previous studies and with the hypothesis 284 

that nucleic acid editing by host enzymes contributes to the mutational spectrum11 285 

(Fig.3c). Surprisingly, C>T mutations were also the most prevalent among non-286 

reproducible minor variants, despite the fact that C>T mutations are not known to be 287 

common sequencing errors20 (SuppFig. 8).  288 

 289 

 

 
Figure 3. Genomic context of SARS-CoV-2 minor variants. a. Prevalence of minor variants (top) and 
consensus changes (bottom) at nucleotide positions across the genome. b. Density of minor variants in 
different SARS-CoV-2 genes (defined as total number of minor variants found in a gene across all samples 
divided by the length of the gene). c. Prevalence of different consensus to minor nucleotide substitutions.  
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We were particularly interested in sites containing minor variants in a high proportion of 290 

the samples. Mutational hotspots are of interest due to their potentially important role in 291 

convergent evolution. Therefore, a plausible purpose for monitoring minor variants in 292 

deep sequencing data is to identify sites with increased probabilities of mutation as a 293 

special focus for targeted mutational analysis. Doing so would require the ability to 294 

distinguish genuine mutational hotspots from recurrent artefacts.  295 

 296 

We focused on 34 positions in the genome where minor variants were present in at 297 

least 2% of samples (Fig.4a). Minor variants at most of these positions were found at a 298 

range of frequencies from 1% to 50%, with several exceptions (Fig.4b). A majority of 299 

these sites included samples in which the minor variant was a reversion to the ancestral 300 

allele, suggesting repeated mutation at these sites. The gene containing the highest 301 

number (8) of highly recurrently mutated sites was N, but another 7 of these sites were 302 

found in the proteases PLpro or 3CLpro. These essential enzymes are involved in viral 303 

replication and immune modulation and thus high-profile targets for antiviral drug 304 

development21,22.  This further justifies special attention to the mutational properties of 305 

these sites, since responsible development of antivirals ought to consider likely paths to 306 

the evolution of resistance, including loci with higher than average standing genetic 307 

variation within hosts. We cross-referenced the list of the 34 highly shared positions with 308 

highly shared sites from previous studies, with global patterns of consensus SNPs 309 

(queried from GISAID using cov-spectrum.org23), and with known phenotypically 310 

important convergent mutations24.  311 

 312 

Several of the highly shared minor variant sites were highly polymorphic on the 313 

consensus level both within this dataset and in the US-wide GISAID data. Such sites 314 

pose challenges for interpretation because this pattern could be indicative of genuinely 315 

hypermutable sites but is also difficult to distinguish from cross-contamination because 316 

multiple consensus variants are often present in the same run. Indeed, in many sites 317 

that were polymorphic on the consensus level, minor variants only appeared in runs in 318 

which multiple consensus variants were present (SuppFig.9). One exception was 319 
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nucleotide position 23604 (S: P681), a position proximal to the furin cleavage site that 320 

 
Figure 4. Nucleotide substitutions and minor allele frequencies at highly mutable sites. a. Minor variant 
changes at 34 nucleotide positions containing minor variants in at least 2% of samples. b. Minor allele frequencies 
of variants at these sites. 
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had all combinations of minor and consensus nucleotides present throughout the study 321 

period; and sites 28280-28282 (N: D3), which had two alleles at various frequencies 322 

present at each position in the codon throughout the study period. S: P681 has 323 

undergone different substitutions in multiple variants of concern; N: D3 contains a whole 324 

codon substitution in the Alpha lineage. These patterns are consistent with the 325 

explanation that these are highly mutable loci in which mutations have a high likelihood 326 

of becoming fixed in a lineage with a fitness advantage, like the variants of concern. 327 

 328 

A somewhat puzzling pattern was observed for the highly prevalent minor variants at 329 

sites 1730 (orf1a: E489), 8853 (orf1a: G2863), 10619 (orf1a: Q3452), and 29187-29188 330 

(N:A305) (Fig.4a). These sites were highly conserved at the consensus level but 331 

contained minor variants at low frequencies in a substantial fraction of specimens 332 

throughout the study period with a notable increase in the fraction of samples with minor 333 

variants in the later part of the study period (starting approximately with run 57/July 334 

2021) (SuppFig.9). This period corresponds to when the vast majority of sequenced 335 

specimens were from the Delta lineages.  336 

 337 

Some of the other sites had evidence suggesting technical or bioinformatic artefacts. 338 

For example, nucleotide position 11083 was identified as a highly recurrent minor 339 

variant in Lythgoe et al and Tonkin-Hill et all10,11, as well as a highly homoplasic site 340 

across the SARS-CoV-2 phylogeny25. It is immediately adjacent to a long T-341 

homopolymer site, a well-known cause of sequencing error. Nucleotide position 21994 342 

(S:Y144) is adjacent to a characteristic deletion in the Alpha (B.1.1.7) lineage, 343 

suggesting that mis-alignment of reads at the deletion site might contribute to the 344 

appearance of minor variants at that position. A particularly anomalous pair of minor 345 

variant sites were at positions 29187 and 29188, in the N gene, which were present in 346 

more than 30% of the samples studied but never at higher than 7% minor allele 347 

frequency. The amino acid mutation that these minor variants corresponded to, N: 348 

A305V, was extremely rare on the consensus level among sequences deposited to 349 
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GISAID (SuppFig.10), with only 72 sequences containing this mutation found in the 350 

United States, of which 59 were from Houston Methodist Hospital.  351 

 352 

Finally, as another approach to examining whether convergent evolution could be linked 353 

to mutational patterns observed in minor variant data, we examined the frequency in the 354 

minor variant dataset of mutations repeatedly associated with increases in SARS-CoV-2 355 

fitness. Obermeyer et al24 showed that single nucleotide mutations associated with 356 

increased transmissibility evolved independently multiple times in different lineages. 357 

Several mutations in the Spike protein, namely E484K, N501Y, K417N, and L18F, also 358 

independently evolved in several lineages of concern26. We examined the prevalence of 359 

these 22 nucleotide substitutions as minor variants in our data. Eight of these were not 360 

found as minor variants in any samples, whereas 14 (13 of them in the Spike protein) 361 

were found in at least one sample (SuppFig.11). The most prevalent of these minor 362 

variant mutations was S:T95I, which was at nucleotide position 21846, one of the 363 

identified highly shared sites. This mutation, in the N-terminal domain of the Spike 364 

protein, has arisen independently in at least 30 consensus lineages and is associated 365 

with significant increases in viral fitness, but its phenotypic effect has not, to our 366 

knowledge, been experimentally characterized. Given the tendency of this mutation to 367 

frequently arise both within hosts and be successfully transmitted between hosts, further 368 

characterization of the effects of this change may be warranted to inform design of 369 

drugs and antibodies.  370 

 371 

Discussion 372 

We explored the feasibility of characterizing within-host diversity by extracting minor 373 

variants data from clinical genomic surveillance samples of a large, densely sampled 374 

population to supplement consensus-level understanding of viral variants. The clearest 375 

finding of this study is that although within-host diversity is generally low, higher within-376 

host diversity is associated with patients requiring hospitalization. Previous studies of 377 

minor variants in SARS-CoV-2 have consistently identified outlier samples with high 378 

numbers of within-host minor variants even after stringent quality control but were 379 
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unable to examine the implications of such specimens due to their rarity. Exactly such 380 

rare events (i.e. patients with highly diverse viral populations) may be disproportionate 381 

drivers of viral recombination and transmission of standing genetic variation on which 382 

host-mediated natural selection can act. In this dataset, the absolute number of these 383 

outliers was high enough that we could test whether any of the host factors were 384 

associated with higher viral diversity.  385 

 386 

Every novel consensus variant must at some point arise as a within-host variant, so it is 387 

crucial to understand what contexts may be likely to incubate viral population diversity. 388 

We found that, despite the noise introduced by variation in sequencing runs and sample 389 

Ct values, the signal was strong enough to observe a clear correlation between higher 390 

minor variant richness in more severely ill patients (those admitted to inpatient care or 391 

the ICU) and lower richness in vaccinated patients, in whom the number of replication 392 

cycles is assumed to be constrained. Previously, similar observations had been hinted 393 

at in smaller studies comparing cancer patients with healthcare workers, comparing 394 

mildly and severely ill patients, and examining minor variants in samples from patients 395 

of different ages 27–29. Studies in which patients were longitudinally sampled have 396 

shown fluctuating numbers of minor variants over time, with little directional trend9,30. 397 

Combined with our data, this suggests that within-host diversity is temporally dynamic, 398 

but in the aggregate is more likely to be high in more severely ill patients. This has 399 

implications for infection control strategies, for example bolstering the case that 400 

transmission control in healthcare settings and among symptomatically infected patients 401 

should be a critically high priority for preventing the emergence of new viral variants. 402 

 403 

The direction of causality for the association between severe disease and high within-404 

host diversity is unclear. It is plausible that more severe disease is the result of a more 405 

prolonged or quickly-replicating infection, during which more mutations can 406 

accumulate31; but, conversely, it is possible that more diverse infections drive more 407 

severe disease32. It is also possible that the immune responses during severe disease 408 

are distinctive in ways that affect selection on the viral population, or that there are 409 
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mechanistic links between the comorbidities associated with risk of hospitalization and 410 

the dynamics of immune selection. For example, obesity is associated with more 411 

negative outcomes in influenza, and a study of influenza virus diversity in mice found 412 

that influenza A virus replicated faster and accumulated more diversity in obese than in 413 

lean mice, an effect that appeared to be mediated by the differential robustness of the 414 

interferon response 33. Future studies should conduct case-control comparisons of 415 

technically replicated longitudinal samples of patients with different disease time-416 

courses to understand how virus population diversity changes over time in different 417 

types of hosts, under different immunological and clinical conditions. Such dynamics are 418 

well understood in viruses such as HIV, but may be more complex in SARS-CoV-2, 419 

which appears to elicit highly heterogeneous immune responses in different patients34.  420 

 421 

In multiple previous studies of SARS-CoV-2 within-host diversity, mutational hotspots 422 

have hampered attempts to use minor variants to track transmission of closely related 423 

lineages11,35, since it is difficult to distinguish hypermutable sites, recurrent artefacts, 424 

and sites that are genuinely co-transmitted. Notably, in Tonkin-Hill et al, there was no 425 

correlation between the probability of transmission between two patients and the 426 

number of minor variants they shared; samples that were epidemiologically distant from 427 

each other often had more than 10 minor variants in common. This was true even after 428 

excluding minor variants that were generally highly prevalent in the dataset. Other 429 

authors have pointed out that automatically excluding minor variants that are present in 430 

many samples is not always warranted in epidemiological inference, for example when 431 

examining a superspreading event in which a large group of people were interacting 432 

and transmitting virus for a substantial length of time35. In general, it appears that 433 

convergent within-host de novo mutation is common enough to significantly complicate 434 

inferences of transmission of within-host diversity. For these reasons, it was warranted 435 

to play closer attention to the characteristics of sites containing minor variants in many 436 

samples. We found evidence both for highly recurrent artefacts and for phenotypically 437 

important recurrent mutations, the latter of which may be a high priority for targeted 438 

mutational studies.  439 
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 440 

Our observations suggest that identifying genuine mutational hotspots requires both 441 

understanding the genomic context (noting adjacent deletions, homopolymers or other 442 

structural features that might affect spurious minor variant calling) and also the wider 443 

sequencing context. For example, the increase in the prevalence of several mutations in 444 

the same later runs is difficult to explain. Although it is plausible that different lineages 445 

would have different within-host mutation rates, it is more difficult to imagine a 446 

mechanism by which certain lineages would have elevated rates of mutation only at 447 

specific sites. It is also difficult to rule out that some unknown technical change in 448 

sequencing conditions also contributed to changes in relative prevalence at these sites. 449 

Similarly, we suspect that the high prevalence of minor variants at sites 29187-29188 450 

may be an artefact of the specific combination of methods used at this sequencing 451 

facility, because consensus variants at this position were very rare in consensus 452 

sequences from GISAID and primarily came from Houston Methodist, in samples with 453 

very different genetic backgrounds and collection dates. The existence of consensus 454 

mutations specific to particular sequencing labs was noted early in the pandemic25, so 455 

caution when detecting unusual mutations on the minor variant level is particularly 456 

warranted. 457 

 458 

One of the purposes of this study was to examine the general feasibility of extracting 459 

minor variant data from samples not collected for this purpose. Despite the exceptional 460 

level of quality control involved in the generation of our sequences in the clinical 461 

context, we found that unavoidable technical artefacts, in particular batch effects and 462 

the clear effect of RNA input quantity on minor variant calling—even when limiting 463 

samples to those with high coverage across the genome—hampered the ability to draw 464 

definitive conclusions in the absence of technical replicates and required us to limit our 465 

analyses to high input samples. Our results demonstrate that caution is required when, 466 

for example, analyzing minor variants from sequence data repositories36,37. Rates of 467 

different types of error may meaningfully differ between batches of samples such as 468 

sequencing runs, between laboratory protocols and even due to factors such as 469 
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whether individual tubes or plates were used in library preparation 38,39. If the 470 

idiosyncratic physical conditions under which library preparation occurs differentially 471 

affect error rates, then developing universally applicable error models may be extremely 472 

difficult. At the same time, the composition of batches may be non-random in 473 

biologically meaningful ways (e.g. samples from an outbreak in a particular location or 474 

population are likely to be sequenced in the same batch), making it difficult to 475 

disentangle biological and technical causes of patterns of minor variant prevalence. 476 

These results show that, without the development of more mature methods for 477 

correcting for numerous different sources of technical noise, deep sequence data 478 

cannot be used for routine monitoring of within-host viral diversity in the same way that 479 

consensus sequences are used for genomic surveillance.  480 

 481 

Targeted studies of within-host diversity that take these technical issues into account 482 

can, however, lead to a greater understanding of the mutational biases of the virus and 483 

characteristics of the within-patient environment that affect viral diversification. In our 484 

exploratory study, the clearest emergent signal is that infections with high virus diversity 485 

are enriched among hospitalized patients. This has clear implications for prioritizing 486 

transmission control in healthcare settings and Further dissection of within-host viral 487 

dynamics is required to determine whether knowledge of a patient’s viral population 488 

diversity can better inform clinical care.  489 

 490 

Methods 491 

 492 

Patient population and ethics 493 

The work was approved by the Houston Methodist Research Institute Institutional 494 

Review Board (IRB1010-0199). Specimens from patients were obtained primarily from 495 

symptomatic patients with a suspicion for COVID-19 disease from outpatient, 496 

emergency, labor and delivery, and other types of clinics. Specimens from healthcare 497 

workers were collected as part of a non-mandatory workplace surveillance program.  498 

Specimens were tested in the Molecular Diagnostics Laboratory at Houston Methodist 499 
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Hospital using assays granted Emergency Use Authorization (EUA) from the FDA 500 

(https://www.fda.gov/medical-devices/emergency-situations-medical-devices/faqs-501 

diagnostic-testing-sars-cov-2#offeringtests, last accessed June 7, 2021). Standardized 502 

specimen collection methods were used (https://vimeo.com/396996468/2228335d56,). 503 

Multiple molecular testing platforms were used, including the COVID-19 test or RP2.1 504 

test with BioFire Film Array instruments, the Xpert Xpress SARS-CoV-2 test using 505 

Cepheid GeneXpert Infinity or Cepheid GeneXpert Xpress IV instruments, the Cobas 506 

SARS-CoV-2 & Influenza A/B Assay using the Roche Liat system, the SARS-CoV-2 507 

Assay using the Hologic Panther instrument, the Aptima SARS-CoV-2 Assay using the 508 

Hologic Panther Fusion system, the Cobas SARS-CoV-2 test using the Roche 6800 509 

system, and the SARS-CoV-2 assay using Abbott Alinity instruments.  510 

 511 

Library preparation and sequencing 512 

Libraries for whole SARS-CoV-2 genome sequencing were prepared according to 513 

version 3 (https://community.artic.network/t/sars-cov-2-version-4-scheme-release/312, 514 

last accessed August 19, 2021) of the ARTIC nCoV-2019 sequencing protocol. We 515 

used a semi-automated workflow described previously6,7 that employed BioMek i7 liquid 516 

handling workstations (Beckman Coulter Life Sciences) and MANTIS automated liquid 517 

handlers (FORMULATRIX). Short sequence reads were generated with a NovaSeq 518 

6000 instrument (Illumina).  519 

 520 

Sample selection 521 

The initial dataset was comprised of 39,880 samples from 70 Novaseq runs. These runs 522 

also often contained samples from other institutions or collection time periods, which we 523 

took into account when assessing the possibility of within-run cross-contamination but 524 

did not otherwise analyze. Median sequence depth of samples was broadly but not 525 

perfectly correlated with sample input quantity. We noted that very low input samples, 526 

i.e. with Ct values >=40, generally had very low coverage, but there was a small subset 527 

with high coverage comparable to high input samples (SuppFig.12).  We excluded from 528 

the analysis any runs containing at least three Ct>=40 samples in which the coverage 529 
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breadth and depth were not statistically different from the Ct<40 samples in the run (t-530 

test>0.01 for median coverage or for fraction of genome with at least 1000x coverage). 531 

We further limited all our analyses to samples with at least 100x coverage over at least 532 

98% of the genome excluding the 5’ and 3’ UTRs. We also excluded samples where the 533 

consensus sequence was flagged as poor quality under the default quality control 534 

criteria of Nextclade15 (QC score >100) or that did not have a lineage assigned by 535 

Pango16. In cases where multiple samples were collected longitudinally from the same 536 

patient, we chose the earliest sample. 537 

 538 

Consensus sequence assembly and minor variant calling 539 

Adapter sequences were trimmed from reads using trimmomatic v0.3940 with the 540 

following options: ILLUMINACLIP:${params.adapters}:2:30:10:8:true LEADING:20 541 

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:20. Reads were aligned to the 542 

Wuhan/Hu-1 SARS-CoV2 genome (RefSeq: NC_045512.2) using minimap2 v2.17 with 543 

the preset genomic short-read mapping option41. ARTIC v3 primer sequences42 were 544 

removed using iVar v.1.3.1 with a minimum quality threshold of 0 and including all reads 545 

with no primer sequences found43. Consensus sequences and minor variants were 546 

called using an in-house variant calling pipeline, timo, available at 547 

https://github.com/GhedinLab/timo.  548 

 549 

Analysis 550 

Calculations, visualizations and statistical analyses were carried out in R v4.0.3 (R 551 

Foundation for Statistical Computing). Packages used for analysis included tidyverse 552 

1.3.1 44, glmnet 4.1.2 45, nlme 3.1.149 46, randomForest 4.6.14 47, pROC 1.17.0.1. 553 

Consensus sequence quality control was carried out in Nextclade 1.4.1 15.   554 

 555 

Additional Data Files 556 

Inclusion_table.csv includes IDs of samples with information about which samples were 557 

included in which analyses, and will include SRA accession numbers for each sample 558 
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when data deposition is complete. Files used in minor variant analysis are available in 559 

Github repository https://github.com/GhedinSGS/HMH-SARS-CoV2-minorvariants.  560 

 561 

Sequence and code availability 562 

Raw sequence data are available under Bioproject PRJNA767338. Pipeline used for 563 

minor variant calling is available at https://github.com/GhedinLab/timo, and data files 564 

and code used for analyses are available at https://github.com/GhedinSGS/HMH-565 

SARS-CoV2-minorvariants. 566 
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TABLE 1. Linear mixed-effects models for association of hospitalization, 585 

vaccination and healthcare worker surveillance samples on minor variant 586 

richness. 587 

a. Effect of sample Ct value and patient hospitalization status on log10 transformed 588 

minor variant richness. Sequencing run is included as a random effect. 589 
 

numDF denDF F-value p-value 
    

(Intercept) 1 6090 602.4491 <.0001 

Ct 1 6090 1370.695 <.0001 

admitted_hospital 1 6090 77.6004 <.0001 

Ct:admitted_hospital 1 6090 11.5969 7.00E-04 

 590 

b. Effect of sample Ct value and patient vaccination status on log10 transformed 591 

minor variant richness. Only samples from non-hospitalized patients collected in 592 

July 2021 or later are included. Sequencing run is included as a random effect. 593 
 

numDF denDF F-value p-value 
    

(Intercept) 1 1346 297.22177 <.0001 

Ct 1 1346 152.42258 <.0001 

vaccine_status 1 1346 4.52737 0.0335 

Ct:vaccine_status 1 1346 4.31531 0.0380 

 594 

c. Effect of sample Ct value and healthcare worker surveillance sample status on 595 

log10 transformed minor variant richness. Only samples from non-hospitalized 596 

individuals are included. Sequencing run is included as a random effect. 597 
 

numDF denDF F-value p-value 
    

(Intercept) 1 3824 455.9225 <.0001 

Ct 1 3824 669.4242 <.0001 

surveillance_sample 1 3824 0.1950 0.6588 

Ct:surveillance_sample 1 3824 0.0207 0.8857 

 598 

  599 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.22278898doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.17.22278898


FIGURE LEGENDS 600 

Figure 1. Distribution of minor variant richness in Houston Methodist SARS-CoV-601 

2 specimens. a. Change in distribution of sample Ct values after applying minimum 602 

sequencing depth and background contamination exclusion criteria (see Methods).   603 

b. Number of minor variants per sample in 15,389 samples passing initial quality control 604 

criteria (minimum depth/breadth of coverage, run-level quality screening, consensus 605 

sequence assembly quality). c. Relationship between minor variant richness and 606 

sample input quantity (qPCR Ct value) in samples for which Ct values were available 607 

(n=7356). Vertical dotted line represents Ct<26, the threshold below which minor 608 

variants are generally reproducible. 609 

 610 

Figure 2. Association between patient status and SARS-CoV-2 diversity. a. Minor 611 

variant richness across Ct values in patients requiring hospitalization (inpatient or ICU) 612 

vs. outpatients (n=6140).  b. Minor variant richness in fully vaccinated vs. unvaccinated 613 

or partially vaccinated patients, limiting samples to those collected in July 2021 or later 614 

and only from patients not requiring hospitalization (n=1366). c. Minor variant richness 615 

in non-hospitalized patients vs. healthcare workers undergoing voluntary surveillance 616 

(n=3874).  617 

 618 

Figure 3. Genomic context of SARS-CoV-2 minor variants. a. Prevalence of minor 619 

variants (top) and consensus changes (bottom) at nucleotide positions across the 620 

genome. b. Density of minor variants in different SARS-CoV-2 genes (defined as total 621 

number of minor variants found in a gene across all samples divided by the length of the 622 

gene). c. Prevalence of different consensus to minor nucleotide substitutions.  623 

 624 

Figure 4. Nucleotide substitutions and minor allele frequencies at highly mutable 625 

sites. a. Minor variant changes at 34 nucleotide positions containing minor variants in at 626 

least 2% of samples. b. Minor allele frequencies of variants at these sites. 627 

 628 

  629 
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Supplemental Figures 630 

 631 

Supplementary Figure 1. Reproducibility of minor variants in 54 samples with 632 

technical replicates. a,b. Reproducibility of minor variant detection (black vs. red) and 633 

minor allele frequency in samples with different input quantities, by category and by 634 

individual samples. “Unknown” Ct values represent samples diagnosed on the Hologic 635 

Aptima instrument, which gives results in relative light units (values >100 in individual 636 

sample panels) or on the Biofire Diagnostics instrument, which does not quantify viral 637 

load (“NA” in individual sample panels). c. Minor variant reproducibility in samples with 638 

different ranges of median sequencing depth. d. Sequencing depth at site and minor 639 

allele frequency of minor variants that were subsequently detected in the second 640 

technical replicate (“yes”) vs. not detected (“no”).  641 

 642 

Supplementary Figure 2. Collection dates and consensus virus lineage of final 643 

sample set.  644 

 645 

Supplementary Figure 3. Run-level effects on minor variant richness in filtered 646 

sample set. a. Minor variant richness in high coverage and Ct<26 samples in each 647 

sequencing run. b. Relationship between sample’s median sequencing coverage and 648 

number of minor variants. c. Median number of minor variants for samples in each run 649 

represented as a function of run−level median of median coverage. 650 

 651 

Supplementary Figure 4. Categories of minor variant diversity among hospitalized 652 

and non-hospitalized patients. 653 

 654 

Supplementary Figure 5. LASSO regression coefficients for association of patient 655 

and sample factors of interest with minor variant richness. a. Results of model in 656 

which all factors of interest are included. b. Results of model in which factors with a 657 

strong temporal dimension were excluded (collection month, consensus lineage, 658 

vaccination status).  659 
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 660 

Supplementary Figure 6. Associations between patient status and SARS-CoV-2 661 

diversity in three datasets using different thresholds for sample coverage and 662 

minor variant detection. 663 

 664 

Supplementary Figure 7. Density of minor variants in different SARS-CoV-2 genes 665 

in samples from hospitalized and non-hospitalized patients. Minor variant density is 666 

defined as total number of minor variants found in a gene across all samples divided by 667 

the length of the gene. 668 

 669 

Supplementary Figure 8. Prevalence of different consensus > minor nucleotide 670 

substitutions at minor variant sites that were detected vs. not detected in a second 671 

sequencing replicate. 672 

 673 

Supplementary Figure 9. Prevalence of minor alleles and consensus alleles at the 674 

34 most frequent minor variant sites, by run. For consensus allele prevalence, all 675 

samples from the run are included, regardless of whether they were analyzed in the 676 

minor variant study, on the assumption that they may contribute to cross-contamination 677 

in other samples.  678 

 679 

Supplementary Figure 10. Minor variant prevalence in the Houston Methodist 680 

dataset vs. prevalence of consensus mutations at these sites in US-wide SARS-681 

CoV-2 sequences from GISAID. GISAID sequences were queried on June 13, 2022 682 

covering the entire length of the pandemic in the U.S. to identify the number of 683 

sequences that had any nucleotide substitution (A,C,T,G) at the 34 nucleotide positions 684 

that most frequently had minor variants in the Houston dataset.  685 

 686 

Supplementary Figure 11. Prevalence across time of minor variants 687 

corresponding to recurrent amino acid changes associated with increased SARS-688 

CoV-2 fitness, as identified in Obermeyer et al24. 689 
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 690 

Supplementary Figure 12. Sequencing depth and Ct values of Houston Methodist 691 

SARS-CoV-2 samples prior to filtering.  692 

 693 

 694 

 695 

  696 
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